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Abstract

Differential phase contrast images in scanning transmission electron microscopy can be directly and quantitatively related to
the gradient of the projected specimen potential provided that (a) the specimen can be treated as a phase object and (b) full 2D
diffraction patterns as a function of probe position can be obtained. Both are challenging to achieve in atomic resolution imaging.
The former is fundamentally limited by probe spreading and dynamical electron scattering, and we explore its validity domain in
the context of atomic resolution differential phase contrast imaging. The latter, for which proof-of-principle experimental data sets
exist, is not yet routine. We explore the extent to which more established segmented detector geometries can instead be used to
reconstruct a quantitatively good approximation to the projected specimen potential.
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1. Introduction

Early work by Rose [, 2] and Dekkers and de Lang [3]
shows that taking the difference between the scanning transmis-
sion electron microscopy (STEM) images from suitably config-
ured detector segments produces images with contrast relating
closely to the phase profile imparted on the electron beam by
the electrostatic potential of the specimen. For a configuration
involving quadrant detectors, the standard conceptual picture is
that the difference signal between diametrically opposed detec-
tor segments is proportional to the beam deflection along the
direction between the segments, which in turn is proportional
to the gradient of the phase profile in that direction. This imag-
ing mode is therefore called differential phase contrast (DPC).
This technique has been used to great effect to image magnetic
domain structure in materials [4-8], and more recently to im-
age electric fields [9-12]. In all these cases, the lateral extent
of the probe is significantly smaller than that of the variations
in the magnetic or electric fields of interest — a circumstance
that considerably simplifies the analysis and interpretation [[13].
However, Shibata et al. [10] and Miiller et al. [14] have re-
cently demonstrated that DPC imaging can be accomplished at
atomic resolution, where the probe size is larger than the scale
on which the atomic potentials vary.

Figure [[(a) shows a high-angle annular dark field (HAADF)
image for a thin specimen (~30 A) of SrTiO3 viewed along the
[001] zone axis, with 200 keV electrons and a probe-forming
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aperture semiangle of 23 mrad. The atomic columns appear as
bright peaks, with intensities roughly proportional to the square
of the atomic number Z of the elements in the column, giv-
ing robustly interpretable Z-contrast imaging [15]. Figure [TIb)
shows the DPC image for quadrant detector segments aligned
along the horizontal direction in the figure and spanning the
scattering angle range 15.3-30.7 mrad. Each atomic column
in Fig. [[b) appears as a bow-tie pattern with one dark (neg-
ative) lobe and one light (positive) lobe. This is qualitatively
consistent with the derivative in the horizontal direction of the
projected electrostatic potential of the structure/[]

A broad conceptual understanding of the appearance of the
DPC image can be developed as follows. Because the fast elec-
tron penetrates the atomic electron clouds, the net force it ex-
periences tends to be attraction to the not-fully-screened nuclei.
Thus, as sketched in Fig. [Ic), when a fine electron probe passes
to the left of a column of atoms it is deflected to the right by the
attractive electric field of the column, increasing the signal on
the right hand detector segment while reducing it on the left
hand detector segment. The reverse happens when the probe
passes to the right of the column. The contrast in the DPC im-
age, which is formed from the difference between the individual
signals from each detector as a function of probe position, thus
reverses as the probe is scanned across an atomic column, as
seen in Fig. [I(b). As recently emphasised by Lubk and Zweck
[13] and Miiller er al. [14], the “cartoon” depiction of Fig. [[(c)
is rather simplistic. The reality is more like what is sketched in
Fig. [[(d): due to electron scattering in the specimen, the inten-
sity distribution in the diffraction pattern is rather more com-

IThis may be roughly gauged from the HAADF image in Fig. [[{a), which
is qualitatively reminiscent of the specimen potential, save that DPC signal is
also evident for the pure oxygen columns invisible in the HAADF image.
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Figure 1: Simultaneously acquired experimental (a) HAADF and (b) DPC im-
ages of SrTiO3 for a 30 A thick specimen oriented along the [001] zone axis
(adapted from data in Ref. [IE])A (c) Idealized DPC schematic where the STEM
probe deflection results in a simple translation (from the dashed line reference)
of the bright field disk across the diffraction plane and the two detector seg-
ments shown. (d) More realistic DPC schematic where the interaction of the
STEM probe with the column of atoms still leads to a net deflection but the
intensity redistribution in the diffraction plane is more complex.

plicated than a simple rigid translation of the bright field disk.
Moreover, strongly-thickness-dependent electron multiple scat-
tering and coherent interference effects in the bright field region
make atomic resolution DPC imaging much less robust than
HAADEF. This is seen in Fig. 2l which shows defocus-thickness
tableaux of HAADF and DPC images for SrTiO3. Whereas the
appearance of the HAADF images are largely unchanged over
a wide range of thickness and defocus values, the DPC images
are much more sensitive to these parameters.

The moniker “differential phase contrast” implies that the
images bear close resemblance to the gradient of the phase

é . However, the majority of proposals for recon-
structlng the specimen potential in such cases assume the spec-
imen to be a weak phase object, and as such are not fundamen-
tally different from other analysis / reconstruction approaches
making the same assumption (e.g. Refs. , —lﬂ]). In partic-
ular, Pennycook et al. have recently reconstructed the potential
of a bilayer of graphene using a pixel detector [23]. However,
in atomic resolution electron microscopy, the validity domain
of the weak-phase-object approximation is extremely limited.
It breaks down in the presence of strong scattering [Eé ] and
through its neglect of the spatial propagation of the wavefunc-
tion [%—lﬁ] especially in the high-resolution regime 26, 29].
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Figure 2: Defocus-thickness tableaux for HAADF and DPC imaging of SrTiO3
oriented along the [001] zone axis, assuming 200 keV electrons and a probe-
forming aperture angle of 23 mrad. The HAADF detector spans the range 81—
228 mrad. The DPC signal is based on diametrically opposite quadrants in a
ring spanning 15.3-30.7 mrad. Positive defocus values correspond to overfo-
cus.



DPC imaging can to some extent overcome the strong scattering
limitation: it applies equally for strong phase objects provided
either that the phase gradients are constant over the size of the
probe [13, 130, 31] or else that the displacement of the “cen-
tre of mass”, i.e. the first moment, of the diffraction pattern
intensity distribution can reliably be determined [13, (14, 30].
The neglect-of-propagation limitation, though, is at present sur-
mountable only through comparison with detailed simulations.

In this paper we explore the validity domain of the phase-
object approximation when seeking to quantitatively analyse
DPC STEM imaging at atomic resolution to reconstruct the
(projected) specimen potential, from which details on atom lo-
cation, atom species, and possibly bonding, might be deduced.
We will consider both pixel detectors [14,23,132] and the extent
to which such imaging can be approximately realized with the
more established segmented detector set-up [9, 133, 34].

2. An overview of phase retrieval approaches

The multislice method simulates a fast electron probe scat-
tering through a crystal via an alternating sequence of phase
grating and propagation steps, the former describing scattering
from the specimen potential and the latter spatial propagation
forward through the crystal [35]. The so-called multiplicative-
object approximation consists of neglecting all the propagation
steps. The wavefunction at the exit surface may then be written
as the product of the wavefunction at the entrance surface and a
single phase grating or transmission function:

wexit(ri) = lﬁentrance(rl) Q(rL) P (1

where
q(ry) =explic[V(ry) +iV'(r)]t , 2)

in which r, is the coordinate in the plane of the specimen,
V(r,) is the projected (and thermally-smeared) elastic poten-
tial, V’(r, ) is the absorptive potential (due primarily to thermal
scattering), o = 2wme/h? is an electron-energy-dependent in-
teraction constant [35] (both m and A incorporating relativistic
corrections), and ¢ denotes the sample thickness.

The potential for absorption is significantly smaller than that
for elastic scattering, and thus the transmission function mainly
modifies the phase of the fast electron wavefunction] More-
over, this phase is proportional to the projected specimen poten-
tial, which contains atom location, species, and bonding infor-
mation. However, phase is not directly accessible — experiments
only measure intensities. Much research in electron microscopy
has thus been concerned with strategies to obtain intensity con-
trast related to the exit surface phase, or, more quantitatively, to
reconstruct that phase from intensity measurements.

We cannot here undertake the formidible task of overview-
ing all the strategies for phase retrieval. However, the wider
context helps to understand the strengths and weaknesses of

2The terms “multiplicative-object approximation”, “phase-object approxi-
mation” and “projection approximation” are thus often used more-or-less inter-
changeably in the literature [26].

STEM DPC, so a simple summary of some of the main atomic-
resolution phase retrieval methods will be attempted. It is useful
to distinguish different levels of approximation: techniques in-
voke the weak-phase-object approximation if they linearize the
relation between measured quantities and the specimen poten-
tial; techniques invoke the strong-phase-object approximation
if they retain the nonlinear relation to the specimen potential
implied by Eq. @).

In conventional transmission electron microscopy (CTEM),
“phase retrieval” has a direct interpretation: one seeks to de-
termine the phase of the exit surface wavefunction which, if
the phase object approximation holds, is precisely the trans-
mission function of Eq. (@) because the incident wave has uni-
form intensity and phase over a wide area. Strategies for CTEM
phase retrieval include through-focal series [36-41], tilt series
[42,43], coherent diffractive imaging [44-47], and holography
[48,149].

Methods reconstructing either the phase or projected poten-
tial in Eq. @) after processing STEM data can also be con-
sidered forms of phase retrieval, even though the convergent
probe only samples the transmission function of Eq. @) in a
sequence of patches as the probe is scanned across the speci-
men and the full transmission function is thus not the phase of
any single STEM wavefunction. This sequential acquisition in-
troduces scan distortions to which CTEM imaging is immune.
However, the strength of STEM is the ease with which mul-
tiple imaging modes can be acquired simultaneously, some of
which offer robustly interpretable imaging [[15] that can inform
or constrain other analyses.

Within the weak-phase-object approximation, the specimen
potential can in principle be determined from the signal in a
single STEM detector [1l, 21]. However, reconstructions tend
to be improved by combining results from multiple detectors
[2,[18-21], a variant on ptychography. A recent weak-phase-
object analysis using a pixel detector [23] shows that it offers
greater flexibility for optimising signal-to-noise [24].

In the strong-phase-object approximation, pixel detectors
enable ptychographic reconstructions via either the Wigner-
distribution deconvolution approach [S0] or iterative strategies
for coherent diffractive imaging [51-53]. The latter has been
realized in atomic resolution STEM [|54-56]; the former, so far
as we are aware, has not. STEM DPC can quantitatively effect
phase retrieval of strong phase objects since the displacement
of the first moment of the diffraction pattern is closely related
to the gradient of the phase [13,114,30].

The different approaches can usefully be compared on the
following criteria:

Resolution: Excepting coherent diffractive imagingﬁ CTEM
techniques are diffraction limited by the image-forming lens
aperture (or incoherent aberrations, which impose a simi-
lar limit). Both weak-phase-object and strong-phase-object
STEM DPC analysis is diffraction limited, but by twice the
probe-forming aperture (the transfer function being the Fourier
transform of the probe intensity rather than the probe ampli-
tude), offering a factor of two resolution improvement over

3 And arguably tilt series, which can extend the diffraction limit [43].



most CTEM approaches. Neither coherent diffractive imag-
ing CTEM nor STEM ptychography are diffraction limited in
principle [53,/57], though in practice signal-to-noise ultimately
imposes a limit on achievable resolution.

Computational complexity: Off-axis holography, weak-
phase-object approaches, Wigner-distribution deconvolution
ptychography and STEM DPC all offer deterministic recon-
struction procedures, which tend to be computationally effi-
cient. The other CTEM approachs and iterative approaches to
STEM ptychography do not need to invoke the weak-phase-
object approximation, but the analysis then relies on methods
to handle the nonlinear relation between the measured inten-
sities and the sought phase, which tends to require substantial
post-acquisition processing and raises questions of uniqueness.

Domain of validity: The strong-phase-object approximation
has wider validity than the weak-phase-object approximation,
but both break down for sufficiently strongly scattering spec-
imens, as governed by composition and thickness [25-29].
The point of breakdown and its consequences for phase re-
trieval may, however, depend on the imaging mode and analy-
sis method. The present paper explores this question for STEM
DPC. Excepting tilt series, CTEM methods have greater valid-
ity than the phase object approximation — they can reconstruct
the exit surface wavefunction regardless of the degree of multi-
ple scattering, though quantitative interpretation in this regime
would require the inversion of the multiple scattering. Iterative
STEM ptychography offers similar prospects for overcoming
multiple scattering [58], though they have not yet been realised
at atomic resolution.

Returning to the focus of the present paper, atomic-resolution
STEM DPC offers a deterministic procedure based on analysing
the first moment of the diffraction pattern. It is diffraction lim-
ited, but by a transfer function given by the probe intensity,
which is not overly restrictive in aberration-corrected STEM.
However, as we will show, the validity domain of the strong-
phase-object approximation on which STEM DPC analysis re-
lies is quite restrictive at atomic resolution. Realised using a
pixel detector, the data set would also be suitable for ptycho-
graphic analysis, which could, at the expense of the greater
computational effort, improve the signal-to-noise [24] and ex-
tend the diffraction limit. It may approximately be realised us-
ing segmented detectors, which give a coarser estimate for the
first moment of the diffraction pattern [[13]. In principle, pixel
detectors are thus always superior for precision work. That said,
segmented detector STEM DPC has the advantages of being
easy to implement with established detector technology, involv-
ing much smaller data sets, and allowing sufficently rapid pro-
cessing as to enable so-called “live imaging” [[12]. Since, as
we shall show, the approximation segmented detectors provide
for the first moment can be quite good, the advantages of this
approach are not inconsiderable.

3. Theoretical framework

This section summarizes the key steps in the theoretical anal-
ysis. The reader is referred to the literature for greater detail
[2,[13,114, 116,130, 59].

We adopt a coordinate system where the optical axis is the
z-axis, r, denotes vectors in the plane perpendicular to this,
k, denotes the Fourier space coordinate conjugate to r,, and
R denotes the position of the STEM probe on the specimen
surface. The wavefunction of the electron probe at the specimen
entrance surface may then be written

ir, -R) = f T(Kk,) ¥kiRgp 3)

where T(k,) = O(k,)exp[—2miy(k.)/4] is the lens transfer
function in which O(k, ) is the objective pupil aperture function
and y(k,) is the objective aperture aberration function.

Using Eq. (@) as the entrance surface wavefunction in Eq.
(@D, the intensity in the diffraction pattern can be shown to be

2
1<kL,R>=| f T, ~ K)OK,) & Rak [ | @)

where Q(k, ) is the Fourier transform of ¢(r,). If, rather than
obtaining full diffraction patterns, one uses an integrating de-
tector giving the total intensity within an extended area in the
diffraction plane, the resultant STEM image may be written

I;(R) = f Ik ,R)Dj(k,)dk, , &)

where D;(k,) is the response function for detector segment j,
the index allowing that images from more than one detector
segment may be recorded simultaneously.

The primary limitation on determining the specimen struc-
ture from experimental measurements of I(k, , R) is that Eq. ()
depends nonlinearly on the transmission function. The weak-
phase-object approximation resolves this via linearization: it
assumes that

qr) =1+4(r.) ©6)

and that terms quadratic in § may be neglectedﬂ Within this
approximation, the Fourier transform of Eq. () with respect to
probe position may then be written as

1k, K) = |T (k) 6(K)
+iQi(K) [T*(k )T (k, ~ K) = T(k )T (k, + K)]
+0,(K) [T (k)T (k, - K) + T(k )Tk, +K)] .
(N

where O, and Q; are the Fourier transforms of the real and
imaginary components of g, respectively. The result is a set
of linear equations from which 0,(K) and 0;(K) can be deter-
mined from the set of non-zero values of I(k, , K). This struc-
ture is preserved in the case of integrating detectors.

However, Waddell and Chapman [30] proposed a different
approach to getting around the non-linearity of Eq. ). They

4Practice varies as to whether Eq. () is taken to be the Taylor expansion
of Eq. @) to first order in o, such that neglecting quadratic terms in § is self-
consistent, or whether Eq. (@) is exact and neglecting quadratic terms in §
is simply a convenient assumption. We suspect that when the approximation
holds, the difference between these approaches is negligible.



consider a so-called “first-moment detector” which can be used
to determine the centre of the intensity distribution in two per-
pendicular directions. As recently demonstrated by Miiller
[[14], this can be achieved from a pixel detector by synthesizing
images assuming D (k,) = k. and Dy(k,) = k,. Considering
just the x-direction (the y-direction form follows trivially) and
assuming a rotationally symmetric probeﬁ it can be shown that

L(R) = f Ik, R) k, dk, 8)
- L AZ(R)i R)|®| «R)] C)
Y 3 aRx¢‘f( A )

where ® denotes convolution and A, and ¢, are the amplitude
and phase of ¢, i.e.

q(ry) = Ay(r.) expligy(ry)] . (10)

Neglecting the amplitude contrast, since the cross-section for
inelastic scattering is weaker than that for elastic scattering and
the samples we will consider are thin, and recognising that the
differential operator then commutes with the convolution, such
a detector realizes exact differential contrast of the form{i

L(R) = R ® | (R | . (11)

5 R |

One approach to solving this equation which is particularly
convenient for periodic crystals is the Fourier derivative theo-
rem [31/], which gives that

F [L(R)] + i [L,(R)]
i(ky + iky) ’

;R ®| tR)]* = F! (12)

where ¥ denotes Fourier transformation between coordinates
R and k,. The divergence of the denominator in Eq. (12) is
handled by setting the term in braces equal to zero at k; = 0,
which means that we can only reconstruct phase differences and
not the absolute phase. Deconvolving the probe intensity from
Eq. (12) by Fourier methods enables us to conveniently express
the result in the same framework:

F L(R)] + i [L,(R)]
iy + iky)F | (R)P

¢,R) = F~! (13)

Since the probe intensity is bandwidth limited, we must now
zero the expression in braces for all |k,| beyond twice the
reciprocal-space probe-forming aperture cut-off, since it is a
priori known that 7 [l t(R)IZ] = 0 in that region. Consequently,

5This assumption is not strictly necessary, but eliminates the need for a sec-
ond term accounting for a contribution to the signal from differential absorption
contrast and/or that the centre of the intensity distribution in the absence of a
specimen might not coincide with the chosen origin for k; space [30].

6Lubk and Zweck [13] and Miiller et al. [[14] present alternative derivations
which interpret Eq. (8) as being proportional to the expectation value of the
momentum transfer, which they elegantly relate to the projection of the elec-
tromagnetic field inside the specimen. However, we will persist in seeking to
determine the phase of the transmission function.

the higher spatial frequencies of the phase and thus the pro-
jected specimen potential, which broadly correspond to poten-
tial variations on scales notably smaller than the size of the
probe, cannot be reconstructed via this approach. Figure
shows how the specimen potentials for SrTiO3; and Al;Li are
affected by the bandwidth limiting appropriate to the experi-
mental conditions of the data shown in Fig. [la,b). The ef-
fect is non-negligible, though does not prevent identification of
the atom locations or discrimination between different atomic
species. Indeed, since the high frequency potential components
are dominated by the nuclear contribution, they are arguably
of less interest than the low frequency potential components
which contain more information about the electron density. It
should be emphasized that this bandwidth limiting has no im-
pact on the values of those lower frequency components within
the bandwidth limit — they, up to the validity of the phase ob-
ject approximation and other limiting experimental effects dis-
cussed later, remain fully reconstructable.
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Figure 3: Projected specimen potentials for SrTiO3z [001] (left) and AlsLi [001]
(right), comparing the “full” potential, i.e. including all frequencies, against the
bandwidth limited “BWL” potential, which includes only spatial frequencies up
to 1.8 A1, as appropriate to the information irretrievably lost to DPC imaging
via the convolution in Eq. (I2). A 200 keV probe with 23 mrad probe-forming
aperture semiangle has been assumed. In later figures, linescan extracts average
over a finite width as per the standard experimental approach to noisy data.
Since that approach gives almost indistinguishable profiles if used here, instead
the linescans shown are only a single pixel wide to highlight the quantitative
error in the peaks due to the removal the high spatial frequency components.

In the presence of noise, it may further be necessary to sup-
press those frequencies for which 7 [I t(R)|2] is small, say via
Tikhonov regularization [60]. Note, though, that the integration
already goes some way towards suppressing high-frequency
noise via the increasing magnitude of the k, + ik, term in the
denominator.

In summary, when the first-moment detector DPC signal can
be synthesized [14], Eq. (I3) provides a prescription to recon-
struct ¢4(R), up to the bandwidth limit imposed by the STEM
image formation process.



4. Scattering and propagation as fundamental limits on
phase reconstruction with a first-moment detector

Since Egs. (@) and (I3) are based on the phase-object ap-
proximation, the validity domain of the first-moment detector
DPC phase reconstruction is expected to be wider than that of
the weak-phase-object approximation phase reconstruction, Eq.
(@), i.e. it should hold for thicker and/or more strongly scatter-
ing specimens. Nevertheless, the multiplicative form of Eq. ()
is an approximation. We explore this fundamental limitation
by simulating multiple elastic scattering using the multislice
method when calculating the STEM DPC signal of Eq. (8,
and then endeavouring to reconstruct the phase via Eq. (13).
Comparison of the reconstruction with the ideal phase-object
approximation phase (from Eq. (2)) will establish the quantita-
tive fidelity of the reconstruction as a function of thickness.

Our exploration is based on parameters appropriate to the ex-
perimental data in Figs. [[{a) and (b): 200 keV electrons and a
probe-forming aperture semiangle of 23 mrad, typical values
for atomic resolution imaging. We consider both SrTiO3 and
Al;Li as test samples, the former a strongly scattering spec-
imen and the latter, comprising only light weight elements,
a weakly scattering specimen. Consistent with the improved
phase-object approximation approach [61, [62], the defocus is
set to nominally (i.e. in the absence of scattering) place the
beam waist in the midplane of the crystal. Inspection of the
DPC tableau in Fig. [2l shows that the qualitative appearance of
the DPC images conforms to this prescription for the optimum
defocus. Section [0 explores the error introduced if this condi-
tion is not achieved.

Two error metrics are considered for comparisons between
the reconstructed phase of Eq. (I3) and the ideal phase of Eq.
@). The first metric is a mean square error:

1 Zall pixels i |¢q(Rt) - O-V(Ri)t|2

MSE = 5
N, pixels r

(14)

The potential \7(R) is a filtered version of V(R) in which the
zero spatial frequency and all spatial frequencies above twice
the reciprocal-space probe-forming aperture cut-off are set to
zero, to more fairly compare with the reconstructed phase
which necessarily has these same restrictions (see Eq. (13)).
Note that we have normalized out the nominally linear increase
in phase with thickness to more meaningfully compare recon-
struction fidelity of the scattering potential at different thick-
nesses. The second error metric is a percentage error of spe-
cific Fourier coefficients of the phase (or potential — as per Eq.
@) they are proportional within the ambit of the phase-object
approximation). We will label the Fourier coefficients using
Miller index notation: fj.

Figs. E(a) and (e) plot the MSE as a function of thickness for
the SrTiO3 and AlsLi test samples, respectively. Data are shown
for both the first-moment detector reconstruction, Eq. (I3)), and
for a reconstruction based on the weak-phase-object approxi-
mation, Eq. E As expected, the plots show that the fidelity

7Since to explore the question of principle we are applying this analysis to

of the reconstructions break down with increasing thickness.
The weak-phase-object approximation is seen to break down
very quickly in the SrTiOs3 case. In the Al;Li case, while the
weak-phase-object approximation gives a poorer reconstruction
fidelity than the first-moment detector reconstruction, the dif-
ference is smaller. For the strongly scattering SrTiO; speci-
men, the first-moment detector reconstruction is seen to start
breaking down beyond a mere 20 A, whereas the weakly scat-
tering Al;Li specimen appears good out towards 50 A. To give
some meaning to this metric, Figs. F(b) and (f) show the re-
constructions for the select thicknesses indicated by the boxes
in Figs. [M(a) and (e), respectively. By 31 A, the weak-phase-
object reconstruction in SrTiOj is showing volcano-like struc-
ture on the Sr and TiO columns, whereas the first-moment de-
tector reconstruction still bears good qualitative resemblance to
the expected potential. By 55 A, the first-moment detector re-
construction is also starting to qualitatively break down, show-
ing volcano-like structure on the Sr and TiO columns, though
the reconstruction of the phase of the pure O columns remains
quite good. By contrast, there is little to visually distinguish
the first-moment detector and weak-phase-object approxima-
tion reconstructions for the AlsLi case, though anomalous fea-
tures appear in both reconstructions by a thickness of 127 A.
Figs. Mlc) and (g) show line scan extracts for the first-moment
detector reconstructions for SrTiO; and Al;Li, respectively, and
Figs. Eld) and (h) show line scan extracts for the weak-phase-
object approximation reconstructions. Both the quantitative and
qualitative differences between the two approximations are ev-
ident in these plots. This makes clear that the MSE in Fig. [d{e)
is notably smaller than that in Fig. B(a) not necessarily because
the relative error is much smaller — comparison of Fig. Hl(g)
with Fig. Blc) shows the relative error to be broadly compara-
ble — but rather because the potential for Al;Li is smaller than
that for SrTiO3. It is also clear that the greatest error in the
reconstruction occurs at the heavy element sites, Sr in SrTiO3
and, though less quickly, Al in AlsLi. For later reference, note
that reconstructions for thicker samples tend to underestimate
the phase relative to what is expected from a perfect phase ob-
ject. This is consistent with the mathematical similarity of the
propagator with a diffusion problem [61], which acts to reduce
sharp features in the wavefunction.

The percentage error of select Fourier coefficients of the
phase for the SrTiO3; sample are plotted as a function of thick-
ness in Fig. [Bla). It is seen that the percentage error in the
high order Fourier coefficients generally grows faster than that
in the lower order Fourier coefficients. As spatial propagation
affects high spatial frequencies more strongly than low spatial
frequencies, a reconstruction method that neglects spatial prop-

perfect, simulated data, the analysis is accomplished by simply Fourier trans-
forming the full 4D simulated STEM data over probe position to give I(k , K),
identifying the imaginary component — Q; and Q, are both real as both struc-
tures are centrosymmetric, and 7'(k ) is real because the probe is assumed to be
aberration-free — and dividing through by the transfer function. As the weak-
phase-object approximation breaks down, different points k in the diffraction
pattern may, via Eq. (@), predict different values for the same Fourier coefficient
0;(K). In the present reconstruction, all the different values determined from
Eq. @ were averaged to produce the “best estimate” for 0;(K).
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Figure 4: (a) Mean squared error (MSE) between the (bandwidth limited) ideal phase-object approximation phase and the reconstructed phase for SrTiOs, using
both the first-moment detector (FMD) method, Eq. (I3), and the weak-phase-object approximation (WPOA), Eq. @). (b) Reconstructed potentials for the select
thicknesses indicated by the boxes in (a). (c) FMD and (d) WPOA reconstruction line scan extracts from the white rectangles in (b). (e-h) As per (a-d) but for Al3Li.

agation might reasonably be expected to reconstruct high spa-
tial frequencies less reliably than low spatial frequencies. Fig.
[3(b) compares the percentage error for both a low-order Fourier
coefficient, fy, and a high-order Fourier coefficient, fisy, be-
tween the first-moment detector reconstruction and the weak-
phase-object reconstruction. Consistent with Fig. F] the weak-
phase-object reconstruction is poorer than the first-moment de-
tector reconstruction, which is based on the more general phase-
object approximation.

5. Approximating a first-moment detector using a seg-
mented detector

The previous section shows that the thickness range over
which the phase-object approximation is valid for quantitative,
atomic-resolution DPC imaging is quite restrictive: only a few
tens of Angstrom for strongly scattering specimen@ and not
much more for weakly scattering specimens. That was in the
“best case scenario” of being able to synthesize a first-moment
detector, i.e. evaluate Eq. (8). Proof-of-principle experiments
collecting such 2D diffraction patterns as a function of probe
scan position appear in the literature [14, 32]. However, since

8Note this restriction applies to quantitative analysis. As per the DPC
tableau in Fig. qualitatively interpretable DPC images for SrTiO3 persist
to specimen thicknesses of at least 100 A.

these experiments are not yet routine, we explore the degree to
which quantitative DPC might be approximated using the more
established segmented detector geometry [9, 133, 34].

To approximate the first-moment detector expression of Eq.
(@8 using a combination of segmented detector signals in Eq.

@), we set

s)

_J tkidcom, ; if Ky lies within segment j,
Dy jlk,) = { 0 otherwise,

where {k,}com, j 18 the x-coordinate of the centre of mass of de-

tector segment j (an analytic expression is given in|Appendix Al
for the case of an ideal segmented detector), and form

> [ f Ik, R)D, j(k )k,

J

D tdcow, ; iR .

J

Ix seg. det. (R)

(16)

An analogous expression holds for the y component. Together,
these images can be used as input to the reconstruction expres-
sion of Eq. (I3)) under the assumption that they approximate the
gradient of the phase imparted by the specimen.

We base our exploration on the 16-segment detector of Shi-
bata et al. [34], which consists of four concentric, equal-width
rings divided into quadrants. Fig. [6(a), in which the shaded
area denotes the bright field disk, shows schematically a select
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number of promising configurations we shall consider, all of
which are accessible by rotation of the detector and variation
in the camera length. Case (i) uses just the four detector seg-
ments in the second annular ring — such that the inner angle is
half the outer angle — with the bright field disk overlapping the
inner portion of the annulus. This is a common configuration
for qualitative DPC imaging [7, |9, [10] — it was used in gener-
ating the DPC image in Fig. [I(b) — and Chapman et al. [5]
have shown that it favours low spatial frequency information,
thereby helping to enhance contrast from long range fields rel-
ative to diffraction contrast in lower resolution imaging. In the
idealization of rigid bright field disk displacement, Fig. [Ic),
it would sufficel] Since, as per Fig. [Id), we expect a more
complex diffraction pattern intensity redistribution, we might
consider augmenting this with signals from the inner and outer
rings, leading to configuration (ii) in Fig. [6(a) using 12 detec-
tor segments. Configuration (iii) has the same camera length
as configuration (ii) but has the detector rotated by 45°. Con-
figuration (iv) increases the camera length such that the bright
field disk overlaps both inner rings of the detector, and also in-
cludes the outermost ring and thus 16 detector segments in total,

°Eq. (I3) might not be the best reconstruction approach, but the segmented
detector signals and disk deflection would be unambiguously related.
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Figure 6: (a) Schematic of the detector configurations considered. The black
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the bright field region. (b) Percentage error of select Fourier coefficients as a
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comparing the first-moment detector (FMD) with detector configuration (iii)
from (a). (d) Reconstructed potentials for the select thicknesses denoted by
boxes in (d). (e) Projected line scans from the white rectangles in (d).

slightly improving the sampling in the diffraction plane.

The percentage error for the Fourier coefficients fyyo and
Jf20 for a SrTiO; specimen reconstructed using the detector
configurations in Fig. [6a) are shown in Fig. [B(b), with the



first-moment detector results provided as reference. As per the
previous section, all reconstructions get worse with increasing
sample thickness. There is notable variation in reconstruction
quality between the different detector configurations. For re-
constructing the fyyo Fourier coefficient, configuration (iii) does
almost as well as the first-moment detector, while the other
configurations have poorer reconstruction fidelities. However,
for reconstructing the f>;¢ Fourier coefficient, configuration (ii)
gives the best agreement. None of the detector configurations is
unilaterally better than the others across all frequencies, but, av-
eraged over all Fourier coefficients, configurations (ii) and (iii)
tend to be better than the others. Fig. [f(c) compares the MSE
reconstruction fidelity measure between the first-moment de-
tector and detector configuration (iii), with the latter giving an
only marginally worse reconstruction according to this crude
metric. The MSE for detector configuration (ii) is not shown,
but is only marginally worse than that for detector configura-
tion (iii) in this case. To give context to these numbers, Fig.
[6ld) compares the two reconstructions for the two samples for
the select thicknesses indicated by the boxes in Fig. [Blc). Pro-
jected line scans from these images are compared in Fig. [6(e).
For SrTiO3, the detector configuration (iii) reconstruction gives
the Sr peaks a square-ish appearance, further evidence of the
variation in reconstruction fidelity between Fourier coefficients
in different directions. Nevertheless, the line scans show quite
favourable quantitative comparisons.

Fig. [6le) shows the largest difference occurring on the
strongly scattering columns, where the segmented detector
underestimates the reconstructed phase relative to the first-
moment detector (which itself, as per Figs. Hic) and (g), un-
derestimates the reconstructed phase relative to the true result).
The accuracy of the segmented detector reconstruction depends
on how well the centre of mass of the detector segment approx-
imates the centre of mass of the intensity distribution falling
within that segment. In the absence of a sample, configuration
(iv) in Fig. [6(a) would accurately reflect the centre of mass of
the intensity distribution in each segment, whereas configura-
tions (ii) and (iii) would overestimate the centre of mass of the
intensity distribution in each segment in the second ring (the
detector centre in ring 2 being 21.5 mrad from the optical axis,
whereas the intensity centre in ring 2 is only 17.5 mrad). How-
ever, with the specimen present, electron scattering tends to re-
distribute the intensity distribution to higher angles, with the
result that, at least for these specimens, configurations (ii) and
(iii) better estimate the first moment of the intensity distribu-
tion than does configuration (iv): despite its nominally better
sampling of diffraction space, configuration (iv) tends to un-
derestimate the first moment. It may be possible to find cam-
era lengths which do better still. However, rather than seeking
out maximally optimal conditions which likely depend on the
sample and thickness, we emphasize that configuration (iii) has
here proven to give good quantitative reconstructions for both
the strongly scattering SrTiO3 sample and the weakly scatter-
ing Al;Li sample. Moreover, Fig. [6le) compellingly suggests
that evaluation of the first-moment using a pixel detector may
give only a modest advance in quantitative accuracy over its
estimate using segmented detectors for atomic resolution DPC

imaging for such a configuration. (There is, of course, a lot
more one can do with the intensity distribution on a full pixel
detector than calculate the first moment, such as undertake a
ptychographic analysis [51,52], which might increase the res-
olution of the reconstruction, albeit at the expense of greater
computational effort.)

6. Experimental considerations and limitations

Thus far our analysis has assumed somewhat idealized con-
ditions. In this section we wish to assess the impact of several
limitations of practice, specifically the effects of thermal scat-
tering, non-optimum defocus, and shot noise.

The simulations presented thus far have included thermal
scattering as an absorptive effect following Eq. (@), whereas
the reconstruction has been performed assuming absorption to
be negligible (i.e. following Eq. (IT)) rather than Eq. [@)). Sim-
ulations (not shown here) that do not include absorption in the
multislice calculation give rise to a breakdown in reconstruc-
tion fidelity very similar to that in Fig. [d{a), suggesting there is
little to be gained by attempting to correct for absorption within
an absorptive model. What this model lacks, however, is the
positive contribution to the diffraction intensity from electrons
that have undergone thermal scattering. This can be included
by performing simulations based on the frozen phonon model
[35,163].

Comparisons in reconstruction fidelity between simulations
performed using the absorptive model and those using the
frozen phonon model are shown in Fig. [7lfor both a pixel (first-
moment) detector and detector configuration (iii) from Fig.
[6la). The fidelity of reconstruction in the frozen phonon sim-
ulations is found to be slightly better than the absorptive case.
This is an example of compensating errors. Because the DPC
signal is to some extent preserved in the distribution of ther-
mally scattered electrons, the inclusion of the thermally scat-
tered electrons increases the DPC signal and hence the recon-
structed phase. This is especially true in the pixel detector case
where the few electrons scattered to high angles are strongly
weighted by the first-moment detector. This helps compensate
for the underestimation that arises from analysing channelling
data under the assumption of the phase-object approximation,
improving the reconstruction fidelity. Consequently, though
more by good fortune than by good management, the absorp-
tive model fidelity analysis is if anything a little conservative,
and we will therefore persist in using it.

Explorations thus far have assumed a probe defocus nomi-
nally (i.e. in the absence of scattering) putting the beam waist
in the midplane of the crystal, since this has previously been es-
tablished to be optimal for validity of the phase-object approx-
imation [61, 162]. For very thin specimens, this is also likely
to be the defocus condition that maximizes the HAADF sig-
nal [64] and therefore easy to determine experimentally. For
thicker specimens, where admittedly Fig. @l suggests we should
not expect high resolution DPC imaging to be very reliable, the
optimum defocus condition for HAADF tends to have the probe
near to the entrance surface [63, 66]. Fig. Bl(a) shows how the
reconstruction fidelity for select Fourier coefficients compares
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between the probe being focused on the specimen midplane and
being focused on the specimen entrance surface. The latter is
appreciably worse, especially for low order Fourier coefficients,
for all but the thinnest of crystals. This makes it desirable for
DPC imaging to set the probe defocus to the specimen mid-
plane.

Fig. B(b) shows a simulated HAADF profile for a 31 A thick
SrTiO3 specimen for a range of defocus values, taken from the
mosaic of HAADF simulations in Fig. Blc). The HAADF in-
tensity on the TiO column peaks for a defocus of —15.6 A (i.e.
underfocus), which by geometric optics would put the beam
waist in the specimen midplane. Fig. Bld) shows that the signal
averaged over a region between the columns (specifically, the
blue hatched rectangle shown in Fig. Blc)) also varies with de-
focus, reaching a minimum when the probe defocus nominally
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puts the beam waist at the specimen midplane. Figs. Ble)-(g)
show the same analysis for a 63 A thick SrTiO3 specimen. Now
it is found that the defocus value at which the peak HAADF
intensity occurs puts the nominal beam waist closer to the en-
trance surface of the crystal [66,/67]. However, the average over
the region between the columns again reaches its minimum for
a probe defocus nominally putting the beam waist at the spec-
imen midplane. This may offer a prescription for setting the
defocus most favourably for DPC imaging. However, for the
thinnest specimens, where quantitative DPC is expected to be



most reliable, maximizing HAADF intensity should suffice.
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Figure 9: (a) Comparison of the DPC signal, reconstructed phase and select
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probe position marked with the red cross in the DPC image, assuming a single
unit cell thickness of SrTiO3. Projected line scans corresponding to the white
rectangle shown in (a) are given for the (b) DPC signal and (c) reconstructed
phase.

The explorations thus far have been based on simulated data
and are therefore noise-free. Miiller et al. [[14] have discussed
the issue of scan noise — likely the greatest limitation in prac-
tice. Here we consider the fundamental limitation of counting
statistics. Instability and beam damage limit the amount of time

11

the probe should be stationary at any given point, limiting the
current in each recorded diffraction pattern and therefore mean-
ing we should expect intensity fluctuations across the diffrac-
tion pattern from counting statistics. This is simulated in Fig.
Ola). The bottom row shows the diffraction pattern at one par-
ticular point with no noise and with what are identified as “low
noise” and “high noise” conditions, corresponding to 1.5% and
3.0% shot noise on the number of counts in the full diffraction
pattern per dwell point. The detriment to the visual appearance
of the diffraction pattern is clear. However, as per Eq. (8)), eval-
uating the DPC signal involves a (weighted) average over the
diffraction pattern intensity. The top row in Fig. Q(a) shows
the full simulated DPC images (for the x-direction) for these
three cases, with line scan extracts shown in Fig. Q(b). The
effect of noise on these DPC images is not nearly so dramatic
as it is in the diffraction patterns. The reconstructions — middle
row of Fig. Q(a) and extracted line scans in Fig. Q(c) — involve
further integration and therefore a further smoothing effect as
per Eq. (I3). Noise nevertheless leads to reconstruction arte-
facts. A high pass filter removing spatial frequencies beyond
85% of the bandwidth limit of |#(r,)* was applied to prevent
the noise enhancement implied by small values of |#(r P at
high frequencies in Eq. (I3). A low pass filter removing spatial
frequencies below 5% of the bandwidth limit of |#(r O was ap-
plied to remove the noise enhancement implied by small values
of |k, + iky| at low frequencies in Eq. (I3). The comparisons in
Figs. Pla) and (c) show that, post-filtering, the reconstruction is
robust in the presence of shot noise.

It should be noted that we have considered shot noise on an
ideal, background-free signal. In practice, signal indistinguish-
able from background noise, for instance in the detection elec-
tronics, will not allow for DPC reconstruction. Nevertheless, on
the question of principle, the reconstruction procedure is robust
with respect to shot noise.

7. Qualitative phase reconstruction from experimental data

In the proof-of-principle demonstration of atomic resolution
DPC imaging using a segmented detector by Shibata ez al. [10],
experimental DPC images were compared against simulated
DPC images both using detector configuration (i) from Fig.
[6la). That sufficed to show that the form of the DPC images
was consistent with expectations for those imaging conditions.
To round out the present discussion, we reprocess that data to
test the application of Eq. (I3) to experimental data. Though
quantitative comparison of STEM intensities between experi-
ment and simulation is achievable (e.g. Ref. [68]), insufficient
data were collected in the Shibata er al. DPC imaging exper-
iment [[1Q] to set an absolute intensity scale, and as a conse-
quence the phase cannot be reconstructed quantitatively. Nev-
ertheless, we can examine the qualitative reconstruction fidelity
of applying Eq. (I3)) to real experimental data.

Fig. [[0(a) shows a section of the experimental HAADF
image from SrTiOsz viewed along the [001] zone axis, which
serves as our reference for identifying the location of the Sr,
TiO and O columns (the last are not directly visible, but their
location follows from the known structure). Figs. [I0(b) and
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(c) show the DPC images for the x and y directions formed us-
ing Eq. (I6) and a detector configuration oriented as per Fig.
[6la) (ii) i.e. using 12 segments rather than the 4 used in Fig.
[[ib), even though qualitatively these images look very similar.
Scan noise is evident in all these images. In particular, line scan
extracts #1 and #2 show that there is some column-to-column
variation in peak height and shape between nominally equiva-
lent columns. Because a larger field of view was recorded, we
can endeavour to reduce these effects by repeat-unit averaging.
Results for the repeat-unit averaged HAADF and DPC images
are shown in Figs. [[0(e)-(g) and line scan extracts #5 and #6,
which show much better uniformity.

Reconstructions using Eq. (I3) for the raw and repeat-unit
averaged data sets are shown in Figs. [I0(d) and (h) and the
corresponding line scan extracts #3, #4, #7 and #8. Consistent
with the experimental conditions, the reconstruction assumed
200 keV electrons and a 23 mrad probe-forming aperture angle.
The reconstruction assumed the defocus was set to the speci-
men midlane, which is probably not exactly true but likely a
good approximation: Ref. [10] estimated a specimen thickness
of 31 A and a defocus of —11 A. Moreover, spatial incoherence
(also referred to as finite effective source size) has not been ac-
counted for in our reconstruction since it was not characterized
in the experiment, though its presence is evident in the differ-
ence in peak width between Figs. [I0(d) and (h) and those in Fig.
Hib). As per the discussion on noise in section[6] both high-pass
(spatial frequencies above 1.56 A~ i.e. 85% of the twice the
probe-forming aperture cut-off resolution limit) and low-pass
(below 0.092 A~ i.e. 5% of the twice the probe-forming aper-
ture cut-off resolution limit) filters have been applied to regu-
larize against the effects of noise and scan distortion.

The qualitative fidelity of the reconstruction seems reason-
able. The O columns are clearly visible, though notably fainter
than both the Sr and TiO columns which are of comparable
height to one another. This is consistent with the SrTiO3 simu-
lations in Figs. dl(b) and (c). The reconstructions look smoother
than the input data since phase reconstruction from DPC sig-
nals inherently involves the smoothing operation of integration
and we have further applied regularization via filtering, though
some of the variation in peak height between nominally equiv-
alent columns persists. An assessment of quantitative recon-
struction fidelity must wait until a sufficiently characterized ex-
periment is performed that allows it, but Fig. [10[suggests no in-
principle problems in performing such reconstructions on ex-
perimental data from a segmented detector.

8. Conclusion

For quantitative phase reconstruction from atomic-resolution
DPC STEM images, the idealized first-moment detector, real-
izable using pixel detectors, can be tolerably approximated via

10We earlier advocated that configuration (iii) gave on average a slightly
better fidelity than configuration (ii) for the reconstruction process applied to
SrTiO3. The analysis of Fig. [I0] assumes configuration (ii) because it is a
reprocessing of data from Ref. [10] which was collected using the detector ori-
entation of configuration (ii). As the average difference between configurations
(ii) and (iii) is very slight, this is not deemed to be a significant limitation.
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a segmented detector according to the metric of mean square
error in the reconstructed potentials, though the fidelity with
which specific Fourier coefficients of phase/potential are re-
constructed varies appreciably. The reconstructions are fairly
sensitive to defocus, though quite robust to noise and thermal
scattering. The major limitation to first-moment DPC analy-
sis for both pixel detector and segmented detector phase re-
constructions is the highly restrictive validity domain of the
phase-object approximation, which is of the order of 50 A for
very weakly scattering specimens like Al;Li and even smaller
for more strongly scattering specimens like SrTiOs. It appears
that simulations must remain an essential adjunct to atomic res-
olution DPC STEM image interpretation for all but the very
thinnest of specimens.
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Appendix A. Segment “centre of mass”

Consider a single detector segment as shown schematically
in Fig. [A. 11l We define a polar coordinate system centred on
the optical axis where the radial distance is denoted by k (the re-
ciprocal space distance associated with a given scattering angle
B viak = tan(B)/A) and the polar angle is denoted by 6. The zero
polar angle is chosen to bisect the detector segment. (Results
with respect to other orientations follow from the present case
by trivial trigonometric projection.) By symmetry, the “centre
of mass” of the detector segment will lie along this line. It re-
mains to find its radial location, kcom:

9 k
Ll J keos®) kdkd® 3 gingey) K~ K

kcom = 5 = . (A1)
| 2 3 6 2 _ 12
[, Ji kakde 1ok =k
For the quadrant detector, 8; = /4 and so
4V2 k5 - ki
kcom = —— . A2
CoM = gy (A.2)
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