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Abstract

A turbulent dynamo in spherical geometry with an outer corona is simulated to study the sign of magnetic helicity
in the outer parts. In agreement with earlier studies, the sign in the outer corona is found to be opposite to that
inside the dynamo. Line-of-sight observations of polarized emission are synthesized to explore the feasibility of
using the local reduction of Faraday depolarization to infer the sign of helicity of magnetic fields in the solar
corona. This approach was previously identified as an observational diagnostic in the context of galactic magnetic
fields. Based on our simulations, we show that this method can be successful in the solar context if sufficient
statistics are gathered by using averages over ring segments in the corona separately for the regions north and south
of the solar equator.
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1. Introduction

The solar magnetic field has an opposite twist in the two
hemispheres. This is seen, for example, in Hα images of the
Sun through the orientation of sigmoidal structures of filaments
in absorption. These structures are S-shaped in the south and
N-shaped in the north, thus revealing a clear hemispheric
dependence (Martin 2003). A similar dependence is also seen
in the twist of force-free magnetic fields extrapolated from
vector magnetograms around active regions (Seehafer 1990;
Pevtsov et al. 1995). These indicate negative (positive) helicity
in the northern (southern) hemisphere. The same hemispheric
sign dependence was confirmed previously using magnetic
helicity spectra that were computed from solar surface vector
magnetograms (Zhang et al. 2016; Brandenburg et al. 2017).

Magnetic helicity spectra have also been computed from
time series of the magnetic field vector measured on board the
Ulysses spacecraft as it flew at high northern and southern
heliographic latitudes (Brandenburg et al. 2011). However, the
signs of magnetic helicity turned out to have the opposite sign
of what is measured at the solar surface. This was rather
surprising, although it could be understood as a consequence of
a subdominance of generating effects (e.g., the α effect in
dynamo theory) compared with dissipating effects (turbulent
magnetic diffusion) in the solar wind. These two effects tend to
affect the sign of magnetic helicity in opposite ways. In the
convection zone, the α effect is dominant, but in the solar wind
it is expected to be subdominant. This unusual sign reversal of
magnetic helicity was then confirmed by Warnecke et al.
(2011) using numerical simulations of a turbulent helical
dynamo driven in the two hemispheres of a spherical wedge
with a quiescent exterior. The current helicity, a proxy of
magnetic helicity at small scales, was found to be positive
(negative) in the northern (southern) hemisphere, i.e., just the
other way around than in the dynamo region. They interpreted
this in a slightly modified way by arguing that in the northern
(southern) hemisphere, the dynamo sheds negative (positive)
magnetic helicity through a turbulent diffusive helicity flux
(Hubbard & Brandenburg 2011). Analogous to Fickian

diffusion of temperature, a flux is carried by a negative
gradient, but here the magnetic helicity can have either sign.
Thus, the negative magnetic helicity of the dynamo in the
northern (southern) hemisphere is carried by a positive
(negative) magnetic helicity gradient, driving it toward and
arguably through zero. This would explain the opposite sign of
magnetic helicity some distance above the solar surface. If this
idea is indeed applicable to the Sun, it would be important to
find out the distance above the solar surface, where the change
of sign occurs. Could it be detected, for example, with Parker
Solar Probe as it approaches the Sun down to 0.04 au, or could
the sign reversal be measured within the solar corona (0.01 au),
or perhaps even right at the solar surface?
Attempts to determine coronal magnetic helicity through

morphological considerations and force-free extrapolations (Pariat
et al. 2015; Valori et al. 2016) or by measuring helicity flux
through the surface (Kazachenko et al. 2009) may be biased
toward large scales. An alternate technique could utilize the effect
of Faraday rotation along the line of sight. In the absence of
magnetic helicity, a line-of-sight magnetic field leads to Faraday
rotation and thus the superposition of polarization vectors with
different orientations, which is called Faraday depolarization. A
helical magnetic field of suitable sign can have the opposite effect
and thus compensate Faraday depolarization and therefore
increase the polarized intensity (Sokoloff et al. 1998; Brandenburg
& Stepanov 2014; Horellou & Fletcher 2014). A helical field of
opposite sign leads to a decrease in polarized intensity.
Specifically, a line-of-sight magnetic field pointing toward (away
from) the observer would decrease Faraday rotation, and thus
enhance polarized intensity of a suitable wavelength, if the
magnetic field has positive (negative) magnetic intensity
(Brandenburg & Stepanov 2014). This result has been known in
the galactic context, where the radiation is due to synchrotron
emission. In the solar context, we have to rely on polarized
radiation from magnetic-dipole transitions that occur in the corona
at certain discrete wavelengths (Judge 1998; Casini &
Judge 1999). Dove et al. (2011) proposed the use of polarized
emission to infer the twisted nature of coronal magnetic fields
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through forward modeling of the Stokes vector and comparing
against measurements with the Coronal Multichannel Polarimeter
(CoMP) telescope (Tomczyk et al. 2008; Dima et al. 2016;
Gibson et al. 2017). However, Faraday rotation was not invoked
in their approach, which would require longer wavelengths in the
millimeter range, as will be shown below.

For the Sun, using narrow bandwidth observations at
λ=6 cm radio wavelengths, Alissandrakis & Chiuderi-Drago
(1994) found an oscillatory variation of the Stokes Q and U
parameters with respect to small changes in λ. However, those
wavelengths are too long to determine magnetic helicity.
Furthermore, we also need the line-of-sight magnetic field,
because it determines the Faraday depolarization. This can be
obtained by determining the rotation measure, i.e., the
derivative of the polarization angle with respect to wavelength,
giving the sign of the toroidal magnetic field. This is another
standard concept used mainly in radio astronomy, but it applies
to other wavelengths as well. The correlation between rotation
measure and polarized intensity is therefore a direct proxy of
magnetic helicity and was first proposed by Volegova &
Stepanov (2010). We emphasize that with our technique the
actual orientation of the transverse component of the magnetic
field is not important. It is only the change of the orientation
with increasing distance from the observer that enters. In
particular, no background sources are invoked and only the
radiation from within the corona is used. The purpose of this
Letter is to discuss the feasibility of this technique in the solar
context and to apply it to a simple model such as that of
Warnecke et al. (2011, 2012).

2. Description of the Method

The simplest example we can construct is that of a Beltrami
field, which Brandenburg & Stepanov (2014) wrote as

= ^ ^( ) ( )B B B B kz B kz, , sin , cos , 0x y z , where the observer is
in the negative z direction. Here, k is the wavenumber of the
magnetic field. They expressed the component perpendicular to
the direction of the observer =^ ( )B B B,x y in a complex form
as  yº + = ( )B iB r iexpx y B B . In the present arrangement,
the observer is in the negative y direction, so we rotate z y,

B By x, and B Bx z, so we have
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with =^ ( )B B B,x z and  yº + = ( )B iB r iexpz x B B . We have
assumed here a constant line-of-sight magnetic field,

= ( )B B0, , 00 . The intrinsic linear polarization vector
( )q u, is then

 y+ = ( ) ( )q iu p iexp 2 , 2p0

where y y p= + 2P B is the electric field angle,  ( )x y z, , is
the emissivity, and p0 is the degree of polarization. Integrating
along the line of sight yields the observable polarization,
written here in complex form as

òl º + = y fl
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¥
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where λ is the wavelength,

òf = - ¢ ¢ ¢
-¥

( ) ( ) ( ) ( )x y z K n x y z B x y z dy, , , , , , 4
y

e

is the Faraday depth, with ne being the electron density and
m= = ´- - - - -K 0.81 m cm G pc 2.6 10 G2 3 1 1 17 1 being a con-

stant (e.g., Alissandrakis & Chiuderi-Drago 1994). As in
Brandenburg & Stepanov (2014), we assume  µ sB̂ and
compare s = 2 and 0. Furthermore, we normalize P by the
total intensity ò=I dy. Of particular interest is the case
when the polarized emission is maximum, which is when the
exponent in Equation (3) vanishes. Equation (4) applies to
nonuniform ne and B , but we now discuss the case when

=n ne e0 and = B B 0 are constants. A fully helical magnetic
field of the form given by Equation (1) makes the exponent
vanish if y p- = -ky2B , i.e., if the wavenumber of the field
in Equation (1) obeys

l= -  ( )k Kn B . 5e0 0
2

In that case, Faraday depolarization becomes minimal, i.e., we
have maximum polarization. This is the essence of this
technique.
To get an idea about the ranges in λ and ne that would be

needed to obtain cancelation for a magnetic field of
wavenumber = =- -k 0.01 Mm 1500 au1 1, which corresponds
to a length scale of p »( )2 0.01 Mm 600 Mm, we have listed
plausible combinations of ne, λ, and B in Table 1. This
wavenumber lies on the lower end of values relevant to the
solar surface (Brandenburg et al. 2017) and near the upper end
of values in the solar wind (Brandenburg et al. 2011). Thus, the
far- to near-infrared wavelength range is optimal for detecting
helical magnetic fields. On a scale of 60 Mm, all wavelengths
would be three times larger. To discuss the feasibility of this
method further, we determine the line-of-sight integrated
polarization using the magnetic field from a simulation similar
to that of Warnecke et al. (2011).

3. Numerical Simulations

We solve the hydromagnetic equations for the magnetic
vector potential A, the velocity U, and the logarithmic density
rln , using an isothermal equation of state with constant sound

speed cs:

hm
¶
¶

= ´ - ( )A
U B J

t
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r

nr = + - + ´ +[ · ( )] ( )U
g f J B

D
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Table 1
Wavelength λ of Maximum Polarized Emission for Fully Helical Magnetic

Fields with = =- -k 0.01 Mm 1500 au1 1 for ne
-[ ]cm 3 and B [ ]G

B ne

106 108 1010 1012 1014

0.01 G 20 cm 2 cm 2 mm m200 m m20 m
1 G 2 cm 2 mm m200 m m20 m m2 m
100 G 2 mm m200 m m20 m m2 m 200 nm

2
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where = ´B A is the magnetic field, m= ´J B 0 is
the current density, m0 is the magnetic permeability, ν is the

kinematic viscosity, S d = + -( ) · UU Uij i j j i ij
1

2 , ,
1

3
is the

rate-of-strain tensor, g is the gravitational acceleration, and f is
a forcing function; see below.

We consider a wedge-shaped computational domain in
spherical coordinates J j( )r, , with

   J j  -  < < 
( )

r R0.7 2, 15 165 , 17 .5 17 .5,
9

where R is the solar radius. The gravitational acceleration is
= -( )g GM r , 0, 02 , where G is Newton’s constant and M is

the solar mass. We use =( )GM Rc 3s
2 , which results in a

density contrast of about 16 in the radial direction. As in
Warnecke et al. (2011), f consists of plane waves with typical
wavenumber =k k3f 0 and is nonvanishing only in the
“turbulence zone” in  r R0.7 1. Here, p= ( )k R2 0.30

is the lowest radial wavenumber in this zone of thickness R0.3 .
The helicity of f changes sign about the equator and is negative
(positive) in the northern (southern) hemisphere. We
use the PENCIL CODE6 in spherical wedge geometry with

´ ´144 288 72 mesh points in the r, ϑ, and j directions.
The magnetic field grows at first exponentially with time at a

growth rate g t» -0.073 1, where t = -( )u krms f
1 is the

turnover time in the dynamo region of our model and is about
t = R c0.14 s. The magnetic field develops a cycle with
equatorward migration. The period is about t2000 , which is
about 10 times longer than for the smaller wedges of Warnecke
et al. (2011), which spanned  18 latitude. Such migratory
dynamos without differential rotation were discovered by Mitra
et al. (2010). In contrast to earlier work (Warnecke et al.
2011, 2012), we have now extended the latitude range to 75 .
Models with this latitudinal extent, but no corona, where also
studied by Jabbari et al. (2015), who investigated the
spontaneous formation of spots at the surface in the presence
of dynamo action, but at much larger stratification.

Our model is different from the standard scenario of a solar
dynamo, which involves differential rotation. One reason for
adopting an a2 dynamo is its simplicity, while capturing
essential features of a realistic turbulent dynamo: scale
separation, different signs of magnetic helicity at large and
small scales, and magnetic helicity fluxes out of the domain and
across the equator. As a model for the Sun, such a dynamo is
not implausible (Käpylä et al. 2013; Masada & Sano 2014).
However, as we will see below, in our model the magnetic field
is strongest at high latitudes. This could in principle be
alleviated by adopting a modified helicity profile, as done in
Jabbari et al. (2015). Such refinements, as well as the inclusion
of differential rotation, would be useful extensions for
future work.

4. Calculation of the Line-of-sight Magnetic Field

To perform line-of-sight integrations as in Equations (3)
and(4), we overlay a Cartesian mesh with coordinates ( )x y z, ,
and look up at each Cartesian meshpoint the nearest magnetic
field value on the spherical mesh at position J j( )r, , . The
components of = J j( )B B B B, ,r are then expressed in terms of
Cartesian components. As in Section 2, the observer is assumed

to be looking in the positive y direction. Thus, >jB 0 implies
positive =B By in the first or fourth quadrants, which
corresponds to negative Faraday depth; see Equation (4).
In Figure 1, we plot the current helicity á ñ·J B y and mean

toroidal field á ñBy y, where á ñ· y denotes averaging along the line
of sight. In <r R, á ñ·J B y is negative (positive) in the northern
(southern) hemisphere, but it changes sign for >r R and
becomes positive (negative) in the northern (southern) hemi-
sphere. Furthermore, á ñBy y is negative in the first quadrant
(northern hemisphere), so the Faraday depth is positive; see
Equation (4).
Figure 1 shows that in the northern hemisphere, the coronal

magnetic field has positive á ñ·J B y. This is consistent with the
results of Warnecke et al. (2011) and, since current helicity is a
proxy of small-scale magnetic helicity, it is also consistent with
the results for the solar wind (Brandenburg et al. 2011). Let us
now ask whether this result can also be inferred from the
polarized intensity computed from our models using
Equation (3). We begin by plotting l∣ ( )∣P 2 at points where
the field is strongest. As alluded to at the end of Section 3, this
is in our model at high latitudes, so we choose four reference
points at  60 latitude at =r R 1.1 and 1.2 indicated in the
two panels of Figure 1. The result is shown in Figure 2(a),
where we have normalized ∣ ∣P by the total intensity I at the
same point, and l2 is normalized by

l º -
( ) ( )Kn B R , 100

2
e0 0

1

which implies that l l = kR2
0
2 . In this case, the values of λ

given in Table 1 are somewhat smaller: 0.75 cm instead of
2 cm, for example.

We see from Figure 2(a) that, in the northern hemisphere, the
polarized intensity has a maximum at a positive value of l l2

0
2.

This is consistent with our expectation that for positive Faraday
depth, i.e., negative Bj, polarized intensity should be maximum
for positive values of l2 if the magnetic helicity is positive
(Brandenburg & Stepanov 2014). In the southern hemisphere,
Equation (3) shows that the polarized intensity has a maximum

Figure 1. á ñ·J B y (left) and á ñBy y (right) at t =t 430. The crosses and plusses
mark positions at =r R 1.1 and 1.2 and J - =  90 60 latitude, for which
the l2 dependence is studied in Figure 2.

6 https://github.com/pencil-code
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at negative values of l2, which is of course unphysical and
unobservable. However, even in that case, the integral in
Equation (3) can still be evaluated. In fact, it is well known that
this integral is just the usual Fourier integral provided the
integration is performed over f instead of y (Burn 1966;
Brentjens & de Bruyn 2005). If Bj were positive (e.g., half a
Hale cycle later), one should see more polarized intensity in the
south instead.

Figure 2(a) shows that the maximum of ∣ ∣P I is at
l l » 52

0
2 , i.e., l l » 2.20 . For the Sun, at =r R 1.1, we

expect = - -n 10 cme
8 3. Using =B 1 G0 , as an example, we

have l » 2 mm0 , so l » 4 mm, which is at the limit of
ALMA. In the outer parts, ne would be lower, so λ would be
larger still. The results for s = 0 are similar to those for s = 1;
see Figures 2(c) and (d).

Looking only at one position in the corona may not be
enough to get a reliable result about the coronal magnetic
helicity. In fact, as we will see further below, exceptions to the

correspondence between polarized intensity and current helicity
are not uncommon. Therefore, a more robust method is to use
hemispheric ring averages, á ñ∣ ∣ ( )P N S , which are averages of

q∣ ( )∣P r, over an interval < <r r r1 2 and q p< <0 2 for the
north (N) and p q p< <2 for the south (S). The result is
shown in Figure 2(b) for a ring with =r R 1.101 and

=r R 1.152 . The difference in polarized intensity for north
and south is now no longer so striking, but it may well be good
enough if sufficient statistics are gathered.
Incidentally, Figure 2(a) also shows oscillations in the wings

at larger values of l2 with l lD » 202
0
2. This is a consequence

of the finiteness of nonvanishing contributions to the integral in
Equation (3) for a finite slab (Burn 1966). Such oscillations
have indeed been observed by Alissandrakis & Chiuderi-Drago
(1994) using radio observations of the solar corona at a small
bandwidth at 6 cm wavelength. In our simulation, this
corresponds to a slab of width p= »L R R2 20 0.3 , which
agrees with our domain size along the line of sight.
To demonstrate the relationship between helicity and

polarized intensity more thoroughly, we now consider an
artificially constructed quantity

D º á ñ - á ñ+ -∣ ∣ ∣ ∣ ∣ ∣ ( )P P P , 11

where the á ñ∣ ∣P denote the averages of ∣ ∣P over the intervals
l l< <0 602

0
2 and l l- < <60 02

0
2 , respectively Again,

the negative l2 interval is of course unobservable in reality, but
computing it from our models allows us to see more clearly the
degree of correspondence with the á ñ·J B maps. In Figure 3,
we show D∣ ∣P for four times separated by t70 around the
times considered above. The visualizations ofD∣ ∣P are found to
be a reasonable proxy of á ñ·J B inside the turbulence zone
( <r R), but in the corona D∣ ∣P is no longer a good proxy—at
least not at all times. This, again, highlights the need for using
averages to obtain reliable results.

5. Conclusions

Our results have confirmed that there is a correspondence
between polarized intensity and magnetic or current helicity.

Figure 2. (a) l∣ ( )∣P 2 at four reference points indicated in the two panels of
Figure 1 in the northern (red) and southern (blue) hemispheres at t =t 430.
Thick (thin) lines refer to =r R 1.2 (1.1) at  60 latitude. (b) l∣ ( )∣P 2

averaged over radial shells, = –r R 1.10 1.15. Shaded areas denote l < 02 ,
which are unphysical. ((c) and (d)) Same as (a) and (b), but for s = 0.

Figure 3. D∣ ∣P (upper row) and á ñ·J B in the xz plane of the observer at four
times in the interval t/τ=430–640. The color table is the same as in Figure 1.
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This idea was originally applied to galaxies, but it should also
work for the Sun using polarized emission from within the
corona some distance above the solar surface. The most
appropriate wavelengths lie in the millimeter range, which has
only now become accessible through ALMA.

Using studies of polarized intensity to constrain the solar
dynamo and magnetic helicity in the corona may shed light on
the nature of the dynamo mechanism, which is likely to involve
an α effect as a result of cyclonic convection, as anticipated
already by Parker (1955). Such a dynamo produces helical
magnetic fields through an inverse cascade of magnetic helicity
(Pouquet et al. 1976). However, unlike kinetic helicity,
magnetic helicity is conserved and both positive and negative
signs tend to be produced at the same time, but at different
length scales. Different signs of magnetic helicity are also
present in the solar wind at large and small scales. Brandenburg
et al. (2011) associated the helicity at the largest scales with
that of the Parker spiral (Parker 1958), which is negative in the
north (Bieber et al. 1987). At smaller scales, the sign of
magnetic helicity in the solar wind agrees with that at large
scales in the dynamo interior. Our new simulations suggest that
the apparent sign reversal may occur close to the solar surface;
see the lower panel of Figure 3. This raises our hopes that
further guidance for our understanding of this effect can come
from observations.

In the present work, we have examined the possibility of
using the compensating effect of a helical magnetic field on
Faraday rotation. This idea has not yet received much attention
in solar physics, except for early work of the 1990 s that
showed the essence of Faraday rotation at radio wavelengths
(Alissandrakis & Chiuderi-Drago 1994). These authors con-
sidered observations on the solar disk above active regions, but
solar limb observations appear plausible too. It is essential to
use a broad range of wavelengths from infrared to millimeter
wavelengths. However, the actual location of this helicity
reversal should be treated with care. It is therefore essential to
inspect a suitable range of data using not only ALMA and
CoMP observations, but also in situ observations using, for
example Parker Solar Probe to inspect statistical properties of
the field at close range.
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