Cytoplasmic domain of tissue factor promotes liver fibrosis in mice

Virginia Knight, Dinushka Lourensz, Jorge Tchongue, Jeanne Correia, Peter Tipping, William Sievert

AIM
To evaluate the role of tissue factor (TF) and protease activated receptor (PAR)-2 in liver fibrosis.

METHODS
Using CCl₄ administration for eight weeks, we induced hepatic fibrosis in wild-type C57BL/6 mice and in mice with deletion of the cytoplasmic signalling domain of TF (TF§CT/§CT), deletion of PAR-2 (PAR-2⁻/⁻) and combined deletion of TF signalling domain and PAR-2 (TF§CT/§CT/PAR-2⁻/⁻). Hepatic fibrosis area was assessed by quantitative imaging of picrosirius red staining. Hepatic collagen content was assessed by hydroxyproline levels. Hepatic stellate cells (αSMA positive) and hepatic macrophages (CD68 positive) were identified by immunohistochemistry. Hepatic gene expression was determined by PCR and liver TGFβ₁ content by ELISA.

RESULTS
CCl₄ treated mice with deletion of the PAR-2 gene (PAR-2⁻/⁻) and the cytoplasmic domain of TF (TF§CT/§CT) developed significantly less hepatic fibrosis, characterised by reduced liver fibrosis area and hydroxyproline content, compared to control wildtype mice treated with CCl₄. The observed reduction in histological fibrosis was accompanied by a significant decrease in the hepatic content of TGFβ₁, the prototypic fibrogenic cytokine, as well as fewer activated hepatic stellate cells and hepatic macrophages. Deletion of the TF cytoplasmic signalling domain reduced hepatic fibrosis to levels similar to those

Abstract

AIM
To evaluate the role of tissue factor (TF) and protease activated receptor (PAR)-2 in liver fibrosis.
observed in mice lacking PAR-2 signalling but combined deletion provided no added protection against fibrosis indicating a lack of mutual modulating effects that have been observed in other contexts such as angiogenic responses.

CONCLUSION
Tissue factor cytoplasmic domain is involved in TF-PAR-2 signalling initiating hepatic fibrosis and is a potential therapeutic target, as its deletion would not impact coagulation.

Key words: Tissue factor; Protease activated receptor; Hepatic stellate cell; Liver fibrosis; Macrophage

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: No effective anti-fibrotic therapies are available for patients with cirrhosis. PAR-2, a receptor that activates coagulation and inflammation, promotes hepatic fibrosis; whether tissue factor (TF), the primary initiator of the coagulation cascade, affects hepatic fibrosis is unknown. We found that deletion of the TF cytoplasmic domain reduces fibrosis through an effect on hepatic stellate cell activation, possibly mediated through reduced hepatic macrophage activation. Currently available direct thrombin inhibitors may be useful in preventing hepatic fibrosis while therapeutic targeting of the cytoplasmic domain of TF may be useful in patients with advanced liver disease, as its deletion does not alter coagulation.

INTRODUCTION
Chronic hepatocyte injury leads to a wound healing response that can result in excessive inflammation, collagen deposition and advanced hepatic fibrosis. The coagulation system is involved in the acute response to injury with formation of a fibrin clot, but also plays an important role in the inflammatory signalling that perpetuates wound healing and tissue remodelling. The links between inflammation and coagulation occur through tissue factor (TF) and through protease activated receptors (PAR) although the relative contributions of each to inflammatory and fibrotic outcomes are unclear. TF is a transmembrane glycoprotein receptor with a pivotal role in hemostasis initiated by binding FVIIa, its principal ligand. Clot formation following TF ligation is well known, however downstream events also include expression of pro-inflammatory cytokines such as interleukin (IL)-6.

Evidence for this relationship is seen in healthy human subjects who demonstrate IL6 and IL8 induction following exposure to recombinant FVIIa and in mice expressing low TF levels (< 1% of wildtype) which show reduced inflammatory cytokine expression and mortality following lipopolysaccharide (LPS) exposure[1,2].

The TF molecule has three domains; binding of the extracellular domain to Factor VIIa initiates coagulation, the transmembrane domain has anchoring properties necessary for normal coagulation and the cytoplasmic domain, which is not required for coagulant activity, plays a role in intracellular signalling. For example, binding of FVIIa to macrophage TF leads to phospholipase C-dependent intracellular calcium fluxes and reactive oxygen species production that requires an intact TF cytoplasmic domain[3]. In the liver, hepatocytes are the primary source of Factor VIIa. Constitutive hepatocyte expression of TF mRNA is low but can be upregulated in circulating monocytes by LPS[4], monocyte chemotactic protein-1 and platelet derived growth factor as well as by direct contact with platelets[5,6].

The TF cytoplasmic domain also plays a regulatory role in PAR-2 signalling. Mice with deletion of the cytoplasmic domain (TF^{C^CT/CT}) demonstrate enhanced PAR-2 dependent angiogenesis suggesting that the TF cytoplasmic domain acts as a negative regulator of PAR-2 signalling[7]. Context may be important, however, as others have shown that the TF cytoplasmic domain is necessary for PAR-2 regulated inflammation[7]. A role for TF-PAR-2 signalling in the development of obesity and insulin resistance has recently been demonstrated. TF-^{VII}a-PAR-2 signalling in adipocytes regulates weight gain and in macrophages promotes inflammation and insulin resistance[8]. Such pathways may play a role in the development of non-alcoholic fatty liver disease (NAFLD) as direct thrombin inhibition has been shown to reduce hepatic inflammation in murine NAFLD[9].

The aim of our study was to evaluate the role of the TF cytoplasmic domain in the hepatic inflammatory response and liver fibrogenesis following chronic injury. We have previously shown that PAR-2 deficiency ameliorates experimental liver fibrosis[10]. Given the observed interactions between TF cytoplasmic domain and PAR-2 in angiogenesis and inflammation, we explored a possible relationship between the TF cytoplasmic domain and the PAR-2 receptor in the development of liver fibrosis in mice with deletion of the TF cytoplasmic domain, deletion of PAR-2 and deletion of both the TF cytoplasmic domain and PAR-2.

MATERIALS AND METHODS

Animals
Mice on a C57BL6 background (c57)^CT were generated by Cre-lox recombination as previously described and backcrossed 9 generations onto a C57BL6 background[11]. TF^{C^CT/CT}
mice have normal development, coagulation and fertility. PAR-2 knockout mice were generated as previously described[10]. Mice with deletion of both the TF cytoplasmic domain and PAR 2 (TFCt/Ct/PAR-2-/-) were generated; these mice have normal development, coagulation and fertility. Mice were allowed food and water ad libitum and were housed at a constant temperature in 12:12 hour light-dark cycle. Experimental protocols were approved by the Monash University Animal Ethics Committee and mice received humane care as specified under the Australian code of practice for the care and use of animals for scientific purposes.

Induction of hepatic fibrosis

Liver fibrosis was induced in male mice by twice-weekly intraperitoneal injections of 1 μL/g body weight CCl\textsubscript{4} mixed with olive oil (1:10). Starting between 8-10 wk of age, four groups of mice were studied. TFCt/Ct (\(n = 9\)), TFCt/Ct/PAR-2-/- (\(n = 6\)) and wild type (WT) C57BL/6 (\(n = 10\)) all received CCl\textsubscript{4} for 8 wk. A control group of WT C57BL/6 mice (\(n = 8\)) received olive oil alone for 8 wk as a vehicle control.

Hepatic fibrosis assessment

Liver fibrosis area: Four micron thick sections of paraffin embedded liver tissue were deparaffinised and stained with picrosirius red (Sirius red F3BA 0.1% wt/vol in saturated picric acid) for 90 min, washed in acetic acid and water (5:1000), dehydrated in ethanol and mounted in neutral DPX. Fifteen consecutive non-overlapping fields were acquired for each mouse liver; the image digitised and fibrosis area analysed by Scion Image for Windows (vAlpha 4.0.3.2, Scion Corporation, Frederick, MD, United States).

Hepatic collagen content: Hydroxyproline is an amino acid that stabilises collagen deposited in the liver and is exclusively associated with collagenous connective tissue and therefore is a good surrogate for quantification of collagen deposition[12]. Hepatic hydroxyproline content was quantified using liver tissue frozen in liquid nitrogen as previously described with minor modification[13]. Briefly, liver samples were weighed and hydrolysed in 2.5 mL of 6 N HCl at 110 °C for 18 h in Teflon coated tubes. The hydrolysate was centrifuged at 3000 rpm for 10 min; the pH of the resulting supernatant was adjusted to 7.4 and absorbance measured at 558 nm. Total hydroxyproline content was measured against a standard curve prepared with trans-4-hydroxy-L-proline (Sigma-Aldrich, St Louis, MO, United States) preparations in the range of 0.156 to 5.0 μg/mL and expressed per milligram of wet tissue weight.

Hepatic stellate cell and macrophage immunohistochemistry: To identify activated hepatic stellate cells (myofibroblasts) and hepatic macrophages, paraformaldehyde fixed 4 micron thick liver tissue sections were stained with primary antibody for αSMA (monodonal mouse anti-mouse α-smooth muscle actin, Sigma, St Louis, MO, United States) and CD68 (rat anti mouse CD68, FA11 a gift of Dr G Koch, Cambridge United Kingdom, 1:100). The following secondary antibodies were used: αSMA biotinylated rabbit anti-mouse IgG2a antibody (Invitrogen, Camarillo, CA, United States, 1:300) and CD68 polyclonal rabbit anti rat IgG (DAKO #E0468 1:150). In brief sections were dewaxed, rehydrated and then blocked with 0.6% hydrogen peroxide and cellular apoptosis susceptibility protein blocking solution (Invitrogen, Camarillo, CA, United States). Primary antibody incubations for 30 min at room temperature (αSMA) and overnight at 4 °C (CD68) were followed by application of secondary antibody. Staining was amplified using avidin-biotin complex kit (Vector Laboratories, Burlingame, CA, United States) and detected with 3,3’ diaminobenzidine (Dako, Carpentaria, CA, United States). Slides were counterstained with Harris hematoxylin. For quantification of immunoreactivity, 15 consecutive non-overlapping fields at 250 × magnification (αSMA, CD68) were scored using a graticule eyepiece in a blinded fashion. Negative controls consisted of a mouse IgG1 isotype control antibody (Dako, Glostrup, Denmark) and water substituting for the primary antibody.

Gene expression studies

Mouse RNA was extracted using the Qiagen RNeasy mini kit according to the manufacturer’s instructions (Qiagen Pty Ltd, Hilden, Germany). Briefly, 0.02 to 0.03 g of liver was placed in RNase free tube. 600 μL of RLT was added to each sample which was then vortexed for 15 min. The resultant lysate was pipetted into a QIA shredder spin column and centrifuged initially at full speed for 2 min, then the column was removed and the lysate was centrifuged for a further 3 min. The resultant supernatant was removed and added to equal volume of 50% ethanol, transferred to an RNeasy spin column, centrifuged for 15 s and the flow through discarded. Seven hundred microliter Buffer RW1 was added and the column was centrifuged for 15 s and followed by the addition of two aliquots of 500 μL of RPE, centrifuging in between for 15 s and 2 min respectively. The RNeasy spin column was placed in a new collection tube, centrifuged for 1 min and then 30 μL of RNase-free water was added directly to the spin column membrane, centrifuged and then a further 30 μL of RNase-free water was added. Four microliter of RNA was added to 76 μL of RNase free water. The RNA concentration was measured with a Nanodrop ND-100 spectrophotometer (Thermo Scientific, Waltham, MA, United States). RNA was used to generate cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, United States) as per manufacturer’s instructions. Briefly, 2 × RT
master mix was prepared from supplied components as follows: 2.0 μL 10 × RT buffer, 0.8 μL 25 × dNTP mix (100 mmol/L), 10 × RT Random Primers, 1.0 μL Multiscribe™ Reverse Transcriptase, 1.0 μL RNase Inhibitor and 3.2 μL of Nuclease free water. Nineteen microliter of 2 × RT master mix was combined with 10 μL of RNA containing 1 μg RNA. The tubes were centrifuged. The PCR program involved Step 1: 25 °C for 10 min, Step 2: 37 °C for 120 min, Step 3: 85 °C for 5 s, and Step 4: 4 °C for 10 min and then samples were collected and stored at -80 °C.

Real time PCR analysis was performed (Power Sybr Green, Roche, Mannheim, Germany) using a Rotor Gene 3000 light cycler (Qiagen Pty Ltd, Sydney, Australia) and the specific target mRNA of interest quantified as a ratio relative to 18S RNA content of the sample. 200 ng of cDNA was used per reaction. The primer sequences used in analysis are found in Table 1.

Protein expression studies

Extracts were prepared from snap frozen liver by homogenisation in lysis buffer (Tris-HCl 50 mmol/L, NaCl 150 mmol/L, EDTA 1 mmol/L, 1% Triton X-100, 0.5% Tween-20, 0.1% SDS) containing a protease inhibitor cocktail (#11836170, Roche Diagnostics, Mannheim, Germany) followed by centrifugation at 14,000 × g for 15 min at 4 °C. Supernatants were collected and activated with acetic acid/urea prior to analysis. TGFβ1 content of liver protein extracts were measured using a mouse TGFβ1 ELISA kit (R and D Systems Inc, Minneapolis, MN, United States). Plates were read using the Bio-Rad microplate reader at 450 nm and TGFβ1 concentrations were calculated from the standard curve by the plate reader software.

Statistical analysis

Data are expressed as mean ± SEM. Statistical significance was determined by one-way ANOVA with Newman-Keuls post-test for multiple comparisons or Student’s t-test for comparisons between two groups as appropriate, using GraphPad Prism 5.03 for Windows (GraphPad Software, Inc, La Jolla, United States). A P value < 0.05 was considered significant.

Results

Hepatic fibrosis

Quantitative analysis of histological fibrosis by computer-assisted morphometry in CCl4-treated WT mice showed a marked increase in liver fibrosis area (LFA) at 8 wk (3.39% ± 0.26%) compared to vehicle controls (LFA 0.7% ± 0.14%) (P < 0.0001). CCI4 administration induced similar levels of fibrosis in TF/CT/CT and TF/CT/CT/PAR-2/− mice (1.76% ± 0.17% and 1.94% ± 0.11% respectively), which were similar to that seen with PAR-2/− mice (LFA 2.09% ± 0.28%). Compared to WT mice, at 8 wk LFA was significantly lower in the PAR-2/− (P < 0.001), TF/CT/CT/PAR-2/− (P < 0.0001) and TF/CT/CT/PAR-2/− mice (P < 0.01) (Figure 1A-F).

Hepatic hydroxyproline content

Histological assessment of fibrosis area correlated with the amount of liver hydroxyproline, a surrogate marker for collagen content. TF/CT/CT and TF/CT/CT/PAR-2/− mice showed significantly less hepatic hydroxyproline content (0.37 ± 0.017 μg/mg and 0.37 ± 0.02 μg/mg) compared to WT mice (0.61 ± 0.03 μg/mg) at 8 wk (P < 0.05). Hydroxyproline content in TF/CT/CT and TF/CT/CT/PAR-2/− mice were similar to that seen in the PAR-2/− mice (0.39 ± 0.02 μg/mg) (Figure 2).

Reduced hepatic stellate cell activation in TF/CT/CT and TF/CT/CT/PAR-2/− mice

We identified αSMA positive cells as a marker of HSC activation and myofibroblast differentiation. There were significantly fewer αSMA positive cells seen histologically in the TF/CT/CT and TF/CT/CT/PAR-2/− groups compared to WT (19.99, 19.96 and 30.09 mean αSMA positive cells/hpf respectively, P < 0.0001) (Figure 3). The reduction observed in αSMA positive cells in the TF/CT/CT and TF/CT/CT/PAR-2/− groups was similar to that observed in PAR-2/− alone.

TF/CT/CT and TF/CT/CT/PAR-2 deficiency reduces hepatic TGFβ expression

CCI4 induced hepatic fibrosis was associated with upregulation of TGFβ1 mRNA (3.57 fold greater than control) and protein (11.41 ± 0.98 pg/mg liver vs control 7.01 ± 0.01 pg/mg in WT mice) at 8 wk. In TF/CT/CT mice, TGFβ1 mRNA expression was significantly reduced (0.22 ± 0.05 fold greater than control, P < 0.0001). In TF/CT/CT/PAR-2/− mice there was a trend towards TGFβ1 mRNA reduction (1.21 ± 0.14 fold greater than control, P = NS) (Figure 4A). In both the TF/CT/CT and TF/CT/CT/PAR-2/− mice, TGFβ1 protein was similar to controls (6.14 ± 0.33, 6.45 ± 0.84 and 7.01 ± 0.18 pg/mg wet liver weight respectively) and significantly lower than the TGFβ1 protein level in wildtype mice (P < 0.0001) (Figure 4B).

Table 1 Primer sequences used in gene expression studies

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primer sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S</td>
<td>Forward: 5'-GTAACCGGTGTAACCGCTACT-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-GCGGTTCTGGGACTTGTGGGC-3'</td>
</tr>
<tr>
<td>TGFβ</td>
<td>Forward: 5'-TGGCTCTCTACAACACACA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-AGACCGTGGAAACGATCAAC-3'</td>
</tr>
<tr>
<td>MMP-2</td>
<td>Forward: 5'-TGCCCTCTACAACCAACACA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-GTAACCCGTTGAACCCCATTC-3'</td>
</tr>
<tr>
<td>TIMP-1</td>
<td>Forward: 5'-GGCCTCTGCTGGACTTGTGGGC-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-CTCATTTAACGCGCCACCA-3'</td>
</tr>
<tr>
<td>PAR-1</td>
<td>Forward: 5'-GCCCTTCAAGGAGCAGACCC-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-ACCCAGATGTGGCCAACTAC-3'</td>
</tr>
<tr>
<td>PAR-2</td>
<td>Forward: 5'-TGCCCTCTACAACCAACACA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-AGACCGTGGAAACGATCAAC-3'</td>
</tr>
<tr>
<td>18S</td>
<td>Forward: 5'-GTAACCGGTGTAACCGCTACT-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-GCGGTTCTGGGACTTGTGGGC-3'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primer sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S</td>
<td>Forward: 5'-GTAACCGGTGTAACCGCTACT-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-GCGGTTCTGGGACTTGTGGGC-3'</td>
</tr>
<tr>
<td>TGFβ</td>
<td>Forward: 5'-TGGCTCTCTACAACACACA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-AGACCGTGGAAACGATCAAC-3'</td>
</tr>
<tr>
<td>MMP-2</td>
<td>Forward: 5'-TGCCCTCTACAACCAACACA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-GTAACCCGTTGAACCCCATTC-3'</td>
</tr>
<tr>
<td>TIMP-1</td>
<td>Forward: 5'-GGCCTCTGCTGGACTTGTGGGC-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-CTCATTTAACGCGCCACCA-3'</td>
</tr>
<tr>
<td>PAR-1</td>
<td>Forward: 5'-GCCCTTCAAGGAGCAGACCC-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-ACCCAGATGTGGCCAACTAC-3'</td>
</tr>
<tr>
<td>PAR-2</td>
<td>Forward: 5'-TGCCCTCTACAACCAACACA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-AGACCGTGGAAACGATCAAC-3'</td>
</tr>
<tr>
<td>18S</td>
<td>Forward: 5'-GTAACCGGTGTAACCGCTACT-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse: 5'-GCGGTTCTGGGACTTGTGGGC-3'</td>
</tr>
</tbody>
</table>
TF and TF/CT/PAR-2 deficiency decreases MMP2 mRNA

Matrix metalloproteinases (MMP) regulate matrix composition and turnover and in turn are regulated by specific tissue inhibitors, TIMPs. The balance of the expression of different MMPs changes throughout the development of liver injury, but in general there is upregulation of the basement membrane-like MMPs, such as MMP2 and 9 and down regulation of interstitial type MMPs such as MMP1 (MMP13 in mice). In WT mice treated with CCl4 for 8 wk, MMP2 mRNA increased (6.29 ± 1.45 fold greater than control), consistent with active ECM remodelling during development of hepatic fibrosis (Figure 5). MMP-2 mRNA expression was significantly lower in TF/CT/CT and TF/CT/CT/PAR-2 KO mice compared to WT mice (P < 0.01, P < 0.001 and P < 0.0001 respectively), suggesting ECM remodelling is reduced in association with the lower levels of fibrosis seen at 8 wk in these mice. E

Activated hepatic macrophages are decreased in TF/CT/CT and TF/CT/CT/PAR-2 deficient mice

We used CD68 (macrosialin) to identify activated macro-

Figure 1 Hepatic fibrosis area. Wildtype control mice administered vehicle alone showed minimal fibrosis (A). Compared to CCl4 treated wild-type mice (B), hepatic fibrosis area was significantly lower in the PAR-2KO (C), TF/CT/CT (D) and TF/CT/CT/PAR-2 (E) mice after CCl4 exposure for 8 wk. (P < 0.01, P < 0.001 and P < 0.0001).

Figure 2 Hepatic hydroxyproline content. Hydroxyproline content, a surrogate marker for collagen, was significantly less in the PAR-2KO, TF/CT/CT and TF/CT/CT/PAR-2 KO mice compared to wildtype mice (P < 0.05).

Figure 3 Hepatic stellate cell activation (smooth muscle actin expression). The number of αSMA positive cells was significantly lower in the TF/CT/CT and TF/CT/CT/PAR-2 KO mice compared to wildtype and was similar to PAR-2 KO mice (P < 0.01, P < 0.0001).
There were significantly fewer CD68+ hepatic macrophages in both TF^{§CT/§CT} and TF^{§CT/§CT}/PAR-2^{-/-} mice compared to wildtype mice (33.24 ± 1.47, 38.70 ± 1.78, 48.75 ± 2.87 positive cells/hpf; ^a<i>p</i> < 0.001, ^c<i>p</i> < 0.05 respectively) (Figure 6). We observed similar findings in PAR-2^{-/-} mice suggesting a role for PAR-2 in macrophage recruitment and activation^[9]. The current findings suggest that the TF cytoplasmic domain, as well as PAR-2, may be involved in this process.

DISCUSSION

There is growing evidence in animal models and in humans that injury-related signalling through the pivotal coagulation receptors, TF and PAR, can drive hepatic fibrogenesis. A recent study of acute injury in mice given a single injection of CCl₄ demonstrated elevated hepatocyte TF levels and tissue injury that were blocked by specific TF antisense oligonucleotide therapy^[14]. In man, TF levels have been found to be over 100 fold higher in patients with cirrhosis compared to non-cirrhotic patients^[15]. PAR-1 polymorphisms were shown to influence the hepatic fibrosis rate in Brazilian and European patients with chronic hepatitis C infection^[16]. Resistance to activated protein C occurs in patients heterozygous for the factor V Leiden mutation leading to increased thrombin activity, which is a mitogen for hepatic stellate cells. Factor V Leiden heterozygosity has been associated with rapid fibrosis progression in hepatitis C patients^[17]. Given our previous study showing that PAR-2 deletion decreased hepatic fibrosis in mice and data showing that the TF cytoplasmic domain induces proinflammatory effects in macrophages we examined the relative contributions of TF and PAR-2 in the development of toxin-induced liver fibrosis.

We found that mice with deletion of the TF cytoplasmic domain had lower hepatic collagen content and less histological fibrosis than wild type mice following 8 wk of
CCL4 exposure. This was accompanied by fewer α-SMA positive cells histologically suggesting reduced hepatic stellate cell activation. There was significantly lower gene and protein expression of the key profibrogenic cytokine TGFβ and a reduction in MMP2 expression in TF^{−/−}/PT mice. These data suggest that activation of the cytoplasmic domain of TF promotes hepatic fibrosis by inducing a profibrogenic phenotype in hepatic stellate cells. In angiogenesis, the cytoplasmic domain of TF acts as a negative regulator of PAR-2. If that were true in this model of liver fibrosis, then loss of the cytoplasmic domain and thus loss of negative regulation of PAR-2, should lead to increased fibrosis through increased PAR-2 activation. However this was not observed in our study. In fact, the protection from experimentally induced liver fibrosis that the TF^{−/−}/PT mice were afforded was similar to that which we previously observed in mice with PAR 2 deficiency^[19]. This observation is consistent with the observation in other studies that TF may be a negative regulator of PAR-2. If that were true in vivo, a induced calcium fluxes in macrophages in vitro. In vivo studies in which TF/Factor VIIa interactions were blocked using a TF antibody led to reduced expression of MHC class II and i2 integrin leucocyte adhesion molecules which are markers of macrophage activation^[11]. There is increasing interest in macrophage phenotypes in liver disease as classically activated M1 macrophages are proinflammatory and alternatively activated M2 macrophages are anti-inflammatory. A recent study has shown that TF^{−/−}/PT mice fed a high fat diet demonstrated reduced inflammatory macrophages in adipose tissue with reduced proinflammatory cytokine production, suggesting that TF signalling is directly involved in regulating macrophage inflammation and may sustain M1 polarisation. Interestingly, there was no additive effect of double deletion of TF and PAR-2 on diet induced obesity, similar to the outcomes we have observed in hepatic fibrosis^[9]. In conclusion we have established, for the first time to our knowledge, that deletion of the TF cytoplasmic domain significantly reduces experimental hepatic fibrosis. Furthermore we have shown that deletion of the cytoplasmic domain in addition to PAR-2 deficiency does not lead to more profound protection from fibrosis and in fact that mice lacking the tissue factor cytoplasmic domain phenocopy PAR-2 deficiency. This demonstrates that the tissue factor cytoplasmic domain is involved in pathological TF-PAR-2 signalling. The potential to intervene in this process by inhibiting thrombin or FXa is relevant given the widespread clinical availability of direct inhibitors. For example, administration of argatroban, a direct thrombin inhibitor, to mice fed a Western diet significantly reduced hepatic macrophage accumulation, pro-fibrogenic gene expression and hepatic steatosis suggesting that thrombin inhibition could reduce the risk of fibrosis development in NASH patients^[9]. It would be prudent to limit therapeutic coagulation inhibition to non-cirrhotic patients at risk of fibrosis progression in order to avoid the risk of bleeding events in cirrhotic patients. This makes the cytoplasmic domain of TF an attractive therapeutic target, as its deletion would not impact on coagulation and thus could be a potentially beneficial anti-fibrotic strategy in patients with advanced liver disease.

COMMENTS

Background

Globally, liver cirrhosis is the sixth most common cause of life-years lost to premature mortality. Cirrhosis represents a “wound healing” response to persistent inflammatory injury (commonly due to fat, alcohol or hepatitis viruses) that can lead to excessive collagen deposition and disruption of normal liver architecture. The coagulation system is active in both the acute response to organ injury as well as in inflammatory signaling that perpetuates the wound healing response. The molecular link between inflammation and coagulation occurs through tissue factor (TF) and protease activated receptors (PARs) although the relative contribution of each remains unclear.

Research frontiers

Currently no anti-fibrotic agents are available for patients with cirrhosis. Liver transplantation may be the only effective treatment for those who progress to hepatic decompensation or develop hepatocellular carcinoma. In order to develop therapeutic anti-fibrotic agents, the authors must understand the cellular and molecular pathways that cause inflammation and fibrosis.

Innovations and breakthroughs

The authors previously showed that PAR-2 was involved in hepatic fibrosis, since deletion of the PAR-2 gene resulted in decreased fibrosis in mice. Since the TF cytoplasmic domain is a negative regulator of PAR-2 in angiogenesis, they explored this relationship in a model of liver fibrosis. They found that mice with low levels of the cytoplasmic domain of TF had less fibrosis than control mice with fewer activated hepatic stellate cells, the principal liver cells that

Knight V et al. Tissue factor and liver fibrosis
produce collagen, and fewer activated macrophages, which express cytokines that drive HSC activation.

Applications
Inhibition of coagulation, for example, by direct thrombin inhibitors, could prevent fibrosis progression in cirrhotic patients but would increase the risk of bleeding events in a patient group at high risk for such events. However, direct targeting of the cytoplasmic domain of TF, which is involved in intracellular signalling but not in coagulation, could be a potentially beneficial anti-fibrotic strategy in cirrhotic patients.

Peer-review
The paper by Knight et al describes that genetic ablation of the intracellular portion of TF or of PAR2 downstream to TF both reduce in a non-additive fashion fibrosis in the liver induced by treating mice with CCL. Some insights in the mechanism of action of the two manipulations were provided by histological data indicating that they both reduce the frequency of activated smooth muscle cells and activated macrophages and the levels of TGF-β, a known profibrotic factor, in the liver. The results are interesting in view of the fact that liver fibrosis is an unmet clinical need which involves a large number of patients and that drugs targeting TF have been developed and are currently in clinical trials for treatment of thrombosis.

REFERENCES
[PMID: 12426405 DOI: 10.1073/pnas.24251899]
5 Ernofsson M, Siegbahn A. Platelet-derived growth factor-BB and monocoyte chemotactic protein-1 induce human peripheral blood monocytes to express tissue factor. Thromb Res 1996; 83: 307-320
[PMID: 8870175 DOI: 10.1016/0049-3848(96)00139-9]
[PMID: 15098207 DOI: 10.1038/nm1037]
[PMID: 18802482 DOI: 10.1172/JCI36089]
[PMID: 22019885 DOI: 10.1038/nm.2461]
9 Kassell KM, Sullivan BP, Cui W, Coppell BL, Luyendyk JP. Therapeutic administration of the direct thrombin inhibitor argatroban reduces hepatic inflammation in mice with established fatty liver disease. Am J Pathol 2012; 181: 1287-1295
[PMID: 22841818 DOI: 10.1016/j.ajpath.2012.06.011]
[PMID: 22095855 DOI: 10.1002/hep.24784]
[PMID: 11511099 DOI: 10.1006/bbrc.2001.5425]
12 Lee HS, Shun CT, Chiou LL, Chen CH, Huang GT, Sheu JC. Hydroxyspray content of needle biopsies as an objective measure of liver fibrosis: Evaluation on sampling variability. J Gastroenterol Hepatol 2005; 20: 1109-1114
13 Patella S, Phillips DJ, Tchongue J, de Kretser DM, Sievert W. Follistatin attenuates early liver fibrosis: effects on hepatic stellate cell activation and hepaticocyte apoptosis. Am J Physiol Gastrointest Liver Physiol 2006; 290: G137-G144
[PMID: 16123203 DOI: 10.1152/ajpgi.00080.2005]
14 Abdel-Bakky MS, Helal GK, El-Sayed EM, Saad AS, Carbon tetrachloride-induced liver injury in mice is tissue factor dependent. Environ Toxicol Pharmacol 2015; 39: 1199-1205
[PMID: 25982951 DOI: 10.1016/j.etap.2015.02.012]
[PMID: 18005014 DOI: 10.1111/j.1440-1746.2007.05220.x]
[PMID: 12865283 DOI: 10.1136/gut.52.8.1206]
[PMID: 19533130 DOI: 10.1007/s00281-009-0169-0]

P- Reviewer: Lee HC, Migliaccio AR S- Editor: Gong ZM
L- Editor: A E- Editor: Li D