Development of Tollmien-Schlichting disturbances in the presence of laminar separation bubbles on an unswept infinite wavy wing

Christian Thomas* and Shahid Mughal
Department of Mathematics, South Kensington Campus, Imperial College London, London SW7 2AZ, United Kingdom

Richard Ashworth
Airbus Group Innovations, Bristol BS99 7AR, United Kingdom
(Received 31 August 2016; published 26 April 2017)

The effect of long-wavelength sinusoidal surface waviness on the development of Tollmien-Schlichting (TS) wave instabilities is investigated. The analysis is based on the compressible flow that forms over an unswept infinite wavy wing with surface variations of variable amplitude, wavelength, and phase. Boundary layer profiles are extracted directly from solutions of a Navier-Stokes solver, which allows a thorough parametric analysis to be undertaken. Many wavy surface configurations are examined that can be sufficient to establish localized pockets of separated flow. Linear stability analysis is undertaken using parabolized stability equations (PSE) and linearized Navier-Stokes (LNS) methods, and surface waviness is generally found to enhance unstable behavior. Results of the two schemes are compared and criteria for PSE to establish accurate solutions in separated flows are determined, which are based on the number of TS waves per wavelength of the surface deformation. Relationships are formulated, relating the instability variations to the surface parameters, which are consistent with previous observations regarding the growth of TS waves on a flat plate. Additionally, some long-wavelength surface deformations are found to stabilize TS disturbances.

DOI: 10.1103/PhysRevFluids.2.043903

I. INTRODUCTION

Accurate prediction of boundary layer transition on aerofoils is critical to the improvement of future wing design. Surface deformations that have been established by environmental conditions (roughness or hail stone impacts [1]) or industrial effects (steps, gaps, and waviness) can potentially cause significant variations in the onset of transition, which may have a severe impact on flight performance characteristics. Several studies have examined the effect of short-scale surface deformations (as listed in Table I), while the current investigation explores the effect of long-wavelength variations on an unswept infinite wing.

Wind tunnel experiments carried out by Fage [2] examined the effect of various surface deformations (bulges, hollows, ridges) on transition to turbulence. Experiments were conducted on a flat plate with a small favorable pressure gradient and an aerofoil. Using his observations, Fage derived the following relationship:

\[\frac{h^2 x_{tr}^2 \text{Re}^3_{\infty}}{\lambda} = 8.1 \times 10^{13}; \quad \sqrt{\lambda l}/x_{tr} < 0.09, \]

(1)

to describe the minimum height \(h \) required to affect the onset of boundary layer transition. Here \(\lambda \) and \(l \) denote the respective length and location of the deformation, \(x_{tr} \) is the chord location for transition, and \(\text{Re}_{\infty} \) represents the free-stream Reynolds number. Further experiments by the

* c.thomas@imperial.ac.uk
TABLE I. Types of surface deformations investigated by previous investigators.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study type</th>
<th>Geometry</th>
<th>Deformation type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fage [2]</td>
<td>Experimental</td>
<td>Flat plate, aerofoil</td>
<td>Bulges, hollows, ridges</td>
</tr>
<tr>
<td>Carmichael group [3–5]</td>
<td>Experimental</td>
<td>Aerofoil</td>
<td>Waviness</td>
</tr>
<tr>
<td>Holmes group [6,7]</td>
<td>Experimental</td>
<td>Aerofoil</td>
<td>Steps, gaps</td>
</tr>
<tr>
<td>Wang and Gaster [8]</td>
<td>Experimental</td>
<td>Flat plate</td>
<td>Steps</td>
</tr>
<tr>
<td>Lessen and Gangwani [9]</td>
<td>Theoretical</td>
<td>Flat plate</td>
<td>Waviness</td>
</tr>
<tr>
<td>Nayfeh et al. [10]</td>
<td>Theoretical</td>
<td>Flat plate</td>
<td>Humps</td>
</tr>
<tr>
<td>Masad and Iyer [12]</td>
<td>Theoretical</td>
<td>Flat plate</td>
<td>Humps</td>
</tr>
<tr>
<td>Wie and Malik [13]</td>
<td>Theoretical</td>
<td>Flat plate</td>
<td>Waviness</td>
</tr>
<tr>
<td>Park group [14,15]</td>
<td>Theoretical</td>
<td>Flat plate</td>
<td>Humps</td>
</tr>
<tr>
<td>Brehm et al. [16]</td>
<td>Theoretical</td>
<td>Flat plate</td>
<td>Ridges, roughness</td>
</tr>
<tr>
<td>Gaster [17]</td>
<td>Experimental</td>
<td>Flat plate</td>
<td>Ridges, roughness</td>
</tr>
</tbody>
</table>

Carmichael group [3–5] included both compressible and pressure gradient effects on a wavy wing body. Using experimental flight data, Carmichael formulated the expression

\[\frac{h^2c^{1/2}Re^{3/2}}{\lambda} = 51\,300, \tag{2} \]

that defines the critical size of surface waviness for a two-dimensional (2D) flow.

Holmes and collaborators [6,7] reported on manufacturing tolerances and flight experiments that included various step, gap, and surface wave imperfections. It was found that the Tollmien-Schlichting (TS) wave instability was significantly destabilized in the region of the surface wave that generates an adverse pressure gradient. Additionally, increasing the height of step deformations on a 2D flat plate significantly augments the growth of the TS wave and brings about the premature onset of transition [8].

The effect of wall waviness on the stability of the incompressible Blasius boundary layer was considered by Lessen and Gangwani [9], who found that the critical Reynolds number for transition decreased with the height of the wave. Using solutions of the compressible boundary layer equations, Lekoudis et al. [18] computed the effect of shallow surface waves on the mean flow and obtained good agreement with the earlier experimental observations. However, for surface variations that were sufficiently large to establish separation, the boundary layer method for generating the basic state breaks down. This failing of the boundary layer method is a direct consequence of the streamwise marching numerical procedure [19]; thus, limiting boundary layer and stability analysis for some forms of surface deformations. However, such difficulties can be overcome by the implementation of alternative methods, including the interactive boundary layer (IBL) procedure that allows the boundary layer equations to be solved even for separated flows [20].

Several theoretical investigations considered the effect of a hump on a 2D flat plate without a streamwise pressure gradient [10–12]. In these particular studies, the undisturbed basic state was established using the IBL procedure, while linear stability analysis was performed using a parallel flow approximation where the streamwise variation of the mean flow was ignored. A locally based \(e^N \) method [21–24] was utilized to predict the onset of boundary layer transition and the theoretical findings were qualitatively similar to the observations of Fage [2].

The IBL methods were further utilized by Wie and Malik [13] to compute a subsonic 2D base flow over a flat plate with wavy surface variations. The effect of waviness on the growth of the linear TS wave instability was carried out using parabolized stability equation (PSE) methods [25], which account for streamwise variations of the undisturbed flow. Several surface wave configurations and freestream conditions were considered and it was determined that wavy deformations could establish significant increases in the amplification rate of the disturbance. Additionally, Wie and Malik were
able to derive an expression relating the variation of the N-factor amplification rate
\[\Delta N = N_{\text{Wavy}} - N_{\text{Non-Wavy}}, \]
and the physical dimensions of the surface wave for the flow over a flat plate with a favorable pressure gradient:
\[\Delta N = 0.07 \frac{n h^2 \text{Re}_\infty}{\lambda}, \tag{3} \]
where the parameter n defines the number of waves before the onset of transition x_{tr} (given for the nondeformed model). Comparing their expression for the allowable measure of surface waviness with that formulated by Fage and Carmichael [2,4], Wie and Malik concluded that Fage’s criteria (1) were quite restrictive and allow significantly smaller waviness than the relationship conceived by Carmichael (2). It was suggested that expression (3) could be used to estimate the effect on stability and transition for a limited range of surface dimensions, provided that surface waviness did not enhance receptivity or excite nonlinear interaction with centrifugal instabilities [26].

PSE methods were also employed by Park and collaborators [14,15] to investigate the effects of a hump on both the linear and nonlinear development of the TS wave instability. Both the height and length scales of the hump were again critical to the amplification rate of the disturbances. Nonlinear interaction was found to greatly amplify the size of the perturbation and it was concluded that this may cause the premature breakdown of the laminar flow.

Thomas et al. [27] considered the effect of surface waviness on the crossflow instability that develops in a compressible flow on an infinite swept wing body. Their study was based on the flow solutions of an industrial Reynolds-averaged Navier-Stokes (RANS) formulation called TAU [28], where laminar flow was established by fixing the onset of transition; prior to which point the RANS scheme solves the laminar form of the Navier-Stokes equations. Boundary layer solutions in this limit were then extracted directly from the TAU output and formatted for a stability analysis based on both PSE and linearized Navier-Stokes (LNS) methods [29,30]. Similar extraction methods have been developed by Malik and coworkers [31,32] for investigating the stability of the flow on flat plates and full aircraft configurations. Thomas and collaborators [27] validated their RANS extracted boundary layer (REBL) solutions against results of a compressible boundary layer formulation [33] that applies a streamwise marching strategy [19]. As boundary layer profiles were drawn directly from the TAU solutions, a thorough stability investigation was undertaken for several surface configurations, including those wavy dimensions that established separation. It was shown that, depending on the location used to draw comparisons, surface waviness of variable height, wavelength, and phase could marginally stabilize and destabilize the crossflow instability. Furthermore, Thomas et al. found that surface waviness could generate variations in the chord location corresponding to laminar-turbulent transition. However, stability variations ΔN were small compared with the observations of Wie and Malik [13] on TS disturbances. Additionally, PSE solutions were in excellent agreement with the corresponding LNS computations, with only minor differences arising for those flow systems containing small pockets of separation.

Recently, Brehm et al. [16] undertook a theoretical investigation of 2D distributed wall roughness effects on a flat plate, with the aim of corroborating the experimental findings of Gaster [34]. In their study, they found that roughness modeled as 2D rectangular or sinusoidal elements could establish separated flow. Their numerical results confirmed Gaster’s observations that there exists a critical roughness height, beyond which the amplification of the TS wave instability increases with increasing height. The effect of sinusoidal roughness distributions on the growth of the TS wave was also considered by Gaster [17], who used the Orr-Sommerfeld equation to obtain solutions to the basic state and undertake a perturbation analysis. Separated flow was found to form between sufficiently large roughness elements, while the amplification rate of the perturbations was enhanced by the roughness.

In the following investigation, PSE and LNS methods are utilized to study the effect of long wavelength surface waviness on the growth of the TS wave disturbance. This expands upon the
earlier theoretical studies that considered short-scale deformations on a flat plate (refer to Table I). The undisturbed flow on an unswept infinite wing of variable surface waviness is established using the TAU flow solver, where surface variations can establish localized pockets of separation. The suitability of the PSE approach for investigating disturbances in separated flows is a contentious issue. PSE methods are based on a streamwise marching procedure that do not account for the upstream propagation associated with boundary layer separation. Furthermore, separated flow can establish absolute instability, for which PSE methods are most definitely not applicable. Hammond and Redekopp [35] suggest that absolutely unstable behavior will develop in laminar separation bubbles if the peak value of the reverse flow reaches about 30% of the freestream magnitude, while Adam and Sandham [36] indicate that more than 15% reverse flow is required for the onset of absolute instability.

On the applicability of the PSE approach for studying convective disturbances in systems with reverse flow, Wie and Malik suggest that the PSE method may be able to successfully step over a small separation bubble. This particular conclusion was drawn, based on the minimum step-size restriction derived by Li and Malik [37]; \(\Delta x > 1/|\alpha_r| \) for a stable solution. Here \(\alpha_r \) and \(\Delta x \) represent the real part of the streamwise wave number and the associated step size. Li and Malik also proposed a parabolized Navier-Stokes-type strategy [38], whereby the streamwise pressure gradient term is suppressed, leading to a relaxation of the step-size limit. However, Andersson et al. [39] introduce a stabilization procedure that allows the pressure gradient term to be retained in the PSE formulation, allowing numerically stable solutions to be obtained for considerably smaller step sizes than that established by the Li-Malik step-size criteria. Furthermore, there are some indications from within the available literature that the PSE approach may be used to calculate disturbances in separated flow systems to an acceptable degree of accuracy. For instance, Gao et al. [14] compared solutions of their PSE analysis with that established via direct numerical simulations and found that the PSE method can work well in flow systems with a small amount of boundary layer separation. Additionally, Wie and Malik [13] state (though do not publish) that they successfully applied the PSE method through separation bubbles.

The remainder of this paper is outlined as follows. In the subsequent section, we describe the routines for generating the basic state on a wavy wing and the PSE and LNS methods used to undertake a linear stability analysis of TS disturbances. Boundary layer solutions are presented in Sec. III for both nonseparated and separated flow systems, while results of both the PSE and LNS methods are discussed in Sec. IV. PSE and LNS results are compared and we examine the criteria necessary for PSE to establish solutions to a reasonable degree of accuracy in separated flows. Finally, we conclude our investigation with several comments pertaining to the observations of our study.

II. FORMULATION

Compressible flow characteristics and boundary layer disturbances that develop on a wavy wing are determined using several numerical schemes. Accurate and robust methods are required to successfully capture the effect of surface waviness on the evolution of TS wave instabilities. In this section we discuss and highlight the essential ingredients, as depicted in Fig. 1, for generating solutions and achieving the objectives of this investigation.

A. Wing model

1. Nondeformed geometry

Figure 2 depicts a cross-sectional view of the wing geometry, used in this investigation, in 2D Cartesian coordinates \(\tilde{x}^* = (\tilde{x}^*, \tilde{y}^*) \) [40] (asterisks denote dimensional properties). As our interest is in flow variations along the \(\tilde{x}^* \) direction and 2D TS wave instabilities, the wing model and the resulting flow dynamics are assumed to be independent of a third spanwise axis. Additionally, the angle of incidence is set equal to zero. Although the wing geometry represents a simple aerofoil, it is
reasonable to assume that the stability analysis illustrated in this paper will also appear (in one form or other) on other wing geometries with comparable surface features and freestream characteristics. The chord length of the model is $c^* = 1$ m, while the maximum thickness is approximately 0.15 m near the chord center. The flow is assumed to be compressible with a Mach number M_∞ and a free-stream Reynolds number Re_∞ based on the chord c^*. Finally, the free-stream temperature $T_\infty = 300$ K for all flow conditions considered.

2. Imposing surface waviness

The surface of the wing is deformed using sinusoidal wave variations of the form

$$s = H^* \sin\{2\pi x^*/\lambda^* - \phi\} \quad \text{on} \quad y^* = 0,$$

FIG. 1. Flow chart diagram illustrating the methodology for the boundary layer and stability analysis. CoBL, compressible boundary layer; REBL, RANS extracted boundary layer; PSE, parabolized stability equations; LNS, linearized Navier-Stokes.

FIG. 2. Cross-sectional view of the unswept infinite wing model.
where x^* represents the chordwise surface axis and y^* is the wall-normal direction (as depicted in Fig. 2). Here H^* is the amplitude (or half height) and λ^* is the wavelength of the wavy surface, which are both scaled on the chord length c^*. Note that in all future discussions $H = H^*/c^*$ and $\lambda = \lambda^*/c^*$ are used to define the surface variations. The parameter ϕ is a phase shift, which when set to zero establishes a surface wave originating at the attachment line $\tilde{x}^* = x^* = 0$.

In subsequent sections, we limit our analysis to surface configurations $\lambda \in [0.1 : 0.1 : 0.4]$, $H \in [0 : 0.0001 : 0.0006]$ and four equally spaced phase shifts $\phi \in [-\pi/2 : \pi/2 : \pi]$. Smaller wavelengths were not considered as significantly denser meshes would have been required to establish accurate flow solutions (see Sec. II A 3), while amplitudes H are relatively large and correspond to deformations of order of one tenth of a millimeter. These particular characteristics were implemented to ensure variations in the flow dynamics were sufficient to establish localized pockets of separation.

3. Generating flow solutions

The steady flow, about the wavy wing, was generated using the TAU flow solver [28]. The TAU program solves the RANS system of equations for the flow that develops about 2D and 3D geometries. For the current investigation, the method was made applicable to the analysis of laminar flows by imposing a fixed transition line (as depicted in Fig. 2) at $x^* = 0.55c^*$. This was implemented to avoid convergence issues that could arise with the formation of severe separation along the trailing edge of a laminar wing. Although pockets of separated flow were established within the troughs of some of the wavy surface geometries considered herein, they were relatively small. Thus, laminar flow was established for $x^* \leq 0.55c^*$ by setting the eddy viscosity in the TAU formulation to zero; the RANS scheme thus reduces to solving the laminar Navier-Stokes equations. Downstream of the transition location, the full RANS formulation was solved and a fully turbulent boundary layer was allowed to develop. However, in the subsequent sections, the analysis of TS disturbances was restricted to the laminar flow domain.

A sufficiently dense unstructured mesh was established (about the wavy wing) to ensure accurate flow features were captured by the TAU formulation. After careful experimentation it was determined that at least 40 mesh points were required within the boundary layer region to ensure that flow dynamics were fully captured. Beyond the boundary layer, the mesh density was significantly reduced in the far field limit (which was set at about 50 chord lengths c^* from the wing). Along the length of the wing, approximately 500 mesh points were required to generate accurate flow solutions. Decreasing the minimum wavelength λ beyond that considered herein would have required this latter mesh specification to be greatly increased, leading to larger computational requirements.

Given a set of free-stream flow conditions $\{M_\infty, Re_\infty\}$, the TAU solver simulates the dimensional steady flow $\tilde{Q}^*_B = \{\tilde{U}^*_B, \tilde{P}^*_B, \tilde{T}^*_B\}$ in Cartesian coordinates \tilde{x}^*. The vector \tilde{U}^*_B denotes the undisturbed dimensional velocity field, while \tilde{P}^*_B and \tilde{T}^*_B respectively represent the pressure and temperature variables. A converged steady-state solution was then obtained by using the Spalart-Allmaras-Edwards turbulence model [41]. Flow solutions were obtained subject to satisfying no-slip conditions on the wing surface and far-field boundary conditions given by the free-stream specification. An explicit Runge-Kutta iterative scheme was then utilized, where it was assumed that a steady basic state was achieved once residuals were of the order 10^{-8} and less.

B. Boundary layer methods

A nondimensional steady basic state $Q_B = \{U_B, P_B, T_B\}(x)$ (in nondimensional surface coordinates $x = (x, y)$) was required to conduct both a PSE and LNS investigation of TS wave instabilities. Boundary layer profiles were obtained by either solving a set of boundary layer equations or by carefully extracting profiles directly from the TAU solutions. The former method is based on the results of the infinite swept boundary layer equations (CoBL [33]), where a surface pressure distribution is required as an initial input taken directly from the TAU output. These particular equations were discretized using a fully implicit second-order-accurate three-point

043903-6
backward differencing scheme along the chordwise axis, while a two-point second-order-accurate method was utilized in the wall-normal direction.

A second boundary layer method, REBL [27], is based entirely on the output generated by the TAU flow solver. The REBL scheme extracts the dimensional TAU solutions and transforms the results from the dimensional Cartesian coordinates \(\tilde{x}^* \) to the nondimensional surface fitted coordinate system \(x = \{x,y\} \). The extraction procedure was achieved by implementing several geometric transformations and boundary layer properties. Paraview filters [42] were used that perform several processes during the boundary layer extraction process, while arithmetic operations were performed using PYTHON to the default 15-decimal-place accuracy. First, unit normals \(\tilde{x}_n^* \) were generated at all points along the wing surface. Dimensional flow profiles were then extracted along each normal and transformed using the matrix operator

\[
A = \begin{bmatrix}
\tilde{y}_n^* & \tilde{x}_n^* \\
-\tilde{x}_n^* & \tilde{y}_n^*
\end{bmatrix}
\]

to give

\[
x^* = A \tilde{x}^* \quad \text{and} \quad U^*_B = A \tilde{U}^*_B,
\]

where the dimensional vector \(U^*_B = \{U^*_x, V^*_y\} \) represents the 2D undisturbed velocity field in surface fitted coordinates \(x^* \), while \(P^*_B = \tilde{P}^*_B \) and \(T^*_B = \tilde{T}^*_B \). Nondimensional quantities were then obtained by scaling flow properties on their boundary layer edge values, based on the location where the \(U^*_B \) velocity field attains 99\% of its maximum. Thus, the nondimensional velocity field

\[
U_B = \frac{U^*_B}{U^*_e},
\]

where the subscript \(e \) denotes the boundary layer edge characteristics. Hence, at each chord location \(U_B \to 1 \) as \(y \to \infty \). Similar representations were formulated for the nondimensional pressure \(P_B = P^*_B/P^*_e \) and temperature \(T_B = T^*_B/T^*_e \).

For the subsequent discussion of PSE and LNS formulations, nondimensional coordinates \(x \) were obtained by scaling on a locally defined boundary layer thickness \(\delta^* \) that was measured about a fixed location:

\[
x = x^*/\delta^*.
\]

However, in Secs. III and IV, the base flow and stability calculations are presented in terms of a coordinate system scaled on the chord length \(c^* \); \(x = x^*/c^* \). Note that the same character has been used to represent nondimensional coordinates based on \(\delta^* \) and \(c^* \), which has been implemented to avoid introducing further notation. Additionally, results are presented in \(x = x^*/c^* \) coordinates as this provides a better means of illustrating the flow dynamics.

C. Stability methods

The stability of the undisturbed flow \(Q_B \) was undertaken by considering infinitesimally small time periodic perturbations

\[
q'(x,y,t) = q(x,y) \exp\{-i\omega t\},
\]

where \(q = \{u,v,p,T\} \) and \(\omega \) represents a local nondimensional frequency given as

\[
\omega = \frac{2\pi f^* \delta^*}{U^*_e}.
\]
The parameter f^* is the dimensional frequency of the perturbation that is measured per unit hertz (Hz). For presentation purposes we introduce a nondimensional global frequency

$$f = \frac{2\pi f^* \nu^*_\infty}{U^2_\infty},$$

where U^*_∞ and ν^*_∞ respectively denote the free-stream velocity and kinematic viscosity.

1. PSE theory

Linear PSE perturbations q are decomposed as

$$q = \tilde{q}(x, y)E(x) + \text{c.c.},$$

where \tilde{q} represents a slowly varying in x amplitude function and E is a wave function of the form

$$E(x) = \exp \left\{ i \int_{x_0}^{x} \alpha(\zeta) d\zeta \right\}.$$ \hfill (7)

The real and imaginary parts of α respectively denote the wave number and growth rate of the TS disturbance, while x_0 represents the critical location for the onset of the instability.

The linear PSE formula for the shape function \tilde{q} is represented as

$$L\tilde{q} + M \frac{\partial \tilde{q}}{\partial x} = 0,$$ \hfill (8)

where L and M are differential matrix operators in the wall-normal y direction (a detailed description of the matrix operators are given in Mughal [43]). Both L and M are dependent on the curvature of the surface that are embodied in the terms κ and χ that respectively represent the local body curvature and

$$\chi = \frac{1}{1 - \kappa y}.$$ \hfill (9)

The system of equations (8) are then closed by the integral condition

$$\int_0^\infty \left(\tilde{q}^\dagger \cdot \frac{\partial \tilde{q}}{\partial x} \right) dy / \int_0^\infty \tilde{q}^\dagger \cdot \tilde{q} dy = 0,$$ \hfill (10)

where \dagger denotes the complex conjugate form. Equation (8) is then solved using a marching procedure where the wave number α is determined at each x position using the iterative scheme

$$\alpha_{k+1} = \alpha_k + i \int_0^\infty \left(\tilde{q}^\dagger \cdot \frac{\partial \tilde{q}}{\partial x} \right) dy / \int_0^\infty \tilde{q}^\dagger \cdot \tilde{q} dy.$$ \hfill (11)

The imaginary part of α denotes the growth of the TS wave instability and is used to perform an N-factor calculation [22,44] that is given by the expression

$$N = -\int_{x_0}^{x} \alpha_i(\zeta) d\zeta.$$ \hfill (12)

For the subsequent stability analysis, the maximum absolute value of the u-velocity perturbation field, $|u|_{\text{max}}$, is used to draw direct comparisons between solutions of the PSE and LNS formulations.

The system of PSE equations (8) are solved subject to zero-disturbance conditions at the wall

$$u = v = T = 0 \quad \text{on} \quad y = 0,$$ \hfill (13a)

while Dirichlet conditions are imposed in the free-stream

$$u = v = T \to 0 \quad \text{as} \quad y \to \infty.$$ \hfill (13b)

The pressure p is also assumed to satisfy the Dirichlet condition in the free stream.
Chordwise step sizes Δx were implemented, where the Li-Malik [37] stability restriction criteria $\Delta x > 1/|\alpha_r|$ was imposed to obtain numerically stable solutions. It should be noted that PSE analysis was also successfully undertaken for smaller Δx than that imposed by the Li-Malik criterion. However, it was found that the best PSE-LNS comparisons arose for calculations based on Δx that satisfied this criterion. As the size of the wave number α_r is dependant on the frequency of the TS wave, special care was required to ensure that the step-size limitation was satisfied for those PSE results presented. Additionally, to improve the numerical robustness of the method, the effect of the chordwise pressure gradient $\partial p/\partial x$ was suppressed.

2. LNS scheme

The LNS formulation for a compressible flow is presented within the appendices. In the far-field limit, Dirichlet conditions are imposed, where perturbations are assumed to have decayed to a negligible magnitude. On $y = 0$, the no-slip zero-disturbance condition is generally enforced, where $u = v = T = 0$. Perturbations are then excited by a small periodic forcing, where the surface condition is defined as

$$u' = -h(x,t)U_{B,t}(x,0), \quad v' = \frac{\partial h(x,t)}{\partial t} \quad \text{and} \quad T' = -h(x,t)T_{B,t}(x,0) \quad \text{on} \quad y = 0, \quad (14a)$$

$$\Rightarrow u = -h(x)U_{B,t}(x,0), \quad v = -i\omega h(x) \quad \text{and} \quad T = -h(x)T_{B,t}(x,0) \quad \text{on} \quad y = 0, \quad (14b)$$

and the function $h(x)$ represents a normalized Gaussian distribution of the form

$$h(x) = 10^{-6}\exp\{-0.5[(x - x_f)/\sigma]^2\}/\sqrt{2\pi\sigma^2}, \quad (15)$$

where $\sigma = 10$ and x_f prescribe the variance and center of the wall forcing, respectively.

The LNS system of equations were discretized and solved in the manner described by Mughal and Ashworth [30]. High-order finite-difference methods were implemented along the x axis, while a pseudospectral approach was utilized in the wall-normal y direction. Along the x direction, up to 8000 points were used over the chord domain considered and 81 points was deemed sufficient in y to accurately resolve disturbance development. LNS solutions were then computed by decomposing the discretized formulation as a large lower-upper block factorization matrix.

III. BASE FLOW

A. Effect of shallow surface waviness

Figure 3 illustrates the pressure C_p and skin friction $C_f Re_{\infty}^{1/2}$ coefficients based on the boundary layer solutions generated by the REBL extraction method. Three wavy surface configurations are considered, where the free-stream conditions are defined as $\{M_\infty, Re_\infty\} = \{0.75 \times 10^6\}$ and the phase shift $\phi = 0$. Dashed lines depict solutions established over a surface with $\{\lambda, H\} = \{0.1, 0.0001\}$, while chain and dotted lines respectively represent the surface variations $\{\lambda, H\} = \{0.2, 0.0002\}$ and $\{0.4, 0.0004\}$. The solid lines display the results corresponding to that established on the nondeformed wing. Solutions are plotted against the x direction and effect of the sinusoidal wavy wall is shown to be mirrored in the two illustrated flow components. Furthermore, waviness can cause significant variations compared to results obtained for the nondeformed wing. In particular, the skin friction coefficient displays relatively large variations, with respective increases and decreases in $C_f Re_{\infty}^{1/2}$ corresponding to the flow passing over the crests and troughs of the wavy surface.

The nondimensional U_B velocity field for the nondeformed wing is plotted in Fig. 4 as a contour map in the $\{x, y\}$ plane. Here, we have used the coordinate scaling $x = x^*/c^*$ to present flow solutions, and since the chord length $c^* = 1$ m, the coordinate axis can represent both dimensional and nondimensional planes. Thus, the boundary layer is approximately 1 mm thick. The undisturbed flow
FIG. 3. Flow characteristics obtained using REBL for the surface configurations \(\{ \lambda, H \} = \{0.0\} \) (solid line), \(\{0.1, 0.0001\} \) (dashed), \(\{0.2, 0.0002\} \) (chain) and \(\{0.4, 0.0004\} \) (dotted). (a) Surface pressure coefficient \(C_p \); (b) skin friction coefficient \(C_f \Re_{\infty}^{1/2} \).

Development over two wavy surfaces is depicted in Fig. 5, where the sinusoidal wall deformations are given as \(\{ \lambda, H \} = \{0.2, 0.0002\} \) and \(\{0.4, 0.0004\} \), respectively. The \(y \) axis has now been transformed to include the wavy surface variations, to help visualize behavior of the flow as it passes over the crests and troughs of the surface. The reader is reminded that the vertical scale is very much smaller than that along the horizontal and if the flow was drawn using an equal axis the surface variation would be very difficult to distinguish. Nevertheless, the wavy wall has a relatively large impact on the flow development. In particular, the boundary layer thickness is found to vary significantly as the flow develops downstream, decreasing about the surface crests and increasing significantly near the troughs of the wavy wall. This behavior is to be expected, as favorable and adverse pressure gradients are established about the respective crests and troughs of the surface.

FIG. 4. Nondimensional base flow \(U_B \) obtained using REBL over a nondeformed wing in the \(\{x,y\} \) plane.
B. Separated flows

Negative valued skin friction was not established for those wavy configurations drawn in Fig. 3(b). However, it was found that this eventually materializes for sufficiently large amplitudes H; finite regions of reversed flow form within the troughs of the wavy surface. Figure 6 depicts contours of the steady U_B-velocity field that develops over the wavy surface with $\{\lambda, H\} = \{0.1,0.0003\}$. The nondimensional velocity field is plotted for both an extensive spatial range in Fig. 6(a) and for a concentrated region that highlights flow reversal in Fig. 6(b). Stationary bounded regions of separation form within the troughs of the wavy surface, progressively increasing in magnitude and volume as the flow convects downstream. However, the maximum magnitude of the reverse flow depicted in Fig. 6 is less than 10% of the free-stream amplitude, which is less than the suggested 15–30% requirement to trigger absolute instability [35,36]. Hence, we should only expect convective disturbances to develop over this particular wavy wing.

For $\lambda = 0.1$ and $\{M_\infty, Re_\infty\} = \{0.7,5 \times 10^6\}$, amplitudes $H \geq 0.0002$ were sufficient to establish reverse flow, while for $\lambda \geq 0.2$, amplitudes $H > 0.0006$ were necessary. Greater precision in the value of H needed to generate separation was not feasible, as we were only able to consider a finite number of surface deformations due to limited access to the TAU flow solver. Nevertheless, a crude relationship between the magnitude of the separation bubbles and the flow specifications can be deduced. Figure 7 displays the minimum value of the base flow U_B that forms within the troughs of the wavy surface against the expression $Re_\infty^2 (HM_\infty)^2n$. A logarithmic-linear scaling has been utilized to map the computations, while n denotes the number of waves between the attachment line and the location that U_B is a minimum. For instance, in Fig. 6 reverse flow is strongest about $\lambda = 0.1$. The development of Tollmien-Schlichting instability is discussed next.

FIG. 5. Nondimensional base flow U_B obtained using REBL in the $\{x,y\}$ plane. (a) $\{\lambda, H\} = \{0.2,0.0002\}$; (b) $\{0.4,0.0004\}$.

FIG. 6. (a) Illustration of the base flow U_B obtained using REBL in the $\{x,y\}$ plane, over a wavy surface with $\{\lambda, H\} = \{0.1,0.0003\}$. (b) Flow separation depicted within the troughs of the surface.
FIG. 7. Minimum value of the base flow U_B against the function $Re_{\infty}^{1/2} (HM_{\infty})^2 n$.

the center of the troughs, located about $x = 0.275, 0.375,$ and 0.475; hence, $n = 2.75, 3.75,$ and 4.75, respectively. Given the logarithmic-linear relationship in Fig. 7, we find that reverse flow first appears for $Re_{\infty}^{1/2} (HM_{\infty})^2 n$ of the order 10^{-4}. As the subsequent study concerns only convectively growing TS disturbances, flow systems with $-\min(U_B) > 0.15$ were discounted from the following stability analysis, as there was a possibility that they could establish absolute instability [35,36].

The skin friction coefficient and pressure gradient $P_{B,x} = P_{B,x}^* / (\rho B U_B^2)$ associated with the REBL generated flow illustrated in Fig. 6 are plotted in Fig. 8 using dashed curves, while the dotted curves represent the corresponding results computed using the CoBL boundary layer method. The form of the surface waviness is also included in Fig. 8(c) to help illustrate flow characteristics. Over the chord range $0 \leq x \leq 0.23$, the two sets of results are almost identical. However, the solution from the CoBL scheme ends abruptly about $x = 0.23$, which is indicated by a cross marker in Figs. 8(a) and 8(b). Boundary layer methods (that include CoBL) are based on a chordwise marching procedure [19,33] that fail for particularly strong adverse pressure gradients. For the case considered here, CoBL breaks down when $P_{B,x} \approx 1.3$ and before the onset of boundary layer separation; the skin friction coefficient is positive about the chord location that CoBL exhibits nonconvergence. Thus, separated flow is not necessarily required for the boundary layer method to fail. Nevertheless, using the REBL procedure (based on extracting the basic state directly from the TAU flow solutions), we are able to construct complete flow profiles up to the end of the chord domain considered. Relatively strong variations in both $C_f Re_{\infty}^{1/2}$ and $P_{B,x}$ are captured by the REBL procedure. The skin friction coefficient and pressure gradient respectively decrease and increase in size along the downward slopes of the surface waviness, while the opposite behavior is found along the upward slopes. Strong adverse pressure gradients (positive $P_{B,x}$) form within the troughs of the surface and negative-valued skin friction is found to develop about the three chord locations that correspond to regions of separated flow depicted in Fig. 6(b).

IV. RESULTS

A. REBL versus CoBL stability calculations

Stability analysis was undertaken for various surface configurations and nondimensional frequencies $f \in [1 : 150] \times 10^{-6}$ (that corresponds to dimensional frequencies $f^* \in [1 : 30]$ kHz). Unless stated otherwise, the free-stream flow conditions were unchanged from that specified earlier; $\{M_{\infty}, Re_{\infty}\} = \{0.7, 5 \times 10^6\}$. Figure 9 compares the growth rates α_i and N-factor amplification rates
of TS disturbances generated on three wavy surfaces for $f = 34 \times 10^{-6}$. The form of the surface waviness (4) has been included in the illustration to help draw conclusions, while the choice of frequency was made based on the strongest growing TS wave at $x \equiv x_{\text{ref}} = 0.55$ for the nondeformed wing (solid lines). Note that x_{ref} represents a chord reference location that is used to compare stability calculations. For all three cases considered, the flow remains attached at all chord locations $x \leq x_{\text{ref}}$. Thus, the PSE method can be utilized as there is no upstream propagation and we would only expect convective disturbances to develop \cite{35,36}. The dashed lines illustrate stability results based on the REBL-generated boundary layers, while dotted lines depict the corresponding solutions for base flows established by CoBL. Results of the two sets of calculations are indistinguishable, at least up to the chord location (highlighted by a cross marker) that both methods were successfully able to compute solutions. However, at the cross markers, the CoBL method for generating the base flow breaks down: the numerical model fails due to the appearance of a relatively large adverse pressure gradient (which is not necessarily sufficient to establish separation). Thus, downstream of the cross markers, PSE analysis could only be applied to the boundary layer solution established by REBL. For the remainder of this investigation, we only consider linear stability of boundary layers generated by REBL.

Figure 9 also illustrates the strong influence of surface waviness on the growth of the disturbance. Both α_i and N fluctuate in magnitude as the disturbance propagates downstream. The size of α_i increases along the downward slopes of the wavy surface, where strong adverse pressure gradients arise. Growth rates then attain local maxima about the troughs of the wave. Along
the upward slopes of the wavy surface, favorable pressure gradients are generated that cause α_i to decrease. Local minimum growth rates are then found about the crests of the wave. The fluctuating growth rate then causes dips and rises in the N factor, with the respective local maxima and minima located immediately downstream of the surface troughs and crests.

B. LNS versus PSE analysis for separated flow systems

Figure 10 depicts the development of LNS generated u-velocity perturbation fields on five wavy wings. Tollmien-Schlichting disturbances were excited using a normalized Gaussian roughness centered about $x_f = 0.15$, for $f = 34 \times 10^{-6}$. The wavelength $\lambda = 0.1$ in all cases, while the amplitude H increases in size from Figs. 10(a) through 10(e). The wall-normal y direction has again been deformed to include the sinusoidal surface variations, and the u-velocity fields have been normalized on their respective maximum absolute values $|u|_{\text{max}}$ determined at each x location. In the latter three subplots, regions of separation have been highlighted using solid black contours. For small H, disturbances display behavior consistent with the expected TS wave evolution; the magnitude of the perturbation is largest within the boundary layer. However, as H increases, the disturbance forms two equally strong peaks located about the surface troughs. This particular observation is best illustrated in Fig. 10(e), where the disturbance splits into two separate components as it emerges from the crests of the surface. The lower structure forms within the surface troughs, while the upper component develops directly above. As the disturbance approaches the ends of each trough, the two parts of the TS wave recoalesce. Similar behavior was observed by Wie and Malik [13] on a wavy flat plate, who stated that the disturbance was a mixed TS-Rayleigh type instability.

The maximum amplitude of those u-velocity perturbation fields plotted in Fig. 10 are illustrated in Fig. 11. Dashed lines represent the solutions established using the LNS formulation, while the
FIG. 10. Disturbance development \(u/|u|_{\text{max}} \) in the \(\{x, y\} \) plane for \(f = 34 \times 10^{-6} \) and \(\lambda = 0.1 \). (a) \(H = 0.0 \); (b) 0.0001; (c) 0.0002; (d) 0.0003; (e) 0.0004. Solid black curves highlight the local regions of separated flow.

FIG. 11. Maximum absolute value of the \(u \)-velocity perturbation as a function of \(x \) for \(f = 34 \times 10^{-6} \) and \(\lambda = 0.1 \). Solutions generated for LNS (dashed lines) and PSE (dotted) methods. (a) \(H = 0.0001 \); (b) 0.0002; (c) 0.0003; (d) 0.0004.
FIG. 12. Differences ϵ against the Li-Malik stability criterion $|\alpha_r|/\Delta x$ for those disturbances considered in Figs. 10 and 11. Dotted lines depict the corresponding PSE generated computations. Remarkably, PSE and LNS results are (to the accuracy of the grid scale used) identical over the chord range shown for all wavy configurations considered. This result is quite surprising as the latter two flow systems contain rather large separation bubbles, and PSE methods are unable to resolve the effects of upstream propagating structures. This would suggest that perturbations are primarily convective and that regions of reverse flow do not engineer upstream disturbance development (at least not large enough to establish significant variations between PSE and LNS solutions). If upstream propagating perturbations and absolutely unstable behavior were excited by the regions of reversed flow, we might expect large differences between the two sets of calculations.

In order to achieve the excellent comparison between the two sets of solutions, the step size Δx used to undertake the PSE analysis was carefully chosen to give the best comparison with that established via LNS. Initially, we considered several step sizes and drew comparisons to determine the solution that gave the best accuracy. For the range of step sizes considered, the PSE method was able to successfully step through the separation bubbles, achieving numerically stable solutions. PSE calculations were then scaled about $x = 0.3$ to match that established by the LNS model, and numerical differences between the two sets of results were measured about $x = 0.5$ using the expression

$$\epsilon = \left| \frac{|u|_{\text{max, LNS}} - |u|_{\text{max, PSE}}}{|u|_{\text{max, LNS}}} \right| \times 100\%.$$

Differences ϵ, for those disturbances considered in Figs. 10 and 11, are plotted in Fig. 12 against $|\alpha_r|/\Delta x$. Numerically stable PSE calculations were obtained for smaller step sizes than the Li-Malik critical value $|\alpha_r|/\Delta x = 1$. However, the smallest differences were obtained for $|\alpha_r|/\Delta x > 1$. For the smallest amplitude, $H = 0.0001$, differences ϵ were less than 1%, while $\epsilon < 3\%$ was obtained for the largest amplitude, $H = 0.0004$. Some differences between the two sets of calculations should be expected, as the PSE method utilizes approximations that neglect the higher order terms. Hence, for the frequency investigated above, PSE can be used to compute the magnitude of the disturbance to a reasonable degree of accuracy.

In addition to the above observations, Fig. 11 shows that the magnitude of the perturbations established for $H = 0.0003$ and 0.0004 are approximately the same near the end of the chord domain shown. Although this behavior is initially surprising, we can attribute this particular observation to the large regions of flow reversal that form within the troughs of the wavy surface; separation bubbles form a secondary wall that affects the evolution of the perturbation, establishing smaller amplification rates than that which might arise if separation did not occur.
Further comparisons are drawn between PSE and LNS solutions in Fig. 13. The magnitudes of four disturbances generated on wavy wings with amplitudes $H = 0.0001$ and 0.0004 are depicted in Figs. 13(a) and 13(b), respectively. The line types are the same as that presented for Fig. 11, while the frequency $f \times 10^6 = 31, 42, 52,$ and 63. Note that the step size implemented for the PSE analysis was based on that which satisfied the Li-Malik stability criterion and gave the smallest
FIG. 14. [(a), (b)] Differences ϵ against the Li-Malik stability criterion $|\alpha_r|/\Delta x$ for $H = 0.0001$ and 0.0004. Frequencies $f = 31 \times 10^{-6}$ (solid line), 42×10^{-6} (dashed), 52×10^{-6} (chain), and 63×10^{-6} (dotted). (c) Differences ϵ based on the optimum step-size conditions, as a function of $H^{1/2} / \Delta x$ for $Re_\infty \times 10^{-6} = 2.5$, 5, and 7.5, and those frequencies considered in panels (a) and (b). $\Lambda = \lambda/\lambda_{TS}$ is the number of TS waves per wavelength λ. Cross and circle markers respectively represent nonseparated and separated flow systems.

difference ϵ. The LNS and PSE solutions are (to accuracy of the illustration) identical for the $H = 0.0001$ configuration. The associated differences ϵ are plotted against $|\alpha_r|/\Delta x$ in Fig. 14(a) and are less than 5% for all four frequencies.

For the larger surface variation $H = 0.0004$, the two sets of solutions are again in excellent agreement for the smallest of the frequencies considered ($f = 31 \times 10^{-6}$). However, as the frequency increases, PSE and LNS solutions diverge and the PSE method would appear to underpredict the growth of the disturbance. Furthermore, the magnitudes of ϵ associated with the larger frequencies [depicted in Fig. 14(b)] are found to approach 100%. Varying the step size Δx was found to have little effect on the accuracy of the PSE calculations, with the method failing to establish converged solutions for step sizes beyond the limits considered in Fig. 14(b). Though not shown here, we included the effect of the higher-order PSE terms (often neglected in stability analysis [43]) and the chordwise pressure derivative that is usually suppressed; however, their inclusion in the PSE analysis was not found to improve the accuracy of the computations.

The evolution of the four TS perturbations established for $H = 0.0004$ are depicted in Fig. 15. The vertical y axis has again been deformed to include the surface variation and disturbances have been normalized using the local maximum amplitude. The structure of each perturbation is qualitatively similar to that described earlier; disturbances split into two equally strong components about the troughs of the surface and recoalesce at the crests. Additionally, upstream propagating structures do not appear to be generated for any of the frequencies considered; disturbances develop only downstream and are convective. However, the wavelength λ_{TS} associated with each TS disturbance is clearly distinct and is found to decrease in size with increasing frequency. For $f = 31 \times 10^{-6}$, depicted in Fig. 15(a), the wavelength of the disturbance is approximately 1/50th of the chord length.
FIG. 15. Disturbance development $u/|u|_{\text{max}}$ in the $\{x,y\}$ plane for $\{\lambda, H\} = \{0.1, 0.0004\}$. (a) $f = 31 \times 10^{-6}$; (b) 42×10^{-6}; (c) 52×10^{-6}; (d) 63×10^{-6}. Solid black curves highlight the local regions of separated flow.

c^* (or 2 cm), with about five TS waves established per surface wavelength $\lambda = 0.1$. Meanwhile, for the larger frequency $f = 63 \times 10^{-6}$ [Fig. 15(d)], λ_{TS} is approximately 1 cm and ten waves develop per wavelength $\lambda = 0.1$. Thus, larger ϵ differences coincide with a decreasing disturbance wavelength.

Given the above observations, we attempt to determine a relationship among ϵ, the surface configuration, and the TS wavelength. Differences ϵ are computed for all amplitudes $H \in [0 : 0.0001 : 0.0004]$, frequencies $f \times 10^6 = 31, 42, 52, 63$ and Reynolds numbers $\text{Re}_\infty \times 10^{-6} = 2.5, 5$ and 7.5. The step sizes Δx used in the PSE analysis are again based on those solutions that give the best comparison with LNS. The resulting ϵ calculations are plotted against $H^{1/2} \Delta^2$ in Fig. 14(c) using a log-log scaling. Cross and circle markers respectively represent nonseparated and separated flow systems, while $\Lambda = \lambda/\lambda_{\text{TS}}$ is the number of TS waves per wavelength λ. Surprisingly, ϵ is found to be approximately proportional (on the log-log scaling) to the function $H^{1/2} \Delta^2$ and is independent of the Reynolds number. For small H (nonseparated flows) and sufficiently small Λ, $\epsilon < 10\%$. However, for separated flows (larger H) and large Λ, the ϵ differences increase greatly. Hence, our PSE-LNS analysis suggests that the accuracy of the PSE method is both dependant on the size of the surface variation (that establishes reverse flow) and the wavelength of the TS wave. If λ_{TS} is sufficiently large (about 2 cm for the model considered herein), PSE can be utilized to give very accurate solutions, including for those flow systems with large separation.
FIG. 16. The disturbance wave number α_r for frequencies $f = 31 \times 10^{-6}$ (solid thick line), 42×10^{-6} (dashed), 52×10^{-6} (chain), and 63×10^{-6} (dotted). (a) $\{\lambda, H\} = \{0.1, 0.0001\}$; (b) $\{0.2, 0.0002\}$; (c) $\{0.4, 0.0004\}$. Thinner line types depict the results established on the nondeformed wing.

Reverse flow was not established for wavelengths $\lambda \geq 0.2$ and amplitudes $H \leq 0.0006$, which was the upper limit of our investigation. Nevertheless, we might expect that for parameter settings that establish separation, similar differences between LNS and PSE will be observed that are again dependant on flow specifications and wavelength of the TS disturbance.

C. PSE analysis for nonseparated flow systems

For the remainder of this investigation, we only consider the development of disturbances in nonseparated boundary layers, i.e., surface variations with a wavelength $\lambda \geq 0.2$ or $\{\lambda, H\} = \{0.1, 0.0001\}$. Additionally, the step size Δx used to undertake the following PSE analysis was carefully selected to satisfy the Li-Malik stability criterion.

1. Variations in the disturbance wave number

Figure 16 illustrates the evolutionary paths of the disturbance wave number α_r (thicker line types) that develops on three wavy surfaces. Calculations are given for four frequencies f, while the form of the surface waviness (4) has again been included to draw conclusions. The corresponding solutions on the nondeformed wing are drawn using thinner line types. Once again, surface waviness establishes oscillatory behavior in the disturbance characteristics, as the wave number increases and decreases as it develops downstream. Matching the oscillations in α_r with the form of the surface variation, α_r is found to grow towards a peak within the troughs of the surface wave and decreases to a local minimum about the crests. Furthermore, surface waviness would appear to establish greater variations in α_r for larger frequencies. This particular observation is best illustrated in Fig. 16(a),
FIG. 17. Stability N-factor calculations for perturbations with frequency $f = 34 \times 10^{-6}$. Parallel flow results (solid line), nonparallel without curvature effects (dashed), and nonparallel with curvature effects (dotted). (a) $\{\lambda, H\} = (0, 0)$; (b) $(0.1, 0.0001)$; (c) $(0.2, 0.0002)$; (d) $(0.4, 0.0004)$.

by comparing the oscillatory variations found for $f = 31 \times 10^{-6}$ (solid curve) with that established for $f = 63 \times 10^{-6}$ (dotted). The latter result clearly depicts stronger fluctuations (compared to the nondeformed wing) that are spike-like in appearance. Additionally, as the wavelength λ increases, variations in α_r are significantly damped.

2. Nonparallel and curvature effects

Nonparallel and surface curvature effects are examined in Fig. 17. Four wavy wall configurations are considered, where the frequency $f = 34 \times 10^{-6}$. Solid line types represent calculations based on the parallel flow approximation, while dashed and dotted lines respectively illustrate the nonparallel flow results without and with curvature effects. Surface curvature effects are included within the stability calculations by defining the parameters κ and χ in (9) in terms of the wavy wing geometry. Similarly, they are removed from the two formulations by setting $\kappa = 0$ and $\chi = 1$. Nonparallel flow effects are found to be very small, while curvature effects would appear to have no effect on the relative sizes of the N factor.

3. Neutral stability curves

Neutral stability curves are drawn in Fig. 18 in the $\{x, f\}$ plane for $\phi = 0$, where the unstable parameter space is enclosed by the curves. Three wavelengths λ and varying amplitudes H are considered, while results for the nondeformed wing are drawn using a solid curve. The illustrations highlight several interesting characteristics that are directly related to the form of the surface waviness. First, the wavy walls establish a number of bounded regions of instability. Second, as
Figure 19 illustrates the effect of variable amplitude H and wavelength λ on the TS disturbance. The surface configurations considered in the three subplots are given as $\lambda \in [0.2 : 0.1 : 0.4]$, $H \in [0 : 0.0001 : 0.0006]$, and $\phi = 0$. The N-factor amplification rates are established by constructing
FIG. 19. Stability N-factor calculations for surface waviness configurations (a) $\lambda = 0.2$; (b) $\lambda = 0.3$; (c) $\lambda = 0.4$ and variable H.

FIG. 19. Stability N-factor calculations for surface waviness configurations (a) $\lambda = 0.2$; (b) $\lambda = 0.3$; (c) $\lambda = 0.4$ and variable H.

envelopes of the strongest growing disturbances for all frequencies $f \in [1:150] \times 10^{-6}$. Effects of surface waviness are again mirrored in the stability calculations, as increases and decreases in growth coincide with the respective regions of an adverse (near surface troughs) and favorable pressure gradient (crests). The onset of the TS wave instability can be forced to appear at a smaller x position [as shown in Fig. 19(b) and $\lambda = 0.3$] or it can be delayed to locations downstream of that found on the nonwavy wing [as depicted in Fig. 19(a) and $\lambda = 0.2$]. Furthermore, an unstable TS wave can be re-stabilised over some sections of the chord, before becoming unstable again further downstream. This particular observation is best illustrated in Fig. 19(b) about $0.3 < x < 0.4$.

Although waviness can suppress the initial onset of the TS wave instability, it is generally found that once the disturbance emerges, the amplification rate of the TS wave is enhanced. This is particularly true for $\lambda \leq 0.3$ and as H increases. For instance, the surface configuration $\{\lambda, H\} = \{0.2, 0.0003\}$ generates a disturbance [represented by a dotted line in Fig. 19(a)] with an amplification factor $N = 11$ at x_{ref}, while the nonwavy wing model establishes $N \approx 4.5$. Furthermore, it was determined that ΔN variations at a fixed chord position are proportional to the square of the
amplitude H, which is consistent with the conclusions of Wie and Malik [13]. Additionally, larger positive ΔN-variations are found for smaller wavelengths λ. Hence, sinusoidal surface waviness generally increases the growth of the TS wave instability, which may in turn trigger the premature onset of transition to turbulence.

Stability calculations of the longer wavelength $\lambda = 0.4$ [plotted in Fig. 19(c)] are found to behave very differently to that given for the smaller wavelengths; this particular surface configuration significantly dampens the disturbance growth. About x_{ref} the wavy surface $\{\lambda, H\} = \{0.4, 0.0006\}$ (that is represented by a solid line with square symbols) establishes $N \approx 2.5$, which is almost half of that given for the nondeformed wing. Hence, this particular surface variation is stabilizing and may be a mechanism for delaying the onset of boundary layer transition. This observation was unanticipated as previous studies (Wie and Malik [13], among others) generally found that waviness destabilizes the TS disturbances.

5. Effect of phase

The effect of a variable phase shift ϕ is considered in Fig. 20, where N-factor envelopes are plotted for $\lambda \in [0.2 : 0.1 : 0.4]$ and $H = 0.0003$. From the three illustrations, it is immediately obvious that the phase of the surface waviness can have a significant impact on the evolution of the disturbance, as varying ϕ can cause the onset and size of the instability to vary greatly. For $\lambda = 0.2$, unstable behavior is first excited for a phase shift $\phi = \pi/2$, while $\phi = 0$ generates the greatest delay in the onset of the instability. However, this does not necessarily imply that these surface configurations will respectively engineer the strongest or weakest growing disturbances. For instance, about x_{ref}, the TS wave generated on the wing with surface dimensions $\{\lambda, H, \phi\} = \{0.3, 0.0003, \pi/2\}$ (dotted line) has a smaller N factor than that established for the other phase shifts considered, even though disturbances appear first for this particular configuration.

Figure 21 depicts stability variations ΔN against the phase shift ϕ. Computations are measured about the reference location x_{ref} where the symbols illustrate the actual computations, with spline fitting used to plot a best-curve fit. The phase of the surface waviness is found to establish significant variations in the TS wave growth rate. Although waviness generally establishes large positive N-factor variations, some configurations are stabilizing; $\{\lambda, H, \phi\} = \{0.3, 0.0003, \pi\}, \{0.4, 0.0003, 0\}, \{0.4, 0.0003, \pi/2\}$. Thus, as suggested above, it may be possible to engineer a beneficial form of waviness that can be used to reduce instability and suppress the onset of transition.

6. Free-stream effects

Table II tabulates the strongest growing frequencies and associated N factor about x_{ref} for variable Re_{∞} and M_{∞}.

<table>
<thead>
<tr>
<th>$Re_{\infty} \times 10^{-6}$</th>
<th>M_{∞}</th>
<th>$f^* \text{ (kHz)}$</th>
<th>$f \times 10^6$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.7</td>
<td>3</td>
<td>155</td>
<td>0.8</td>
</tr>
<tr>
<td>1</td>
<td>0.7</td>
<td>3.5</td>
<td>90</td>
<td>1.4</td>
</tr>
<tr>
<td>2.5</td>
<td>0.7</td>
<td>5</td>
<td>52</td>
<td>2.7</td>
</tr>
<tr>
<td>5</td>
<td>0.7</td>
<td>6.5</td>
<td>34</td>
<td>4.5</td>
</tr>
<tr>
<td>7.5</td>
<td>0.7</td>
<td>7</td>
<td>24</td>
<td>5.5</td>
</tr>
<tr>
<td>10</td>
<td>0.7</td>
<td>7</td>
<td>18</td>
<td>6.6</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>1</td>
<td>36</td>
<td>4.3</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
<td>2.5</td>
<td>36</td>
<td>7.6</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>4.5</td>
<td>33</td>
<td>6.4</td>
</tr>
</tbody>
</table>

In Figs. 22(a) and 22(c), N-factor envelopes are plotted for both the nonwavy wing model (thin line types) and surface dimensions $\{\lambda, H, \phi\} = \{0.2, 0.0002, 0\}$ (thick), where the flow
FIG. 20. Stability N-factor calculations for surface waviness configurations (a) $\{\lambda, H\} = \{0.2, 0.0003\}$; (b) $\{0.3, 0.0003\}$; (c) $\{0.4, 0.0003\}$, where the phase shift $\phi = 0$ (dashed), $\pi/2$ (chain), π (dotted), $-\pi/2$ (solid with cross symbols). The solid line represents the solution on the nondeformed wing model.

conditions are as specified in the caption. The size of N increases with the Reynolds number, for both the nonwavy and wavy surfaces. However, in Fig. 22(c), the strongest growing disturbance is found for $M_\infty = 0.25$ (dashed lines), with smaller N factors found for lower and higher valued Mach numbers.

Stability variations ΔN are plotted against Re_∞ and M_∞ in Figs. 22(b) and 22(d). The ΔN computations are again based on the N-factor calculations established about x_{ref}. Cross symbols represent actual results with spline fitting used to draw a best-curve fit. For wavelengths $\lambda \leq 0.3$, surface waviness is destabilizing for all values of Re_∞ and M_∞ considered, while surfaces with a wavelength $\lambda = 0.4$ again engineer a decrease in the N factor. In Fig. 22(b), the magnitude of ΔN is found to increase proportionally with Re_∞, which is again consistent with the conclusions drawn by Wie and Malik [13]. Additionally, the absolute size of ΔN increases with the Mach number, particularly for $M_\infty > 0.5$.

043903-25
FIG. 21. Stability variations ΔN as a function of the phase shift ϕ measured about $x_{\text{ref}} = 0.55$. (a) $\lambda = 0.2$; (b) $\lambda = 0.3$; (c) $\lambda = 0.4$. The marker symbols \times, \circ, \square, \Diamond, \ast represent solutions of the respective amplitudes $H = 0.1, 0.2, 0.3, 0.4$, and 0.5. Dashed lines are spline fitted curves, linking the solutions of the same H.

7. Comparison with Wie and Malik

Given the above stability variations, we attempt to correlate results into an expression similar to that developed by Wie and Malik [13] for the flow over a wavy flat plate. The Wie and Malik expression (3) relates to a fixed free-stream Mach number $M_\infty = 0.7$. Additionally, their analysis was applied to a fixed frequency that corresponded to the strongest growing disturbance on the nondeformed plate. Thus, to facilitate a comparable relationship, we only compare calculations established for $M_\infty = 0.7$ and $f = 34 \times 10^{-6}$ ($f^* = 6.5$ kHz). Furthermore, due to the form of the waviness implemented in this study (imposed along the length of the wing with an origin located at the leading edge), we must make some assumptions regarding how to collate comparable surface configurations and stability results.

PSE calculations for $f = 34 \times 10^{-6}$ measured about $x_{\text{ref}} = 0.55$ confirm that ΔN is proportional to both Re_∞ and the square of the amplitude H (or $h = 2H$ used in Wie and Malik). However, relating other surface characteristics (wavelength λ and number of waves n from the leading edge)
was more problematic. As surface waviness was implemented with a variable phase shift, the form of the wave at x_{ref} could differ quite significantly. Thus, to successfully relate ΔN for variable surface dimensions it was necessary to compare only those wavy configurations with a comparable surface structure at x_{ref}. Circle symbols in Fig. 23 mark the stability variations ΔN against the function $nH^2\text{Re}_\infty/\lambda$ for those wavy surfaces with a trough centered near x_{ref}. For instance, the surface wave configuration $\{\lambda, H, \phi\} = \{0.2, 0.0002, 0\}$ forms a trough centered at x_{ref}, where the number of waves n over the chord range $0 \leq x \leq x_{\text{ref}}$ is given as $n = 100x_{\text{ref}}/\lambda \equiv 2.75$. For those surface configurations that fall into this category, the corresponding values of ΔN are approximately located about the dashed line given as

$$\Delta N = 0.92nH^2\text{Re}_\infty/\lambda.$$ \hfill (16)
FIG. 23. Comparison between the variation ΔN (measured about x_{ref}) and nH^2Re_{∞}/λ, for $f = 34 \times 10^{-6}$ ($f^* = 6.5$ kHz) and $M_{\infty} = 0.7$.

Thus, if a trough is centered about the reference location x_{ref}, the ΔN variations (for a fixed frequency) on the wavy wing are in reasonably good agreement with the analysis of Wie and Malik. However, after repeating the above procedure for surface configurations with a different wavy structure about x_{ref}, this particular relationship did not hold and stability variations were scattered throughout the $(nH^2Re_{\infty}/\lambda, \Delta N)$-parameter space.

8. First disturbance to give $N = 4.5$

Figure 24 depicts the chord location $x \equiv x_{N=4.5}$ against the corresponding disturbance frequency f that first establishes an amplification factor $N = 4.5$. For instance, on the nonwavy wing, the

FIG. 24. The chord location $x_{N=4.5}$ plotted against the frequency f that first establishes $N = 4.5$, for variable surface wave configurations. The free-stream conditions $\{M_{\infty}, Re_{\infty}\} = \{0.7, 5 \times 10^6\}$.
strongest growing frequency \(f = 34 \times 10^{-6} \) gives \(N = 4.5 \) at the reference location \(x_{\text{ref}} \equiv x_{N=4.5} \). However, for wavy surfaces, the frequency responsible for the strongest growing TS wave was found to vary significantly. The corresponding results are marked in Fig. 23 for variable surface configurations and \(\{ \text{Re}_\infty, M_\infty \} = \{ 5 \times 10^6, 0.7 \} \). The chord location \(x_{N=4.5} \) is found to decrease with increasing \(f \).

V. CONCLUSIONS

The effect of long wavelength surface variations on an unswept infinite wing have been investigated. Compressible boundary layers were computed using solutions of an industrial flow solver [28], while the stability and development of TS disturbances were studied using PSE and LNS methods. Wavy deformations were generally found to enhance the growth of the TS instability. This was especially true for smaller wavelength and larger amplitude surface variations. Varying the phase of the sinusoidal surface waviness was also found to engineer large differences in the TS disturbance development. Furthermore, stability variations on some wavy surface configurations, measured about a fixed location and for a constant frequency, were found to behave in a manner consistent with the analysis and relationships formed by Wie and Malik [13] on a wavy flat plate. Thus, their simplified flat-plate model provides a very good prediction for the TS wave variations on a wavy wing.

Although waviness was generally found to destabilize TS disturbances, some longer wavelength deformations established a stabilizing effect that may be used to delay the onset of transition beyond that specified on the nondeformed wing. Those surface variations that damped the growth of the TS wave were found to create a stronger favorable pressure gradient about sections of the wing that had previously been relatively weak or adverse. The stabilizing effect is demonstrated in Fig. 25 that depicts the form of the surface variation \(s \) and associated pressure gradient \(P_{B,s} \) and \(N \)-factor analysis.

![FIG. 25. Flow characteristics for the surface configuration \(\{ \lambda, H, \phi \} = \{ 0.4, 0.0006, 0 \} \) (solid lines) and the nondeformed wing (dashed). (a) Form of the surface deformation \(s \); (b) pressure gradient \(P_{B,s} \); (c) \(N \)-factor analysis.](image-url)
envelope that develop on the wavy wing \(\{ \lambda, H, \phi \} = \{ 0.4, 0.0006, 0 \} \). Along the upward slopes of the wavy surface, \(P_{B,x} \) is found to decrease in size and attains smaller values than that depicted on the nondeformed wing. The strong favorable pressure gradient then suppresses the growth of the disturbance and the \(N \) factor is significantly reduced. Hence, this particular surface configuration establishes a smaller amplification rate over the chord range considered. The stabilizing effect illustrated for this particular configuration (and some others) was quite surprising as waviness has previously been thought to only destabilize the TS wave instability. However, we should acknowledge that many of the earlier studies were concerned with the flow development on flat-plate geometries and that the application of surface waviness to an already curved wing body may explain why a stabilizing effect can be achieved in some instances.

Boundary layers were extracted directly from the solutions of a full Navier-Stokes solver, allowing us to investigate the evolution of disturbances in separated boundary layers. The extent of the separation bubbles that could form within the troughs of the wavy surface was found to increase with the amplitude \(H \); for surface wavelengths \(\lambda = 0.1 \), \(H > 0.002 \) was sufficient to establish separated flow. Although the PSE model does not account for the upstream propagation associated with reverse flow, we were still able to successfully apply the PSE method in most cases. Furthermore, for flows with small separation bubbles, PSE calculations were shown to be in excellent agreement with the LNS computations provided the wavelength of the TS disturbance was sufficiently long. Differences between the PSE and LNS modeling were shown to be proportional to \(H^{1/2} \Lambda^2 \) on a log-log mapping, where \(\Lambda \) is the ratio of the surface wavelength \(\lambda \) to the TS wavelength \(\lambda_{TS} \). Thus, the accuracy of the PSE model was found to be dependant on the wavelength of the TS wave; if \(\Lambda \) is relatively small, then the PSE method could accurately compute the disturbance development in separated boundary layers. However, for \(\Lambda \geq 5 \) (shorter TS wavelengths \(\lambda_{TS} \)), the PSE method was found to underpredict the amplification rate of the TS disturbance.

ACKNOWLEDGMENTS

This work has been supported by the EPSRC-funded LFC-UK Project, Development of Underpinning Technology for Laminar Flow Control, Grant No. EP/I037946/1, and by the Innovate UK-funded ALFET Project 113022. We thank the referees for many helpful suggestions concerning the presentation and improvement of our results.

APPENDIX: LNS FORMULATION

The LNS continuity, momentum, and energy equations in a 2D compressible flow are given as

\[
\begin{align*}
\chi u_x + \frac{\chi \rho_{B,x}}{\rho_B} u + \left\{ \frac{\rho_{B,y}}{\rho_B} - \kappa \chi \right\} v + v_y &+ \frac{\chi U_B p_x + V_B p_y}{P_B} - \frac{(\chi U_B T_x + V_B T_y)}{T_B} \\
- \left\{ i \omega - \chi (U_{B,x} - \kappa V_B) - V_{B,y} + \frac{(\chi U_B T_{B,x} + V_B T_{B,y})}{T_B} \right\} \frac{p}{P_B} &+ \left\{ i \omega - \chi (U_{B,x} - \kappa V_B) - V_{B,y} + \frac{(\chi U_B T_{B,x} + V_B T_{B,y})}{T_B} \right\} \frac{T}{T_B} = 0,
\end{align*}
\]

(A1a)

\[
\begin{align*}
\frac{u_{yy} + r \chi^2 u_{xx}}{Re} + \frac{s \chi v_{xy}}{Re} + \frac{\rho_B}{\mu_B P_B} \left\{ \chi U_B (\kappa V_B - U_{B,x}) - V_B U_{B,y} \right\} p - \frac{\chi}{\mu_B} &p_x \\
- \left\{ \frac{\rho_B}{\mu_B} [\chi (U_{B,x} - \kappa V_B) - i \omega] + \frac{\kappa^2 \chi^2}{Re} - \frac{\kappa \mu_{B,y}}{\mu_B Re} \right\} u - \left\{ \frac{\rho_B V_B}{\mu_B} + \frac{\kappa \chi}{\mu_B Re} - \frac{\mu_{B,y}}{\mu_B Re} \right\} u_y
\end{align*}
\]
\[
\begin{align*}
& + \left\{ \frac{\rho_B}{\mu_B} (\kappa \chi U_B - U_{B,y}) - \frac{r \kappa \chi^2 \mu_{B,x}}{\mu_B \text{Re}} \right\} v + \frac{m \chi \mu_{B,x}}{\mu_B \text{Re}} v_y - \left\{ \frac{\rho_B U_B}{\mu_B} - \frac{r \kappa \mu_{B,x}}{\mu_B \text{Re}} \right\} \chi u_x \\
& - \left\{ \frac{\rho_B}{\mu_B} (V_{B,y} - i \omega) + \frac{r \kappa \chi^2 \mu_{B,y}}{\mu_B \text{Re}} \right\} u - \left\{ \frac{\rho_B V_B}{\mu_B} + \frac{r \kappa \chi}{\mu_B} - \frac{r \mu_{B,y}}{\mu_B \text{Re}} \right\} v_y \\
& - \left\{ \frac{\rho_B}{\mu_B} (2 \kappa \chi U_B + \chi V_{B,x}) - \frac{\kappa \chi^2 \mu_{B,x}}{\mu_B \text{Re}} \right\} u + \frac{\chi \mu_{B,x}}{\mu_B \text{Re}} u_y - \left\{ \frac{\rho_B U_B}{\mu_B} - \frac{\chi \mu_{B,x}}{\mu_B \text{Re}} \right\} \chi v_x \\
& + \left\{ \frac{e \kappa \chi}{\mu_B \text{Re}} + \frac{m \mu_{B,y}}{\mu_B \text{Re}} \right\} \chi u_x + \frac{f_T}{\mu_B \text{Re}} \left\{ [r V_{B,y} + m \chi (U_{B,x} - \kappa V_B)] T_y + \chi \chi V_{B,x} + s \chi U_{B,x} + s \chi V_{B,x} + \chi^2 V_{B,x} \right\} \right) T = 0, \quad (A1b) \\
& \frac{r v_{yy} + \chi^2 v_{xx}}{\text{Re}} + \frac{s \chi u_{xy}}{\text{Re}} - \frac{\rho_B}{\mu_B P_B} \left\{ \chi U_B (\kappa U_B + V_{B,x}) + V_B V_{B,y} \right\} p - \frac{p_y}{\mu_B} \\
& - \left\{ \frac{\rho_B}{\mu_B} (V_{B,y} - i \omega) + \frac{r \kappa \chi^2 \mu_{B,y}}{\mu_B \text{Re}} \right\} u - \left\{ \frac{\rho_B V_B}{\mu_B} + \frac{r \kappa \chi}{\mu_B} - \frac{r \mu_{B,y}}{\mu_B \text{Re}} \right\} v_y \\
& - \left\{ \frac{\rho_B}{\mu_B} (2 \kappa \chi U_B + \chi V_{B,x}) - \frac{\kappa \chi^2 \mu_{B,x}}{\mu_B \text{Re}} \right\} u + \frac{\chi \mu_{B,x}}{\mu_B \text{Re}} u_y - \left\{ \frac{\rho_B U_B}{\mu_B} - \frac{\chi \mu_{B,x}}{\mu_B \text{Re}} \right\} \chi v_x \\
& + \left\{ \frac{e \kappa \chi}{\mu_B \text{Re}} + \frac{m \mu_{B,y}}{\mu_B \text{Re}} \right\} \chi u_x + \frac{f_T}{\mu_B \text{Re}} \left\{ [r V_{B,y} + m \chi (U_{B,x} - \kappa V_B)] T_y + \chi \chi V_{B,x} + s \chi U_{B,x} + s \chi V_{B,x} + \chi^2 V_{B,x} \right\} \right) T = 0, \quad (A1c) \\
& \frac{T_{yy} + \chi^2 T_{xx}}{\text{Re}} + \frac{\Gamma}{\mu_B} (\chi_U B P_x + V_{B,y}) \right\} \chi T_x + \left\{ \frac{f_T T_{B,x} + \mu_{B,x}}{\mu_B \text{Re}} \right\} u + \left\{ \frac{\chi (\Gamma B_{B,x} - \sigma \rho_B T_{B,x})}{\mu_B} + \frac{2 \Gamma}{\text{Re}} \chi \left(\chi U_B + V_{B,x} \right) + U_{B,y} \right\} T_y \\
& + \left\{ \frac{\Gamma P_{B,y} - \sigma \rho_B T_{B,y}}{\mu_B} + \frac{2 \Gamma}{\text{Re}} \chi \left(\chi U_B - V_{B,x} \right) - m V_{B,y} \right\} v \\
& + \frac{2 \Gamma}{\text{Re}} \left\{ \chi (U_{B,x} - \kappa V_B) + U_{B,y} \right\} u_x + \frac{2 \Gamma}{\text{Re}} \left\{ m \chi (U_{B,x} - \kappa V_B) + r V_{B,y} \right\} v_y \\
& + \frac{2 \Gamma}{\text{Re}} \left\{ r \chi (U_{B,x} - \kappa V_B) + m V_{B,y} \right\} u_x + \frac{2 \Gamma}{\text{Re}} \left\{ \chi (U_{B,x} + V_{B,x}) + U_{B,y} \right\} v_x \\
& + \frac{\sigma \rho_B}{\mu_B} \left(\frac{\chi U_B T_{B,x} + V_B T_{B,y}}{T_B} + i \omega \right) + \frac{f_T}{\mu_B \text{Re}} \left(T_{B,y}^2 + \chi^2 T_{B,x}^2 \right) \\
& + \left(\chi^2 T_{B,x} + T_{B,xy} - \kappa \chi T_{B,y} + \Gamma \chi^2 U^2 + r V_{B,y}^2 + r \chi^2 (U_{B,x} - \kappa V_B)^2 \right)
\end{align*}
\]
\[+2m \chi V_{B,y}(U_{B,x} - \kappa V_B) + 2\kappa \chi U_B(U_{B,y} + \chi V_{B,x}) + (U_{B,y} + \chi V_{B,x})^2 \right) \frac{f_T}{\mu B Re} \right] T = 0, \]

where \(Re \) is the Reynolds number based on the boundary layer thickness \(\delta^* \). Subscripts \(x \) and \(y \) denote the derivatives along the respective chordwise and wall-normal directions. The parameters \(\Gamma = (\gamma - 1)M_\infty^2 \sigma, \ e = r + 1, \ r = s + 1, \ s = m + 1, \) and \(m = -2/3. \) Here \(\mu_B = f(T) \) is the dependence of the dynamic viscosity on the temperature and \(f_T = d\mu_B/dT, \ f_{TT} = d^2\mu_B/dT^2. \) Further, \(\sigma \) represents the Prandtl number and \(\gamma \) is the ratio of the specific heats.

[22] J. L. Van Ingen, A suggested semi-empirical method for the calculation of the boundary-layer transition region, Department of Aeronautical Engineering, University of Technology, Delft, Netherlands, Reports No. VTH 71 and No. 74 (1956).