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ABSTRACT. Arrays with low autocorrelation are widely sought in applications; important examples are
arrays whose periodic autocorrelation is zero for all nontrivial cyclic shifts, so-called perfect arrays. In
2001, Arasu and de Launey defined almost perfect arrays: these have size 2u× v and autocorrelation arrays
with only two nonzero entries, namely 2uv and −2uv in positions (0, 0) and (u, 0), respectively. In this
paper we present a new class of arrays with low autocorrelation: for an integer n ≥ 1, we call an array
n-perfect if it has size nu× v and if its autocorrelation array has only n nonzero entries, namely nuvλi in
position (iu, 0) for i = 0, 1, . . . , n−1, where λ is a primitive n-th root of unity. Thus, an array is 1-perfect
(2-perfect) if and only if it is (almost) perfect. We give examples and describe a recursive construction of
families of n-perfect arrays of increasing size.

1. Introduction

An array has low autocorrelation if its periodic autocorrelation for most nontrivial cyclic shifts is zero;
of particular importance are perfect arrays whose periodic autocorrelation is zero for all nontrivial cyclic
shifts. Because of this impulse-like behaviour, arrays with low autocorrelation are useful in numerous
applications, such as digital watermarking [6, 11, 15, 16, 17], frequency hopping patterns for radar, and
sonar communications [10, 13], time hopping patterns for UWB radio [12], and two-dimensional optical
orthogonal coding [14].

Perfect arrays are difficult to find, and there has been some focus on other classes of arrays with low
autocorrelation. Recall that a u× v array is perfect if its autocorrelation array is all zeroes except for uv
in position (0, 0). In 2001, Arasu and de Launey [1] considered a modification: they called a 2u×v array
almost perfect if its autocorrelation array is all zeroes except for 2uv and −2uv in position (0, 0) and
(u, 0), respectively. They proposed a recursive construction yielding almost perfect arrays of arbitrarily
large sizes: their method involved concatenating two almost perfect arrays horizontally, column-shifting
that concatenation in two possible ways, and then interleaving the rows of these arrays.

The aim of this paper is to present a new class of arrays with low autocorrelation, generalising perfect
and almost perfect arrays. Let n ≥ 2 be an integer and let λ be a complex primitive n-th root of unity.
We call an nu × v array n-perfect if the only nonzero entries of its autocorrelation array are nuvλi

in position (iu, 0) for i = 0, 1, . . . , n − 1. It follows from the definition that an array is 1-perfect
(2-perfect) if and only if it is (almost) perfect. Motivated by the discussion of almost perfect arrays in
[1], our main result here is a recursive construction of n-perfect arrays: Starting with a certain n-perfect
array, we concatenate n copies of it side-by-side, then apply n distinct column shifts to these copies,
and eventually interleave these arrays to form one large n-perfect array with both horizontal and vertical
sizes multiplied by n. This construction can be applied repeatedly to yield arbitrarily large n-perfect
arrays over the same alphabet. We provide a variety of n-perfect arrays of size n2 × n, and each can be
used to construct perfect arrays of size nk+1 × nk for all k ≥ 1.

1.1. Motivation. The idea to define n-perfect arrays arose during the development of the algebraic
framework to work with arrays, in particular, almost perfect arrays (see [4, 5]). There are three main rea-
sons why n-perfect arrays are worth studying. First, the class of n-perfect arrays is very interesting from
a mathematical point of view since it covers (and therefore generalises) the important classes of perfect
and almost perfect arrays. It is a common theme in mathematics to seek generalisations of successful
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concepts; this paper discusses algebraic properties and constructions of n-perfect arrays, and therefore
is a first step in that direction. Second, as outlined in the introduction, arrays with low autocorrelation
have various important applications in different areas, and new constructions of families of arrays of
unbounded sizes with low-peak autocorrelation are sought (see, for instance, [11] for a discussion of this
in the context of watermarking). The class of n-perfect arrays introduced in this paper is a new class of
arrays with these properties, and therefore can be used in all these applications. We stress that the au-
tocorrelation array of an n-perfect array has n nonzero entries with prescribed magnitude and position.
While this makes them seem less perfect than almost perfect arrays (if one takes the number of nonzero
autocorrelation entries as a measure), their autocorrelation arrays have more structure than those of al-
most perfect arrays. This is our third reason motivating the study of n-perfect arrays: This additional
structure has the potential to lead to new applications, for example, in the generation of a fingerprint
or fiducial marker of sorts, whose multiple correlation spikes might be useful for scale or orientation
determination in digital data.

1.2. Structure of the paper. In Section 2 we introduce the necessary preliminaries and notation
for manipulating arrays. Our main result and examples are then discussed in Section 3. The correctness
of our recursive construction is proved in Section 4. We end with a conclusion in Section 5.

2. An algebra of arrays

In this section we briefly recall the necessary background and notation for describing our new results.
Instead of representing arrays as Laurent polynomials (modulo a suitable ideal), as done in [1], we
describe our arrays as elements in a certain matrix algebra. Formulating proofs and results in terms of an
algebra and certain algebra operations makes the exposition not only shorter, but also more structurally
concise; see the discussion in [4, 5].

Definition 2.1. A u× v array is a complex u× v matrix A with entries A[i, j] where i ∈ {0, . . . , u− 1}
and j ∈ {0, . . . , v − 1}. If s, t ∈ Z, then we define

A[s, t] = A[s mod u, t mod v].

Component-wise scalar multiplication and addition furnish the set Mu,v(C) of all u× v arrays with the
structure of a C-vector space. Entries of arrays are usually taken from a finite multiplicative subgroup of
C \ {0} (and possibly 0), the alphabet of the array.

Throughout the paper, for a complex number z ∈ C we denote its complex conjugate by z∗ and the
complex norm by |z| =

√
zz∗.

2.1. Autocorrelation. In the following, let A,B ∈Mu,v(C).
The complex conjugate A∗ ∈ Mu,v(C) of a u × v array A has entries A∗[i, j] = (A[i, j])∗. The
convolution array of A and B is the array A~B ∈Mu,v(C) with entries

(A~B)[k, l] =
∑u−1

i=0

∑v−1

j=0
A[i, j]B[k − i, l − j].

It follows that “~” is a commutative and associative multiplication of arrays, which furnishes the C-space
Mu,v(C) with the structure of a C-algebra, cf. [4].

Definition 2.2. We denote byA = Au,v the C-algebra Mu,v(C) with multiplication “~” and component-
wise addition and scalar multiplication. We denote by 000 = 000u,v ∈ A the array with only zero entries.

The cross-correlation array of A and B is the array CC(A,B) ∈ A with entries

CC(A,B)[k, l] =
∑u−1

i=0

∑v−1

j=0
A[i, j]B∗[i+ k, j + l].

The autocorrelation array of A is AC(A) = CC(A,A). The peak autocorrelation of A is the entry

AC(A)[0, 0] =
∑u−1

i=0

∑v−1

j=0
|A[i, j]|2;

the other entries of AC(A) are the off-peak autocorrelations of A. If the entries of A are roots of unity,
with perhaps a few zeroes, then each |A[i, j]|2 is 0 or 1, and the peak autocorrelation is a nonnegative
integer of value at most uv. Clearly, A = 000 if and only if AC(A) = 0.
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As indicated in the introduction, arrays with low off-peak autocorrelation are widely sought in applica-
tions. Of particular interest are so-called perfect and almost perfect arrays.

Definition 2.3. Let A ∈ Au,v be a u× v array.

a) The array A is perfect if all off-peak autocorrelations are zero.
b) The array A is almost perfect if u is even, AC(A)[0, 0] = uv = −AC(A)[u/2, 0], and all other
off-peak autocorrelations are zero.

For more information on perfect arrays we refer to [3, 7, 8]. The above definition of “almost perfect” is
from [1]; other definitions exist. We generalise this concept as follows.

Definition 2.4. Let n ≥ 2 be an integer. An array A ∈ Au,v is n-perfect if u is divisible by n, and the
only nonzero off-peak autocorrelations are

AC(A)[iu/n, 0] = uvλi for i = 0, . . . , n− 1,

where λ is a primitive n-th root of unity.

An n-perfect array thus has an autocorrelation array with the n-th roots of unity in sequence (scaled by
the size of the array) equally spaced down the first column, and zeroes everywhere else; see Example 3.2
below. Clearly, the 2-perfect arrays are exactly the almost perfect arrays as defined in [1]. To describe
our main result, a recursive construction of n-perfect arrays, we first need to introduce more notation.

2.2. Basic array operations. We briefly recall some operations on arrays from [4, 5].

Let A,B ∈ A = Au,v . The reversal Ar ∈ A of A is the array with entries Ar[i, j] = A[−i,−j]; it
follows from the definition that (A~B)r = Ar ~Br. Let z ∈ Z; the z-column shift (or vertical shear)
Acz ∈ A of A is the array with entries Acz [i, j] = A[i + zj, j]; in other words, Acz is the array A with
the j-th column shifted cyclically zj places up.

The horizontal concatenation H = H(A0, . . . , Ar−1) of arrays A0, . . . , Ar−1 ∈ A is the u × rv array
with entries H[i, j] = Abj/rc[i, j mod v], where j mod v is the remainder of the division of j by v and
bj/rc is the quotient of the division of j by r. The vertical concatenation V = V(A0, . . . , Ar−1) is the
ru × v array with entries V [i, j] = Abi/rc[i mod u, j]. The row interleaving R = R(A0, . . . , Ar−1) is
the ru× v array with entries R[i, j] = Ai mod r[bi/rc, j].

Example 2.5. If

A =
[
1 2 3
4 5 6
7 8 9

]
and B =

[
1 1 1
2 2 2
3 3 3

]
,

then

Ar =
[
1 3 2
7 9 8
4 6 5

]
, Ac1 =

[
1 5 9
4 8 3
7 2 6

]
, R(A,B) =

 1 2 3
1 1 1
4 5 6
2 2 2
7 8 9
3 3 3

 , H(A,B) =
[
1 2 3 1 1 1
4 5 6 2 2 2
7 8 9 3 3 3

]
.

3. A recursive construction of n-perfect arrays

Starting with an n-perfect array A of size nu× v with v | u, we now construct an n-perfect array of size
n2u× nv, and, iteratively, of size nk+1u× nkv for all k ≥ 1.

Theorem 3.1. Let A ∈ Anu,v be n-perfect with v | u. Let B0 = H(A, . . . , A) be the horizontal
concatenation of n copies of A, and set Bk = B

cku/v

0 for k = 1, . . . , n − 1. Then the row interleaving
C = R(B0, . . . , Bn−1) is an n-perfect array of size n2u× nv.

The proof of Theorem 3.1 is rather technical and will be given in Section 4; we end this section with a
series of examples. Theorem 3.4 below provides a variety of n-perfect n2 × n arrays which can be used
as the seed of the recursive construction in Theorem 3.1, yielding n-perfect arrays of size nk+1 × nk for
all k ≥ 1.

Example 3.2. We consider n = 3 and u = v = 1; let λ ∈ C be a primitive 3rd root of unity. We apply
the construction in Theorem 3.1 to the 3-perfect array

A =
[

1
λ2

λ

]
with AC(A) = 3

[
1
λ
λ2

]
.
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The horizontal concatenation of 3 copies of A is

B0 = H(A,A,A) =
[

1 1 1
λ2 λ2 λ2

λ λ λ

]
,

and the arrays B1 and B2 are

B1 = Bc10 =

[
1 λ2 λ
λ2 λ 1
λ 1 λ2

]
and B2 = Bc20 =

[
1 λ λ2

λ2 1 λ
λ λ2 1

]
.

Interleaving the rows of B0, B1, B2 gives

C = R(B0, B1, B2) =


1 1 1
1 λ2 λ
1 λ λ2

λ2 λ2 λ2

λ2 λ 1
λ2 1 λ
λ λ λ
λ 1 λ2

λ λ2 1

 with AC(C) = 27


1 0 0
0 0 0
0 0 0
λ 0 0
0 0 0
0 0 0
λ2 0 0
0 0 0
0 0 0

 ,
so C is indeed 3-perfect. One can now repeatedly apply Theorem 3.1 to obtain an infinite sequence of
3-perfect arrays of size 3k+1 × 3k with k ≥ 0.

The construction in Example 3.2 can easily be generalised to construct an n-perfect n2 × n array C
from an n-perfect n × 1 array A with entries A[i, 0] = λn−i, where λ is a primitive n-th root of unity.
Moreover, the entries of C can be stated directly, as done in the next theorem; recall that bi/nc denotes
the quotient of the division with remainder of i by n. To prove the theorem, we require the following
well-known result, see for example [9, Ex. 2.1].

Lemma 3.3. Let λ be a primitive n-th root of unity, n ≥ 2. If a ∈ Z is an integer, then∑n−1

i=0
(λa)i =

{
n if n | a
0 otherwise.

Theorem 3.4. Let n ≥ 2 be an integer and fix a primitive n-th root of unity λ ∈ C and coefficients
α, β, γ ∈ Z with α 6= 0 coprime to n. Then the following hold.

a) The n× 1 array A with entries A[i, 0] = λn−i is n-perfect.

b) The n× n array B with entries B[i, j] = λαij+βi+γj is perfect with peak entry n2.

c) The n2 × n vertical concatenation C = V(λnB, λn−1B, . . . , B) has entries

C[i, j] = λαij+βi+γj−bi/nc

and is n-perfect.

Before we prove this theorem we note that the 9× 3 array C in Example 3.2 corresponds to the array C
in Theorem 3.4 with n = 3 and coefficients α = −1 and β = γ = 0.

PROOF OF THEOREM 3.4. a) The entries of AC(A) are

AC(A)[s, 0] =
∑n−1

i=0
A[i, 0]A∗[s+ i, 0] =

∑n−1

i=0
λn−iλ−(n−s−i) = nλs,

which proves that A is n-perfect.
b) The entries of AC(B) are

AC(B)[s, t] =
∑n−1

i,j=0
B[i, j]B∗[i+ s, j + t]

=
∑n−1

i,j=0
λαij+βi+γj−α(i+s)(j+t)−β(i+s)−γ(j+t)

= λ−αst−γt−βs
∑n−1

i=0
(λ−αt)i

∑n−1

j=0
(λ−αs)j .

Since α 6= 0 is coprime to n, Lemma 3.3 shows that B is a perfect array with peak entry n2.
c) First, if j ∈ {0, . . . , n − 1} and i = qn + r ∈ {0, . . . , n2 − 1} with q ∈ Z and r ∈ {0, . . . , n − 1},
then indeed

C[i, j] = λn−qB[r, j] = λn−qλαrj+βr+γj = λαrj+βr+γj−bi/nc.



The final publication is available at Springer via
http://dx.doi.org/10.1007/s12095-017-0214-0 5

If s ∈ {0, . . . , n2 − 1} and t ∈ {0, . . . , n− 1}, then

AC(C)[s, t] =
∑n2−1

i=0

∑n−1

j=0
C[i, j]C∗[i+ s, j + t]

=
∑n2−1

i=0

∑n−1

j=0
λαij+βi+γj−bi/nc−α(i+s)(j+t)−β(i+s)−γ(j+t)+b(i+s)/nc

= λ−αst−γt−βs
∑n2−1

i=0
(λ−αt)iλb(s+i)/nc−bi/nc

∑n−1

j=0
(λ−αs)j .

As in part b), it follows from Lemma 3.3 that AC(C)[s, t] = 0 if n - s, and it remains to consider
s̃ = nx ∈ {0, . . . , n2 − 1}; in this case b(s+ i)/nc − bi/nc = x and we obtain

AC(C)[s̃, t] = nλ−γtλx
∑n2−1

i=0
(λ−αt)i.

As before, Lemma 3.3 shows that AC(C)[s̃, t] = 0 whenever n - t; if t = 0, then we obtain

AC(C)[s̃, 0] = n3λx.

In conclusion, if t 6= 0 or n - s, then AC(C)[s, t] = 0; if s = xn ∈ {0, . . . , n2−1}, then AC(C)[xn, 0] =
n3λx. Since C has size n2 × n, this proves that C is n-perfect. �

3.1. Further examples of n-perfect arrays. For integers n,m ≥ 2 we construct n-perfect arrays
of size n×m, usually defined over lcm(2m,n)-th roots of unities.

Theorem 3.5. Let n,m ≥ 2 be integers, let λ ∈ C be a primitive n-th root of unity, and let A ∈ A1,m

be perfect. The n×m array C with entries C[i, j] = λ−iA[0, j] is n-perfect.

PROOF. The autocorrelation entries of C are

AC(C)[s, t] =
∑n−1

i=0

∑m−1

j=0
C[i, j]C∗[i+ s, j + t]

=
∑n−1

i=0

∑m−1

j=0
λ−iA[0, j]λs+iA∗[0, j + t]

= nλs
∑m−1

j=0
A[0, j]A∗[0, j + t]

= nλsAC(A)[0, t].

Now the claim follows from AC(A)[0, 0] = m and AC(A)[0, t] = 0 if t 6= 0. �

Our construction in Theorem 3.5 requires a perfect array of size 1×m; examples of such perfect arrays
(sequences) are given in [2, Section 3]. In particular, for every m there exists such a sequence, for
example, the Chu sequence as given in part a) of the following lemma (cf. [2, Section 3.2]); in part b) we
list another perfect sequence of prime length.

Lemma 3.6. a) Let λ be a primitive 2m-th root of unity, m > 1. The 1 × m array A with entries
A[0, j] = λej is perfect, where ej = j2 if m is even, and ej = j(j + 1) otherwise.

b) Let λ be a primitive p-th root of unity, p > 2 a prime. The 1 × p array A with entries A[0, j] =
λj(j−1)/2 is perfect.

PROOF. a) See, for example, [2, Section 3.2].
b) We have A[0, j] = λej with ej = j(j − 1)/2; for simplicity, write ej = ej mod p for j ∈ Z, and note
that ej − ej+t = −(tj+ t(t− 1)/2). Since Zp, the integers modulo p, is a field, each t ∈ {1, . . . , p− 1}
is a unit in Zp, and therefore

{−(tj + t(t− 1)/2) mod p | j ∈ Zp} = {0, . . . , p− 1}.

Thus, if t 6= 0, then AC(A)[0, t] =
∑p−1
j=0 λ

ej−ej+t =
∑p−1
j=0 λ

j = 0. Finally, note that AC(A)[0, 0] = p,
which proves that A is perfect. �

As a corollary, Theorems 3.4 and 3.5 imply that for every n,m ∈ N there exists an n-perfect array of size
n ×m, defined over lcm(2m,n)-th roots of unity. We end this section with an example of a 4-perfect
4× 4 array which is defined over 4-th roots of unity.
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Example 3.7. Let ı be a primitive 4-th root of unity; the array

C =

[ 1 1 1 −1
−ı −ı −ı ı
−1 −1 −1 1
ı ı ı −ı

]
satisfies AC(C) = 16

[
1 0 0 0
ı 0 0 0
−1 0 0 0
−ı 0 0 0

]
,

and therefore is 4-perfect.

4. Proof of the recursive construction

We now prove Theorem 3.1; for this purpose, we start with a series of preliminary results.

4.1. Preliminary results. Our construction of n-perfect arrays in Theorem 3.1 uses array concate-
nation, column shifts, and row interleaving. In this section we study how these operations affect the
autocorrelation of an array. Unless stated otherwise, let A = Au,v .

Lemma 4.1. If A,B ∈ A, then AC(CC(A,B)) = AC(A)r ~ AC(B)r.

Lemma 4.1 follows implicitly from the proof of [1, Lem. 25]. A direct and simpler proof, in terms of
the algebra A, is given in our paper, see [4, Thm 4.8]: one main ingredient in our proof is the fact that
reverse distributes over array convolution, that is, if A,B ∈ A, then (A~B)r = Ar ~Br.

Lemma 4.2. Let A ∈ A and let B = H(A, . . . , A) be the horizontal concatenation of k ≥ 1 copies of
A. Then AC(B) = k · H(AC(A), . . . ,AC(A)) is the horizontal concatenation of k copies of AC(A)
with every entry multiplied by k.

PROOF. By definition, B[i, j] = A[i, j] = A[i mod u, j mod v] for all i ∈ {0, . . . , u − 1} and j ∈
{0, . . . , kv − 1}, thus

AC(B)[s, t] =
∑u−1

i=0

∑kv−1

j=0
A[i, j]A∗[i+ s, j + t].

As j goes from 0 to kv − 1, the value j mod v goes from 0 to v − 1 a total of k times; thus we have

AC(B)[s, t] = k
∑u−1

i=0

∑v−1

j=0
A[i, j]A∗[i+ s, j + t] = kAC(A)[s, t];

by definition, AC(A)[s, t] = AC(A)[s mod u, t mod v], which proves the assertion. �

Lemma 4.3. Let z ∈ Z and A ∈ A; the z-column shift satisfies AC(Acz ) = AC(A)cz .

PROOF. Recall that Acz [i, j] = A[i + zj, j]; the claim now follows from a straightforward calculation
which involves a variable substitution i′ = i+ zj:

AC(Acz )[s, t] =
∑u−1

i=0

∑v−1

j=0
A[i+ zj, j]A∗[i+ s+ z(j + t), j + t]

=
∑v−1

j=0

∑u−1

i=0
A[i+ zj, j]A∗[(i+ zj) + (s+ zt), j + t]

=
∑v−1

j=0

∑u−1

i′=0
A[i′, j]A∗[i′ + (s+ zt), j + t]

= AC(A)[s+ zt, t]

= AC(A)cz [s, t]. �

The next lemma requires more notation; for integers a, b ∈ Z set

δn(a, b) =

{
0 if (a mod n) + (b mod n) < n

1 otherwise,

so that

b(a+ b)/nc = ba/nc+ bb/nc+ δn(a, b).(4.1)

Lemma 4.4. Let A0, . . . , Ar−1 ∈ A with r ≥ 1, and denote by B = R(A0, . . . , Ar−1) their row
interleaving. The entries of AC(B) are

AC(B)[s, t] =
∑r−1

y=0
CC(Ay, A(y+s) mod r)[bs/rc+ δr(y, s), t];

in particular, if r | s, then AC(B)[s, t] =
∑r−1
y=0 AC(Ay)[s/r, t].
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PROOF. To simplify notation, we write Ai = Ai mod r for i ∈ Z. By the definition of row interleaving,
B[i, j] = Ai[bi/rc, j], so the entries of AC(B) are

AC(B)[s, t] =
∑ru−1

i=0

∑v−1

j=0
Ai[bi/rc, j]A∗i+s[b(i+ s)/rc, j + t]

(4.1)
=
∑ru−1

i=0

∑v−1

j=0
Ai[bi/rc, j]A∗i+s[bi/rc+ bs/rc+ δr(i, s), j + t].

The map (x, y) 7→ (xr + y) is a bijection from Zu × Zr to Zru; making the substitution i = xr + y so
that bi/rc = x and i mod r = y, the assertion follows from

AC(B)[s, t] =
∑r−1

y=0

∑u−1

x=0

∑v−1

j=0
Ay[x, j]A

∗
y+s[x+ bs/rc+ δr(y, s), j + t]

=
∑r−1

y=0
CC(Ay, Ay+s)[bs/rc+ δr(y, s), t]. �

4.2. The proof. For convenience, we restate the main theorem.

Theorem 3.1. Let A ∈ Anu,v be n-perfect with v | u. Let B0 = H(A, . . . , A) be the horizontal
concatenation of n copies of A, and set Bk = B

cku/v

0 for k = 1, . . . , n − 1. Then the row interleaving
C = R(B0, . . . , Bn−1) is an n-perfect array of size n2u× nv.

PROOF. Let λ be a primitive n-th root of unity such that

AC(A)[i, j] =

{
nuvλi/u if u | i and j = 0

0 otherwise.

An application of Lemma 4.2 yields

AC(B0)[i, j] =

{
n2uvλi/u if u | i and v | j
0 otherwise.

By Lemma 4.3, we have AC(Bk) = AC(B0)
cku/v for all k = 0, . . . , n− 1; thus

(4.2)

AC(Bk)[i, j] = AC(B0)[i+ jku/v, j]

=

{
n2uvλi/u+jk/v if u | i and v | j
0 otherwise;

note that u | (i+ juk/v) with v | j if and only if u | i.
If u | i and v | j, say i = ua and j = vb with a, b ∈ {0, . . . , n− 1}, then∑n−1

k=0
AC(Bk)[i, j] =

∑n−1

k=0
n2uvλa+bk = n2uvλa

∑n−1

k=0
(λb)k,

and together with Lemma 3.3, we deduce that∑n−1

k=0
AC(Bk)[i, j] =

{
n3uvλi/u if u | i and j = 0

0 otherwise.

We now claim that CC(Bk, Bl) = 000 whenever k 6= l. To prove this, let k 6= l and note that

(AC(Bk)~ AC(Bl))[s, t] =
∑nu−1

i=0

∑nv−1

j=0
AC(Bk)[i, j]AC(Bl)[s− i, t− j].

By (4.2), in the right hand sum, each summand with u - i, u - s, v - j, or v - t is zero; thus it remains to
consider s = ua and t = vb with a, b ∈ Z, so that

(AC(Bk)~ AC(Bl))[s, t] =
∑n−1

i,j=0
AC(Bk)[iu, jv]AC(Bl)[au− iu, bv − jv]

=
∑n−1

i,j=0
n2uvλi+jkn2uvλa−i+l(b−j)

= n4u2v2λa+bl
∑n−1

i,j=0
(λ(k−l))j ,

hence (AC(Bk) ~ AC(Bl))[s, t] = 0 by Lemma 3.3; recall that k, l ∈ {0, . . . , n − 1} with k 6= l. In
conclusion, AC(Bk) ~ AC(Bl) = 000, hence also AC(Bk)

r ~ AC(Bl)
r = 000. Now Lemma 4.1 yields

AC(CC(Bk, Bl)) = 000, which implies that CC(Bk, Bl) = 000.
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We can now show that C is n-perfect. Recall that C is the row interleaving of B0, . . . , Bn−1; Lemma
4.4 shows that

AC(C)[s, t] =
∑n−1

y=0
CC(By, B(y+s) mod n)[bs/nc+ δn(y, s), t].(4.3)

If n - s, then y 6≡ (y + s) mod n, hence CC(By, B(y+s) mod n) = 000 as shown above; in this case,
AC(C)[s, t] = 0, and it remains to consider n | s, say s = na. Together with (4.2) and Lemma 4.4,
Equation (4.3) reduces to

AC(C)[na, t] =
∑n−1

y=0
AC(By)[a, t] =

{
n3uvλa/u if u | a and t = 0

0 otherwise.

Note that if n - s, then nu - s, and that s = an coupled with u | a implies nu | s. With these facts in
mind, the above two paragraphs imply that the entries of AC(C) are

AC(C)[s, t] =

{
n3uvλs/nu if nu | s and t = 0

0 otherwise,

which proves that C is n-perfect. Clearly, C is defined over the same alphabet as A. �

5. Conclusion

This paper presents a new class of arrays (“n-perfect arrays”) with low autocorrelation, extending the
classes of perfect arrays (“1-perfect arrays”) and almost-perfect arrays (“2-perfect arrays”). Throughout,
arrays are considered as elements in a certain matrix algebra. This algebraic set-up has proven to be very
useful for describing the autocorrelation of certain array constructions (see Section 4.1) and a recursive
construction of n-perfect arrays of increasing size (see Section 4.2). Starting with an n-perfect array of
size nu× v with v | u, this construction yields n-perfect arrays of size nk+1u× nkv for all k ≥ 1.
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