
















late-acting genes such as HMX1 are likely to be more relevant to
pediatric practice as mild auricular and lateral facial anomalies,
including facial palsies, collectively represent the third most
commonly presenting group of conditions in craniofacial centers
in the USA (Luquetti et al., 2012) and yet there is still little

known about their underlying genetic basis. Given that mutations
in the dmECR underlie isolated phenotypic presentations in
multiple non-human mammalian species, this warrants inclusion
of enhancers such as this in future mutational analysis of relevant
patient cohorts.

Fig. 8. Hox-Pbx-Meis cooperatively bind to and regulate the dmECR via a 32 bp sequence. (A) Luciferase activity (relative firefly/Renilla levels) for the
594 bp dmECR sequence following transfection with the pcDNA3-mHoxa2, pcDNA3-mMeis1 or pCMX-PL1-hPBX1A expression vectors showed strong
activation only in the presence of Hoxa2, Meis1 and PBX1A proteins (replicates n=3, Hoxa2 P=0.1386, Meis1 P=0.6913, PBX1A P=0.4998, Hoxa2+Meis1
P=0.1327, Hoxa2+PBX1A P=0.0862, Meis1+PBX1A P=0.9959, Hoxa2+Meis1+PBX1A ***P=0.0009). (B) Luciferase activity for the intact 594 bp dmECR
sequence compared with the dmECRdel32 construct harboring the 32 bp deletion of the adjacent Hox-Pbx-Meis binding sites (see D). A significant reduction in
enhancer activation from the dmECRdel32 construct compared with the intact dmECR construct was seen in the presence of Hoxa2, Meis1 and PBX1A proteins
(replicates n=3, pGL4.23-dmECR+Hoxa2+Meis1+PBX1A P=0.0019, pGL4.23-dmECRdel32+Hoxa2+Meis1+PBX1A P=0.0031; pGL4.23-dmECR compared
with pGL4.23-dmECRdel32 P=0.0152). (C-S) Transient transgenesis for the intact 594 bp dmECR construct (C) compared with the dmECRdel32 construct
(D) showed almost complete loss of BA1/2 staining in E11.5 transient transgenic embryos generated from the dmECRdel32 construct (L-S, arrowheads)
compared with the consistency of activity in these regions in transient transgenic embryos generated from the intact dmECR construct (E-K, arrowheads).
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MATERIALS AND METHODS
Animals and genotyping
Mice harboring the dumbo allele (Hmx1+/dm) were generated from the original
B6:C3Fe-Hmx1dmbo/Rw/JcsJKjn mice, maintained on a C57Bl/6N background,
and genotyped as described previously (Quina et al., 2012a,b).Hoxa2mutant
mice were described previously (Gendron-Maguire et al., 1993). We
designated E0.5 to be noon on the day a plug was detected. Maintenance
and genotyping of dumbo rats was also performed as previously described
(Quina et al., 2012a). All animal use was approved by the appropriate
Institutional Animal Care and Use Committee. All datawere collected from at
least three animals of a particular genotype at each gestational and postnatal
time point described, unless otherwise stated. Body weights were measured
postmortem.

Generation of transgenic mice
The 6094 bp fragment homologous to the sequence deleted in dumbo rats
was PCR amplified from mouse genomic DNA using the NotI- and AscI-
linkered oligonucleotides: dmbodelF, GGGATCGCGGCCGCGTGCAC-
CATCTTTGAGGACTTAG; dmbodelR, GATCGGCGCGCCGTAGGG-
AAGCTGAGGCCAAG. The 594 bp ECR (hereafter called dmECR)
was amplified using the NotI- and AscI-linkered oligonucleotides: dmEC-
R-F, GGGATCGCGGCCGCGAATCCTGGCCAGTCAGTGTA; dmECR-
R, GATCGGCGCGCCGGCTTGGGGGTGGCAAACTG. The underlined
bases indicate the incorporated restriction endonuclease binding sites. The
6094 bp and 594 bp fragments were separately inserted into the Hsp68-
lacZ-Gateway vector, and the resulting vectors linearized for injection using
NotI. Transgenic mice were produced by pronuclear injection into C57Bl/6J
or CD-1 single-cell embryos using standard techniques (Nagy et al., 2003).
The 594 bp transgenic construct was also subsequently used to generate
four stable lines (CH-5791, CH-5820, CH-5821 and CH-5831). Transgenic
mice and embryos were genotyped by real-time PCR using transgene-
specific oligonucleotides: LacZp1F, GCTGGATCAAATCTGTCGATCC-
TT and LacZp1R, CGCGTACATCGGGCAAATAATATC (95 bp product);
LacZp2F, ATAGCGATAACGAGCTCCTGCACT and LacZp2R, ACTG-
TTTACCTTGTGGAGCGACATC (99 bp product).

X-gal and whole-mount neurofilament staining
Embryos with lacZ transgenes were stained with X-gal according to
standard techniques (Nagy et al., 2003). Antibodies recognizing
neurofilaments (2H3) were used to visualize nerves in E11.5-E13.5
embryos, as previously described (Vickerman et al., 2011). The 2H3
antibody was developed by T. Jessel and J. Dodd (Dodd et al., 1988) and
was obtained from the Developmental Studies Hybridoma Bank developed
under the auspices of NICHD and maintained by the University of Iowa,
Department of Biology, Iowa City, IA 52242, USA.

Immunohistochemistry
Embryos to be used for immunohistochemistry were prepared as previously
described (Rosin et al., 2015). Cryosections (16-20 μm) were exposed to
either anti-Hmx1 (1:2000; Quina et al., 2012b), anti-Isl1 (1:500; AB20670,
Abcam), anti-cleaved caspase 3 (1:1200; 9664S, Cell Signaling) or anti-
Ki67 (1:200; RM-9106 S0, Thermo Scientific) at 4°C overnight, then
washed with PBS and exposed to secondary antibody (1:300; biotinylated
donkey anti-rabbit; 711-065-152, Jackson ImmunoResearch) for 2 h at room
temperature. This was followed by a 30 min incubation with Vectastain Elite
ABC reagent (Vector Labs), and DAB Peroxidase (HRP) substrate color
development for 5 min (Vector Labs). Images were captured on a Leica
4000B microscope. Brightness and/or contrast of the entire image were
adjusted using Adobe Photoshop CS5.1 if deemed appropriate.

In situ hybridization and qPCR
Cryosections (16-20 μm) were exposed to a digoxigenin (DIG)-labeled
Hmx1 riboprobe (1:300; Wang et al., 1998) at 68°C overnight. DIG-labeled
riboprobes were detected with an alkaline phosphatase-conjugated anti-DIG
antibody (11093274910, Roche) and BM Purple AP (Roche) was used as
the color development substrate. BA2 of E11.5 embryos from Hoxa2+/−

intercrosses were dissected out and snap-frozen in dry ice. After genotyping

the embryos, pools were made with the wild-type and Hoxa2−/− BA2, and
total RNA was extracted using Trizol. The sequences of the primers used
in qPCR are: Hmx1 Fwd, 5′-CGGCTGCGGAGGTACAA-3′; Hmx1 Rev,
5′-AGTCCCGGTCGCTTGTG-3′; Hoxa2 Fwd, 5′-GCCTCGGCCACAA-
AGAA-3′; Hoxa2 Rev, 5′-CGGCGATTTCCACCCTGCG-3′.

OPT and microCT imaging
All tomographic imaging was conducted in the Small Animal Tomographic
Analysis (SANTA) Facility at Seattle Children’s Research Institute. Samples
for OPT were prepared and imaged as described by Zovein et al. (2010).
MicroCT imaging was performed at an isotropic resolution of 17.21 µm using
a Skyscan 1076 scanner with the following settings: 55 kV, 180 µA, 1.0 mm
Al filter, 360 ms exposure, 0.7° rotation step, and three-frame averaging. Raw
OPT and microCT scan data were reconstructed using NRecon V1.6 software
(Skyscan, Belgium) and rendered in 3D using the Drishti software V2.6
(Limaye, 2012). Reconstructed data were imported into Analyze 10.0 (Mayo
Clinic) for mandible and skull segmentation and comprehensive shape
analysis performed as previously described (Rolfe et al., 2013).

Luciferase assays
The dmECR and dmECRdel32 fragments were PCR amplified from
genomic DNA using the KpnI and HindIII-linked oligonucleotides: ECR-F,
GTGAGGTACCGAAGCCAGTCAGTGTA; ECR-R, CAGAAGCTTCT-
TGGGGGTGGCAAA (32 bp deletion primers: ECRdel32-F, CTGGAA-
ACTCGGCTTCTGTTCACAAG and ECRdel32-R, CAGAAATTGATT-
CTCCAGAAAGGCAG) and separately ligated into the pGL4.23 firefly
luciferase reporter plasmid (Promega) using standard techniques. The
vectors were co-transfected into COS-1 cells (ATCC CRL-1650, passage
39) with either an empty pcDNA3.2 vector or in different combinations with
the expression vectors pcDNA3-mHoxa2, pcDNA3-mMeis1 and/or
pCMX-PL1-hPBX1A using Polyjet (SignaGen) according to the
manufacturer’s recommendations. Passive lysis buffer (PLB, Promega;
100 μl) was added to each well during collection. Firefly (LARII, Promega)
and Renilla (Stop & Glo reagent, Promega) luciferase activities were
assayed using a Monolight 2010 luminometer (Analytical Luminescence
Laboratory, CA, USA). All assays were performed in triplicate.

Chromatin immunoprecipitation
ChIP for Hoxa2, Meis2 and Pbx were performed as described
previously (Amin and Bobola, 2014). ChIP-qPCR analysis of Hoxa2
binding to the dmECR was accomplished using the oligonucleotides: Fwd,
TCGAGCTCATAGCGCTTTT; Rev, GGGGGAGATAAAGTGAAACA-
CAT. Enrichment was calculated as percent input, with IgG used as a
negative control. Pou6f2 was used as a positive control and Itih4 as a
negative control (Donaldson et al., 2012). The Hoxa2 antibody used for
ChIP was described previously (Kutejova et al., 2008).

Behavioral analysis
Adult (P60+mice) were recorded before, during and after they were exposed
to a 10 s constant-pressure puff of air to determine if they could respond by
(1) closing their eyes, and (2) tucking their ears back against their head. This
was repeated three times for each animal.

Quantification methods and statistical analysis
Quantitative results for body weight, stained area, cell counts and luciferase
activity are represented by mean scores±s.e.m. and were analyzed by two-
tailed unpaired t-tests using Prism 3 (GraphPad Software). Genotype ratios
were analyzed using a χ2 test.
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