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Abstract:  

Semipermeable membranes are the core elements for membrane water desalination technologies such as 

commercial reverse osmosis (RO) process and emerging forward osmosis (FO) process. Structural and 

chemical properties of the semipermeable membranes determine water flux, salt rejection, fouling resistance, 

and chemical stability, which greatly impact energy consumption and costs in osmosis separation processes. 

In recent years, significant progress has been made in the development of high-performance polymer and 

polymer composite membranes for desalination applications. This paper reviews recent advances in different 

polymer-based RO and FO desalination membranes in terms of materials and strategies developed for 

improving properties and performances.  
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Nomenclature 

 

AA acrylic acid 

AAPTS N-[3-(trimethoxysilyl) propyl] ethylenediamine 

ABA poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-

poly-(2-methyloxazoline)  

AEPPS N-aminoethyl piperazine propane sulfonate  

AL-DS a mode of active layer facing the draw solution; also 

called as pressure retarded osmosis (PRO)  

AL-FS  a mode of active layer facing the feed solution; also 

called as forward osmosis mode (FO) 

AQP aquaporin  

BWRO brackish water reverse osmosis  

CA cellulose acetate  

CAP cellulose acetate propionate  

CFIC chloroformyloxyisophthaloyl chloride  

CLSM confocal laser scanning microscopy  

CNTs  carbon nanotubes  

CP concentration polarization  

CSA camphorsulfonic acid  

CTA cellulose triacetate  

CTAC cetyltrimethylammonium chloride 

DABA 3,5-diamino-N-(4-aminophenyl) benzamide  

DMAc dimethylacetamide 

DMMPD N,N’-dimethyl-m-phenylenediamine  

DOTAP 1,2-dioleoyl-3-trimethylammo-nium-propane 

(chloride salt)  

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine  

DTAB dodecyl trimethyl ammonium bromide  

E. coli Escherichia coli  

FO forward osmosis  

GMA glycidyl methacrylate 

gMH g/m2. h 

HTI Hydration Technologies Inc. 

ICP internal concentration polarization  
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iCVD initiated chemical vapour deposition 

IP interfacial polymerization  

IPC isophthaloyl chloride 

IU imidazolidinyl urea  

LbL layer-by-layer 

LCST  lower critical solution temperature 

L-DOPA 3-(3,4-dihydroxyphenyl)-L-alanine 

LMH L/m2. h 

MMMs mixed matrix membranes  

MOF porous metal-organic framework  

MPD m-phenylenediamine  

MWCNTs multi-walled carbon nanotubes  

NIPAM N-isopropylacrylamide  

NMP N-methylpyrrolidone  

o-ABA-TEA o-aminobenzoic acid-triethylamine salt  

PAA poly(acrylic acid)  

PAH  poly(allylamine hydrochloride) 

P(Am-co-AA) poly(acrylamide-co-acrylic acid)  

PAI poly(amide-imide)  

PAN polyacrylonitrile  

PBI polybenzimidazole 

PCTE polycarbonate tracked-etched  

PD p-phenylene diamine 

PDA polydopamine  

PDADMAC poly(diallyl-dimethylammonium chloride) 

PEG polyethylene glycol  

PEI polyethyleneimine  

PES polyethersulfone  

PESU-co-sPPSU  sulfonated copolymer made of polyethersulfone and 

polyphenylsulfone  

PET polyester 

PETA polyethylene terephthalate  

PI polyimide 

PIP piperazine  

PLL poly-L-lysine 
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PMOXA-PDMS-PMOXA  poly(2-methyloxazoline)-block-

poly(dimethylsiloxane)-block-poly(2-

methyloxazoline) 

PNIPAM poly(N-isopropylacrylamide) 

P(NIPAM-co-Am) poly(N-isopropylacrylamide-co-acrylamide)  

POSS polyhedral oligomeric silsesquioxane 

PPD p-phenylenediamine 

PPENK  poly(phthalazione ether nitrile ketone)  

PRO pressure retarded osmosis 

PSf polysulfone  

PSS poly(sodium 4-styrenesulfonate)  

PTA-POD polytriazole-co-polyoxadiazole 

P. putida Pseudomonas putida 

PVA  polyvinyl alcohol 

PVDF polyvinylidene fluoride  

PVP  polyvinylpyrrolidone 

rGO  reduced graphene oxide 

SEM scanning electron microscopy  

SDS sodium dodecyl sulfate  

SLS sodium lauryl sulfate 

SPEK sulphonated poly(ether ketone) 

sPPSU sulfonated polyphenylsulfone  

SPSf sulfonated polysulfone 

St structural parameter 

S. aureus Staphylococcus aureus  

SWNTs single-wall nanotubes 

SWRO seawater reverse osmosis  

TBP  tributyl phosphate  

TEA triethylamine 

TEOA triethanolamine  

TFC thin film composite  

TFN thin film nanocomposite  

TMC 1,3,5-trimesoylchloride  

TPP  triphenyl phosphate  

UF ultrafiltration  

  



7 
 

1. Introduction  

Membrane technology has become a popular option for a wide range of separation, including water and gas, 

over the past decades. Due to advantageous features using membrane separation, e.g. no or little need for 

chemicals, easy scale-up, and relatively low energy use, membrane separation has been widely adopted in a 

range of industries including water desalination. Desalination is a process for removing salts existing in 

saline water and providing fresh water suitable for human consumption as well as industrial and agricultural 

purposes, and has been considered as a reliable and effective approach to ease global water scarcity crisis. [1] 

Among various membrane-based desalination processes developed thus far, reverse osmosis (RO) 

membrane process has played a leading role in desalination industry suppressing others because of 

advantages in combined capital cost and energy consumption. [2-5]  

RO desalination is a typical pressure-driven process, in which an external hydraulic pressure is applied as 

driving force and solutes are excluded by a semipermeable membrane (called RO membrane) (Fig. 1a). [6] 

One of significant breakthroughs in RO desalination industry was successful development of cellulose 

acetate (CA) asymmetric membrane using phase inversion technique and its commercialization. [7-9] Fig. 

2a exemplifies a cross-sectional scanning electron microscope (SEM) image of commercial CA asymmetric 

membrane with a thin solute-rejecting dense layer (~100 nm– 200 nm thickness) and an open porous 

substructure, [10] both which are made of one polymeric material, on top of a fabric support. Cellulosic 

derivatives and their fabricated membranes have shown a number of good properties, including 

hydrophilicity, mechanical strength, wide availability, chlorine tolerance, fouling resistance, and low cost. 

However, some drawbacks exist, such as narrow operating pH and temperature ranges, limited resistance to 

biological attack, and structural compaction at high operating pressure. [10-13] Since the concept of 

interfacial polymerization (IP) of creating polyamide (PA) thin film composite (TFC) membrane was 

introduced by Cadotte and co-workers, [14] the later developed products have largely dominated 

desalination membrane market and especially their spiral wound configuration has shared over 90% of 

market sales. [2] As compared with CA asymmetric membranes, PA TFC membranes, consisting of a non-

woven fabric backing, support layer and top active layer (~100 nm thickness) (illustrated in Fig. 2b), endow 
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improved separation performances, including better water flux and salt retention, and wider operating pH 

and temperature ranges. However, PA is sensitive to chlorine attack and fouling, which requires costly pre-

treatment of feed water, thus increasing desalination costs. [15] Commercial PA TFC RO membranes in 

general exhibit over 98% of sodium chloride rejection rate. On the other side, as a type of “low-pressure” or 

“loose” RO membranes, nanofiltration (NF) membranes generally show NaCl rejection of ~20 – 80%, but 

generate higher water permeability and require lower hydraulic pressure than typical RO membranes. [13] 

NF has also received considerable attention as a promising pre-treatment for RO, and it usually has a similar 

chemical structure but loose polymer network compared to PA TFC RO membranes. [5]   

Current RO desalination plants consume approximately 3 – 6 kWh energy to produce 1 m3 of fresh water, 

depending on feed salinity and energy source or recovery. Their energy consumption is usually much lower 

than those of thermal-based desalination processes (e.g. 10 – 16 kWh/m3 and 6 – 12 kWh/m3 in multi-stage 

flash and multi-effect distillation, respectively). [16-18] It is well known that a high operating pressure is 

required in RO, varying from 45 bar to even above 80 bar based on feed salinity, in order to overcome 

osmotic pressure of saline water and achieve desirable water flux. [16] This takes up 65% – 85% of total 

energy required in a typical seawater RO (SWRO) desalination and thus contributes to over 25% of total 

water price. [16] Obviously, by reducing energy consumption and improving energy efficiency in RO, there 

is an opportunity to further lower the cost of fresh water production. To achieve this, one of feasible 

solutions is to develop RO membranes with superior water flux while maintaining high salt rejection. 

Cohen-Tanugi et al. modelled and demonstrated the design of ultra-permeable membrane, with 3-fold 

increase of water permeability and similar salt rejection to the counterpart TFC membrane, could lead to 15 

–46% less energy consumption and 44–63% fewer pressure vessels in RO. [19] Moreover, other properties 

of RO membranes, including fouling resistance and chlorine tolerance, also need to be improved.  
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Fig. 1. Schematic diagram illustrating the working principles of (a) reverse osmosis (RO) and (b) forward 

osmosis (FO) processes. Water flows in different directions in RO and FO (indicated by blue arrows); 

green arrow shows reverse salt diffusion from draw solution to feed in FO. Hydraulic pressure is utilized as 

driving force in RO, whilst osmotic pressure differential between feed and draw solution serves as driving 

force in FO. [20]  

In parallel, some emerging technologies have attracted enormous research interest. In particular, forward 

osmosis (FO) holds promise towards low energy consumption, fouling propensity, and infrastructure 

requirements. [12, 20-26] Among various applications, FO has shown attractive potential as a pre-treatment 

for RO, for instance, to dilute feed seawater before RO to reduce osmotic pressure and subsequently energy 

use of RO. [27] In a typical FO (Fig. 1b), draw solution generates greater osmotic pressure and then drives 

water from feed through a semipermeable membrane, while rejecting solutes; the water product is separated 

from diluted draw solution. FO, as an osmotically driven membrane process, can be operated under FO 

mode or pressure retarded osmosis (PRO) mode. In the later part of this review (Section 3), FO mode (also 

known as AL-FS) is referred to the process where the support layer of membrane faces the draw solution; 

whilst PRO mode (also known as AL-DS) means the active layer of membrane faces the draw solution. 

Similarly, the membrane in FO process (FO membrane) acts as a selective barrier to govern water transport 

and solute retention, which is essential in controlling separation efficiency and effectiveness. The initial 

attempt to use RO membrane in FO process encountered some limitations; low flux was observed due to 

unfavourable properties of the membrane, e.g. thick sponge-like substrate and compact support, largely 

hindering mass transfer and causing severe internal concentration polarization (ICP) within the support. [28-

30] Hydration Technologies, Inc. (HTI) developed the first commercial FO membranes, [31] one of which 

has a characteristic structure of embedding cellulose triacetate (CTA) within a thin polyester mesh support 

(Fig. 2c). Those membranes offer significantly better separation performance than commercially available 

RO membranes. Apart from commercial CTA FO membranes, HTI later launched TFC FO membrane; the 

flux of its spiral element was more than double than the existing CTA membranes. This is believed to 
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provide a new benchmark in future studies of FO membranes. [32] Nevertheless, FO membranes with 

superior water permeability and salt rejection are still being pursued for commercialization.  

FO and RO membranes share some similarity in terms of properties. [33] An ideal RO or FO membrane 

would possess high water flux, good salt rejection, fouling resistance, chemical stability, and other 

characteristics, e.g. mechanical strength and thermal stability; all of which are strongly dependent on 

membrane intrinsic structure and chemistry. FO membranes are expected to have a low structural parameter 

(St), which is correlated to membrane wettability, porosity, tortuosity and thickness of supports, without 

compromising mechanical strength. Some recent papers have reviewed the development of RO desalination, 

and they have more or less covered the progress of desalination membranes and materials. [1, 2, 4, 6, 13, 33-

44] Meanwhile, recent progress in FO has been highlighted from the aspects of draw solution, system design 

to membrane fabrication. [12, 20-26, 45-50] Our review paper published in 2010 included the advances of 

RO desalination membranes up to that time. [51] Since then, a significant amount of work has been 

conducted in this field. Therefore, the present review intends to provide an overview of the development of 

different polymer-based materials for fabricating separation membranes, including RO (Section 2) and FO 

(Section 3), over the past several years. It focuses on material selection, membrane preparation, and their 

impact on improving membrane properties and performances, i.e., water flux, salt rejection, fouling 

resistance and chorine stability. Some discussions are also made to provide insights into future membrane 

research directions.  

Fig. 2. Cross-sectional SEM images showing examples of CA RO membrane (a; GE Osmonics CE), PA 

TFC RO membrane (b; Dow Filmtec SW30 XLE), and CTA FO membrane (c; HTI). [52] 

2. Reverse osmosis membranes 

2.1 Polymeric materials 

Seen from tremendous efforts made in RO polymeric membranes, [2, 11, 36, 41] researchers have been 

exploring polymeric materials that are of low cost, and have good mechanical strength and chemical stability, 

and proper solubility for membrane fabrication. High water permeability and salt selectivity with improved 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



11 
 

antifouling capacity and chlorine resistance are some main targets. Until now, a wide range of polymers 

have been investigated for their feasibility as membrane materials, including tris(2,4,6-

trimethoxyphenyl)polysulfone-methylene quaternary phosphonium-hydroxide, poly(furfuryl alcohol), 

chitosan, and sulfonated poly(arylene ether sulfone), etc.; [53-70] apart from traditional materials, CA and 

PA. Moreover, special focus has been on the use of polyelectrolyte and biomimetic aquaporin membranes 

for water processing.  

2.1.1 Cellulosic derivatives  

The use of cellulosic polymers for RO membranes started in 1960’s. CA desalination membranes were 

originally made of cellulose diacetate, triacetate (CTA), or their blends in the form of asymmetric 

configuration. [10, 13] Last several years have seen some research into improving permeability and 

selectivity of CA relevant membranes. Most of it utilized phase inversion to produce asymmetric structure, 

in which effort was made to tailor parameters, including polymer concentration, coagulation bath 

temperature, type of solvent, addition of additives, etc.; despite little covering TFC. [71, 72] For instance, 

the use of a small amount of polyvinylpyrrolidone (PVP) in casting solution and change of coagulation bath 

temperature from 0 °C to 25 °C facilitated macrovoid formation and in turn water flux. In contrast, higher 

PVP concentration (6 wt% in casting solution) or coagulation temperature (50 °C) lowered water flux, due 

to reduction in macrovoids or membrane hydrophilicity. [73] Blending of chitosan into dope solution formed 

CA membranes with enhanced rejection, e.g. 92.3% (81.5% for the control membrane), and antibacterial 

activity against Escherichia coli (E. coli); [74] however, the low flux made the membranes less competitive, 

especially in comparison to PA TFC membranes. Addition of inorganic materials such as Ag, TiO2, carbon 

nanotubes (CNTs), and ZnO in the fabrircation of inorganic-organic mixed matrix membranes (MMMs) 

could provide a degree of freedom to vary membrane porosity, roughness and hydrophilicity, towards 

improved membrane performance. [71, 75-79] Espeically, introducing porous CNTs might not only improve 

hydrophilic nature of membrane but also provide channels to connect membrane pores, thus dramatically 

facilitating water permeation without adverse effect on salt rejection. [75, 76] Furthermore, some inheret 
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properties of inorganic particles such as Ag could endow superior antibacterial and antifouling properties to 

resulting membranes without expense of flux or rejection. [71, 78] 

The properties of CA membranes can be also effectively tuned via surface modification. The membranes 

modified by polymethylhydrosiloxane/polydimethylsiloxnae exhibited higher water permeability, which was 

consistent with the increase of membrane hydrophilicity; but they showed a slight decline in mechanical 

strength. [80] Hydrolysis and subsequent carboxymethylation of CA hollow fibre enhanced membrane 

hydrophilicity and negative charge with increasing membrane pore size. [81] Its pure water flux (26 LMH) 

was more than doubled as compared with the pristine CA hollow fibre at an operating pressure of 5 bar; but 

the membrane had 25% lower removal of NaCl (using 500 ppm NaCl as feed). [81] By improving surface 

hydrophilicity and charge density, layer-by-layer (LbL) assembly of 15-bilayer sodium alginate/acidic 

chitosan polyelectrolyte onto CA membrane increased water flux by ~10% up to approximately 31 LMH at 

an applied pressure of 15 bar, accompanied with lower susceptibility to BSA protein. [82] However, special 

care is required to control deposition layers, since excessive coating material may worsen separation flux. 

[82] This applies to membrane surface modifications involving physical or chemical deposition of other 

materials. [83]  

Despite recent improvements on cellulosic derived membranes, the drawbacks arising from the intrinsic 

properties including narrow operating pH and temperature as well as propensity to biological attack still 

make such membranes less competitive for desalination application. PA TFC membranes are currently 

dominating desalination market and their leading role will not change in the near future.  

2.1.2 Polyamide and related polymers 

At present, polyamide (PA) thin film composite (TFC) RO membranes are widely used in commercial water 

treatment processes, especially desalination. They are composed of a porous substrate supported by a non-

woven fabric and a thin active layer. Significant research efforts have been focused on enhancing water 

permeation, salt retention, antifouling property and chorine resistance by optimizing the chemistry and 

structure of support and active layer. [11, 15, 36, 84] 
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2.1.2.1 Effect of support materials and microstructures on membrane performances 

In a PA TFC membrane, a porous support usually provides mechanical strength to a thin selective layer for 

withstanding high hydraulic pressure applied during RO, but has no much capacity rejecting solutes. 

Experimental and modelling results suggested the importance of selecting a suitable support on water flux 

and salt rejection of TFC membranes. [85-89] An ideal support is expected to possess good biological, 

chemical, mechanical and thermal stabilities, with desirable pore structure, surface morphology and 

chemistry. [85] Changes of support pore structure and chemistry greatly impacted water flux and salt 

rejection of the membrane; meanwhile they also affected its fouling and scaling propensity. [85, 87] In 

general, a more permeable and rougher TFC membrane was formed on a highly porous and hydrophobic 

support; whereas a thinner and smoother PA layer with lower permeability was prepared using a relatively 

hydrophilic support. [85] For example, the support cast from N-methylpyrrolidone (NMP) solution 

consisting of ≤16 wt% PSf had a high porosity, leading to defects in PA active layer during the interfacial 

polymerization. [90] In addition, by utilizing or generating free functional groups on support surface, 

covalent bonds might form between active layer and support, resulting in the PA TFC membrane with high 

separation performance and superior structure stability. [91] 

For the support fabrication, the phase inversion method is commonly used to produce asymmetric 

membranes (such as ultrafiltration (UF) membranes) from polymers such as PSf and polyethersulfone (PES). 

Factors such as type of solvent, air humidity, processing temperature, concentration of polymer, and use of 

additive have been shown to influence properties of supports and subsequently performances of resulting 

TFC membranes. [85, 90, 92, 93] For example, a negative impact on sublayer hydrophilicity, roughness, and 

water permeability was observed when higher PES concentration of casting solution (i.e. 32 wt% vs. 27 wt%) 

was used. [92] Low air humidity (e.g. 20%) induced a denser structure in the top layer of the support. [93] 

Interestingly, a nanoimprinting process was used to produce patterned PES UF support; its supported 

patterned TFC membrane exhibited better performance with a capacity minimizing concentration 

polarization and scaling, as compared with the non-patterned counterpart. [94] Some other materials 

including poly(tetrafluoroethylene), poly(phthalazione ether nitrile ketone) (PPENK), polyimide (PI), and 

polyvinylidene fluoride (PVDF) have also gained attention as substitutes. [89, 95-101] For instance, PPENK 
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and PI polymers are well known for their high mechanical strength, chemical resistance and thermal stability 

(with a relatively high glass transition temperature Tg). [98, 99] The flux of PPENK-supported PA TFC 

membrane was enhanced by a factor of approximately 4 with almost unchanged Na2SO4 rejection (~95%), 

when the test temperature increased from 20 °C to 80 °C (1000 ppm Na2SO4 feed and 10 bar). [99] The PA 

TFC membrane formed on a PI support was observed with a flux jumping fivefold to 164.6 LMH with a 

stable rejection rate of >98% after operating temperature was increased from room temperature to 95 °C 

(2000 ppm NaCl feed and 27.6 bar). [98] These suggested the membranes be potentially suitable for hot 

water desalination or treatment. In recent years, the incorporation of hydrophilic inorganic particles such as 

TiO2, silica, CNTs, and zeolite into polymeric supports has been attempted to subsequently tailor TFC 

membrane performances. [92, 102-104] Compared to the pure PSf-supported membrane, the RO membranes 

using zeolite or silica-embedded PSf nanocomposites as supports could achieve higher initial permeability, 

less flux decline, and greater salt retention, which revealed better resistance to compaction because of 

enhanced mechanical stability derived from inherent characteristics of fillers. [102]  

2.1.2.2 Modification of active layer towards improved flux and rejection 

The active layer of conventional TFC RO desalination membrane is made of crosslinked aromatic PA, 

which is generally produced after interfacial polymerization (IP) between amines, e.g. 1,3-benzenediamine 

(MPD), and aromatic acyl chlorides, e.g. trimesoyl chloride (TMC). [13, 15] Chemistry and properties of 

thin active layer have been shown to strongly affect membrane separation. [105-109] The process 

parameters including concentrations and types of monomers/solvents/additives, polymerization condition, 

and curing process need to be optimized to fabricate high-performance TFC membrane. [90, 93, 110-116] It 

was accepted to select solvents with high surface tension but low viscosity, control MPD protonation and 

TMC hydrolysis during IP, and alter curing condition. [110] Water flux of PA TFC membrane was most 

dramatically affected by curing temperature (25 ºC - 85 ºC), followed by MPD concentration (1% - 2%) and 

TMC concentration (0.15% - 0.35%) and lastly reaction time (15 s - 60 s). [117] Additives in aqueous phase 

or organic solvent phase were effective to alter membrane surface morphology and polymeric network, 

although most likely they do not directly react with monomers. [90, 115, 118-120] In the presence of sodium 

dodecyl sulfate (SDS) and triethylamine (TEA) in amine solution, the resulting membrane showed increased 
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flux from 36 LMH to 54 LMH with 4% higher rejection recorded at 41 bar. [90] Symmetrical and 

asymmetrical ammonium salts with different solubility and water sorption properties might work as catalysts 

and surfactants during IP, thus affecting the crosslinking degree. [120, 121] The addition of ammonium salt 

with larger steric configuration cationic amine group, such as tetrabutylammonium bromide or 

benzyltriethylammonium chloride, resulted in the TFC membranes with better performance, rougher surface, 

and greater thickness. [120, 121] By adding inorganic salt LiBr in triethanolamine (TEOA), it might interact 

with carbonyl of TMC as well as hydroxyl of alcohol amine, thereby affecting TFC membrane performance. 

The maximum improvement in pure water flux of composite membrane was achieved by over 4 fold at the 

certain expense of Na2SO4 and MgSO4 rejection when 3 w/v% LiBr existed in amine solution. [122] On the 

other side, by increasing the amount of tributyl phosphate (TBP) in TMC/isoparaffin up to 0.9 wt%, the 

water flux of MPD-TMC TFC membrane was as high as ~116 LMH, along with reduced rejection, when the 

membrane was tested using 2000 ppm NaCl feed at an operating pressure of 15.5 bar. [119] In contrast, the 

membrane water flux decreased with unchanged rejection by elevating triphenyl phosphate (TPP) content in 

TMC/isoparaffin solution. This difference was elucidated by their respective interaction with TMC, where 

the steric hindrance caused by phenyl segments of TPP reduced formation of complex with TMC compared 

to TBP. [119] Experimental results revealed a significant improvement in water flux of resulting PA TFC 

membrane by approximately 4 times without considerable retention loss after introducing 2 wt% acetone 

into TMC/hexane phase. [118] Similarly, by selecting 3 wt% ethyl acetate as co-solvent in TMC/hexane, the 

TFC membrane exhibited permeate flux of 75 LMH, which was a threefold increase in relative to the 

counterpart synthesized without using co-solvent; it could also retain a rejection of >99% (2000 ppm NaCl 

feed and 15 bar). [115]  

As discussed above, the active layers of commercial TFC membranes are typically based on crosslinked 

aromatic PA formed after IP between MPD and TMC. As a basal strategy, great interest has been devoted to 

selecting or designing monomers or reactants with desirable functionalities and properties for optimizing 

membrane separation performances. Meanwhile, some other factors have been taken into consideration, e.g. 

easy commercialization, low cost and environmental friendly property. For instance, TEOA with multi-

hydroxyl groups was an easily accessible monomer and chosen to react with acid chloride TMC to produce a 
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TFC membrane. [122, 123] Table 1 summarizes the selection of monomers or reactants for fabricating TFC 

membranes in the recent literature; their properties relating to structures and separation performance are also 

listed for comparison. Although the relationship between structures and performances is complex, it is 

commonly accepted that water permeability and salt retention of TFC membranes are strongly correlated to 

active layer structure as well as thickness and morphology. [110] The membranes with ultrathin, highly 

crosslinked, and good hydrophilic active layers appear to offer superior water flux and salt rejection. For 

example, by adding triamine monomer, 3,5-diamino-N-(4-aminophenyl) benzamide (DABA), the 

crosslinking degrees of membranes were enhanced, resulting in smoother and thinner active layers with 

greater hydrophilicity. [124] The flux of as-prepared TFC membrane increased from approximately 37.5 

LMH (without DABA) to above 55 LMH (with 0.25 w/v% DABA in MPD solution) by flowing 2000 ppm 

NaCl feed at an operating pressure of 20 bar, accompanied with a minimal decrease of rejection (~0.3%). 

[124] The replacement of aromatic amine MPD with aliphatic amines was proven able to improve mobility 

and flexibility of polymeric chains, and in turn water transport. [125, 126] Especially, by controlling balance 

of linear-aromatic monomers and their hydrophilicity, e.g. the partial substitution of 1,3-diamino-2-

hydroxypropane (DAHP) for MPD in IP reaction, it not only improved water flux but also maintained salt 

rejection. [126] Other hydrophilic additives, e.g. o-aminobenzoic acid-triethylamine salt (o-ABA-TEA), 2-

(2-hydroxyethyl) pyridine, m-aminobenzoic acid-triethylamine salt, or 4-(2-hydroxyethyl) morpholine, 

might also associate with amines for use to enhance hydrophilicity and reduce crosslinking of active layer. 

[127, 128] With 2.85 wt% o-ABA-TEA in MPD solution and later post-treatment, the as-prepared TFC had 

promising flux (89.5 LMH) with superior rejection (>98.5%) by feeding 2000 ppm NaCl solution at 15.5 bar; 

both outperformed the commercial membrane (Fig. 3). [128]  

Fig. 3. Comparison of membranes in terms of flux and rejection at the feed of 2000, 3000 and 5000 ppm 

NaCl, corresponding to 0, 30 and 60% recovery for a feed concentration of 2000 ppm NaCl at 15.5 bar (a) 

and 31.0 bar (b). “High-flux” and “Commercial” are denoted to the PA TFC membrane, which was prepared 

with 2.85 wt% o-aminobenzoic acid-triethylamine (o-ABA-TEA) salt and optimal post-treatment, and a 
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commercial membrane, respectively (modified from the reference [128]). 

On the other side, by utilizing chloroformyloxyisophthaloyl chloride (CFIC) instead of conventional TMC 

reacting with MPD, a functional bond of urethane (-NHCOO-) was introduced into polymeric network 

forming new polyamide-urethane TFC membranes, which exhibited attractive rejection, e.g. >92% to boron 

and >99.4% to NaCl in desalination of synthetic seawater. [129-132] Addition of diacyl chloride (e.g. 

isophthaloyl chloride or/and terephthaloyl chloride), selection of high amine-diffusive organic solvent (e.g. 

hexane or heptane) or optimization of curing/post-treatment were able to effectively improve polyamide-

urethane TFC permeability while retaining good rejection. [129] In a later work,  polyamide-urethane TFC 

spiral wound elements were fabricated via a modified laminating method and additional thermo-sealing to 

achieve ~99.5% salt rejection and ~1100 L/h permeate flow when facing synthetic seawater feed at 55 bar. 

[133] Good stability of those spiral wound elements in a pilot test suggested suitability for a single pass 

SWRO desalination. [133] More recently, poly(amide-urethane@imide) TFC RO membrane, synthesized 

after reacting polyamide-urethane TFC with N,N’-dimethyl-m-phenylenediamine (DMMPD), exhibited 

stable performance in chlorine solution up to 8000 ppm; however the MPD-TMC TFC counterpart suffered 

more than 15% drop in NaCl rejection and 100 % increment in flux. [134] Note that second round of 

modification using DMMPD increased thickness of active layer and decreased hydrophilicity of surface; 

albeit it worked perfectly as a chlorine-resistant protective layer.   

Table 1. Summary of selection of monomers or reactants for fabricating active layers of TFC membranes 

and their properties reported in the recent literature.  

It is clear that the selection of monomers or additives with proper functionalities and structures effectively 

alters separation performances of membranes. Importantly, some other properties, such as antifouling and 

antibacterial capacity, would be greatly improved due to unique characteristics of reactants introduced. [135] 

More studies are still required to better understand complicated mechanisms governing active layer 

formation, and in turn optimize selection of chemicals and IP process. To date, some RO membranes with 

promising performance have been synthesized in the laboratory; [128] however, little progress has been 
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reported on the pilot test of these membranes in water desalination or treatment to affirm their performance 

and explore commercialization opportunity.  

In addition to blending of monomers or introduction of additives during IP, surface modification of 

commercial TFC membranes by coating or grafting foreign materials is an alternative approach to achieving 

immediate commercial outcomes because of relatively easy adoption in current membrane manufacturing 

process. To date, various materials have been examined for suitability, including polyethylenimine (PEI), 

polyvinyl methyl ether, polyvinyl alcohol (PVA), polyvinyl pyrrolidone, polyether-polyamide block 

copolymer, etc. [136-144] In particular, “smart” polyelectrolyte polymers, comprising segments of N-

isopropylacrylamide (NIPAM), are distinguished for their unique thermo-responsive property as promising 

coating materials; the modified TFC membranes had high salt rejection (i.e. ~97%) and retained good water 

flux when coating with a small amount of polyelectrolyte, thanks to improved membrane hydrophilicity 

compensating polyelectrolyte-induced resistance to water permeation. [137, 142-144] Most importantly, the 

special thermo-responsive property could significantly improve membrane antifouling capacity and cleaning 

efficiency. The flux restoration of poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAM-co-Am))-coated 

membrane after cleaning at 45 °C (higher than lower critical solution temperature, LCST) was 88.5%, which 

was ~20% greater than that at 40 °C (lower than LCST) or recovery from the fouled pristine commercial RO 

membrane. [142] Furthermore, such surface coating would protect active layer of RO membrane from 

exposure to acid and chlorine as a sacrificial material, thus improving its chemical stability. [143] A long-

term separation test (200 h) revealed the good stability of P(NIPAM-co-Am)-modified TFC with salt 

rejection and flux of ~98% and 55.5 LMH at 500 ppm NaCl feed and 6.5 bar, respectively. [137] Redox 

method is facile for use at room temperature to covalently link organic ligands with various functionalities 

onto membrane surfaces; however, there see some drawbacks, such as slow kinetics, poor surface specificity, 

and excessive chemical consumption. Freger’s group introduced a “concentration polarization (CP)-

enhanced radical graft polymerization” to successfully tighten structure of commercial low pressure RO 

membranes by selecting different monomers (e.g. 2-hydroxyethyl methacrylate, methyl methacrylate, 2-

ethoxyethyl methacrylate, glycidyl methacrylate (GMA), etc.) and in turn improve rejection to some 
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contaminates. [145-147] The GMA-modified membranes showed lower boron transport rate in brackish 

water RO (BWRO) range, but this performance was not superior to that of SWRO membranes. [146] 

2.1.2.3 Modification of active layer towards enhanced fouling resistance 

RO membranes usually suffer from membrane fouling, which deteriorates separation performance, increases 

energy consumption, shortens membrane lifetime and eventually requires membrane replacement. [148] 

This is inevitably translated into higher cost of water processing. Typically, three approaches are suggested 

to dealing with this problem: (1) pre-treatment prior to RO process removing foulants; (2) chemical or 

physical cleaning of fouled RO membranes; and (3) development of antifouling membranes. [39, 149-154] 

The latter is the focus herein.  

Fundamental studies have revealed membrane fouling susceptibility is highly correlated to membrane 

surface properties, including roughness, charge and hydrophilicity. [151, 155, 156] A more negatively 

charged, smoother and less hydrophobic membrane surface appears less prone to fouling. [156-159] Causes 

to fouling are complex and varied largely depending on characteristics of feed water, operation conditions, 

and properties of membrane surface. These include particle deposition, interaction with microorganisms 

leading to growth of biofilm, and adsorption of organic compounds onto membrane surface. Based on 

natures of foulants, fouling occurring in membrane systems can be categorized into several types, e.g. 

colloidal fouling, inorganic fouling, organic fouling and biofouling. [153] So far, vast laboratory work has 

been carried out to develop antifouling membranes tested by using organic foulants and microorganisms, 

which are correlated to their resistance to organic fouling and biofouling; a few have reported other aspects.  

Undoubtedly, selection of proper monomers or additives could be a good route to modify membrane surface 

properties and subsequently improve fouling resistance. [135, 160-165] For instance, the piperazine (PIP)-

isophthaloyl chloride (IPC) TFC membrane exhibited better fouling resistance and reversibility with 40% 

flux decline and 74% cleaning efficiency, as compared with 51% and 40% of PIP-TMC membrane; thanks 

to fewer carboxyl groups on PIP-IPC TFC surface which impeding calcium to bond with alginate foulant. 

[164] Addition of PVA (e.g. 16%) into amine aqueous solution reduced roughness and enhanced the 

hydrophilicity of PIP-TMC composite membrane, thus improving antifouling performance and facilitating 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



20 
 

water transport without apparent loss of rejection. [161] After 12 h separation test using BSA foulant in 

MgSO4 feed, the fluxes of as-prepared membranes with 0% and 16% PVA decreased by approximately 20% 

and 10%, respectively. [161] On the other hand, zwitterionic amine monomer, N-aminoethyl piperazine 

propane sulfonate (AEPPS), participated in IP of PIP-TMC. The excellent resistance of resultant membrane 

to adsorption of BSA foulant and bacteria was observed, ascribed to high membrane hydrophilicity and 

strong binding capacity of AEPPS to free water. [135] By introducing 1.0 wt% hydrophilic  o-ABA-TEA 

amine salt in MPD solution to react with TMC, the TFC membrane exhibited superior water flux of 75.4 

LMH accompanied with 99.4% rejection under desalinating synthetic seawater at 55.2 bar. [127, 128, 160] 

In particular, due to more hydrophilic and negatively charged surface, its water flux decline was ~10% less 

than the counterpart in the presence of model foulant alginate, demonstrating a better fouling resistance. 

[160]  

Surface modification of commercial TFC membranes could be a more effective solution to fouling problem 

in terms of less chemical use and low cost, because a very thin coating material on membrane surface would 

likely provide antifouling properties. [166] In general, extremely hydrophilic polymers are preferred for use 

during modification. Meanwhile, it needs minimization of polymer thickness and its penetration into active 

layer; that could largely reduce water permeability because of higher resistance and lower effective mass 

diffusivity. [127, 138] Particular research interest was in coating of potentially perfect antifouling materials, 

polyelectrolytes, onto membranes to improve surface smoothness, hydrophilicity and charge density. [137-

139, 141, 167] Moreover, polyelectrolytes show ability to self-clean foulants deposited on them via 

changing solution environment, e.g. pH, ion concentration or temperature. As LbL coating with increasing 

layers of poly(allylamine hydrochloride) (PAH)/poly(sodium 4-styrenesulfonate) (PSS) from 0 to 6, the 

antifouling capability to BSA, humic acid and dodecyl trimethyl ammonium bromide (DTAB) of modified 

commercial ES20 RO membrane was improved, attributed to more hydrophilic, smoother, and charged 

membrane surface. [138] Incorporation of inorganic antimicrobial silver (Ag) particles in poly(acrylic 

acid)(PAA)/PEI LbL coated commercial RO membranes could further help inactivate up to 95% of bacteria 

attached within 1 hour of contact time. [168]  
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In recent years, hydrophilic and biocompatible zwitterionic materials, which possess both negatively and 

positively charged units as well as strong and stable electrostatic bonds with water, have been investigated 

as novel antifouling materials. [135, 169-175] The zwitterionic carboxylated PEI-coated SWRO membrane 

presented lower contact angle to 32000 ppm of NaCl solution compared with that to DI water, suggesting 

higher affinity to NaCl solution and improved antifouling property in seawater condition. [174] As shown in 

Fig. 4a, the use of amino acid 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA) zwitterionic material increased 

the water permeability of commercial SW30XLE RO membrane, [170, 172] due to remarkably improved 

surface hydrophilicity; meanwhile salt rejection was retained. Especially, after fouled by BSA/sodium 

alginate, the fluxes of modified membranes were almost completely recovered by water cleaning; however, 

only around 85% restoration of initial flux could be achieved by using the pristine commercial RO 

membrane (Fig. 4b). [170] Their later work further extended this concept to the FO membrane; which 

successfully reduced 30% fouling. [171] Because of synergistic effect between biocide release and adhesion 

resistance arising from Ag and polyzwitterion, the disposition of polyelectrolyte multilayers, followed by 

embedding Ag nanoparticles and coating amphiphilic polyzwitterion top layer onto commercial ES20 RO 

membrane improved surface anti-adhesion resistance and bactericidal function to Pseudomonas putida (P. 

putida). [176] However, its multiple-step preparation might have created barriers to water transport; thus 

initial water permeability was decreased by ~15%.  

Fig. 4.  (a) Oxidative polymerization of amino acid 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA) and 

surface adsorption resistance to organic matter imparted by the hydrated zwitterionic coated surface; (b) 

normalised flux of the original and modified SW30XLE RO membranes (“12 hr SW30XLE” and “24 hr 

SW30XLE” are referred to the SW30XLE RO membranes with a 12-hr and 24-hr coating) as a function of 

time during BSA/sodium alginate (100 ppm of each; 18 bar) fouling (the dashed part shows the treatment of 

water cleaning) (modified from the reference [170]). 

It is known that coating materials in physical modification or sorption normally interact with active layer of 

membrane by van der Waals attraction, electrostatic interaction or hydrogen bonding, which may not be 

stable in long-term operation. In contrast, chemical grafting with functional species can assist in producing 
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covalent bonds between coating and active layer of membrane; and in turn better chemical and structural 

stabilities. A range of techniques have been developed, including adoption of chemicals, UV or plasma, to 

achieve covalent linking of antifouling materials to free functional groups located on TFC membrane surface, 

such as carboxyl, amine and acyl chloride groups. [177-188]   

Selenium compounds are capable of inhibiting bacterial biofilm grown on membrane surface, because of 

their ability to catalyze formation of superoxide radicals via non-enzymatic processes. Selenium was 

covalently coated onto RO membrane surface by using selenocystamine, selenium-attached aceto acetoxy 

ethyl methacrylate, selenocyanatoacetic acid; and the numbers of adhered Staphylococcus aureus (S. aureus) 

and E. coli cells were dramatically decreased on the modified RO membranes. [155, 189] The virgin RO 

membrane had a biofouling-induced flux loss of 55%; however, the modification treatment resulted in 

merely 15%. [190] Moreover, a significant membrane biofilm reduction in synthetic wastewater was 

observed; revealing utilization of organo-selenium for RO membrane surface treatment was a feasible and 

effective biofouling control strategy. [189]  

Similarly to physical coating, chemical grafting of polyelectrolyte moieties and zwitterionic compounds has 

been extensively explored. As described above, among a variety of polyelectrolytes, those comprising 

NIPAM unit are of great interest due to their unique temperature responsive property. By using redox-

initiated graft polymerization with NIPAM and subsequently with acrylic acid (AA) to modify membrane, 

water cleaning at 45.0 °C could revert 93% of initial flux to the fouled membrane attributed to phase 

transition of NIPAM chains; whereas only 82% of initial flux was recorded for the pristine membrane. [191] 

Especially, this redox-initiated surface graft polymerization would reduce the number of chlorine susceptible 

amine sites in PA after covalently linked with NIPAM or AA; the N-H groups from NIPAM in grafting 

layer could work as sacrificial groups, thus greatly enhancing membrane stability after exposure to chlorine. 

[191] In spite of promising results, adjustment of RO feed temperature would be a challenge in 

implementation and a concern about energy consumption used for cooling/heating cycles. [192, 193] As 

aforementioned, the characteristics of zwitterionic molecules make them promising antifouling materials; 

nevertheless they suffer from a certain extent of poor processability. Redox-initiated graft polymerization 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



23 
 

covalently attached zwitterionic polymer poly(4-(2-sulfoethyl)-1-(4-vinylbenzyl) pyridinium betaine) to 

commercial XLE RO membrane; the resulting membrane could restore 90% of its initial flux by cycled DI 

water/brine rinsing, which could be beneficial in a full-scale RO system. [193] Simply by immersing the 

freshly prepared PIP-TMC membrane into AEPPS aqueous solution, zwitterionic molecules were linked 

onto membrane surface via chemical reaction between acyl chloride of TFC and amine of AEPPS. A 

significantly better membrane antifouling property to BSA (91.6% and 95.5% flux recovery at pH of 3.7 and 

6.0, respectively) was recorded, coupled with almost doubled water flux and unchanged rejection, as 

compared with the control (75.6% or 88.3% at pH of 3.7 or 6.0). [192] Further work is recommended to 

investigate the separation efficiency and structural stability of those modified TFC membranes under various 

operating conditions.  

UV grafting of reactants has been attractive for use due to low cost, mild reaction requirement as well as 

easy and feasible incorporation into membrane manufacturing process. [187] Mondal et al. reported the 

temperature responsive property of PNIPAM-modified NF270 membranes prepared using UV-induced graft 

polymerization method; that above LCST of PNIPAM (e.g. ~40 °C), polymer chains collapsed by releasing 

water and foulants (Fig. 5a). [194] When the gel moiety was well compressed (after 1st cycle), water fluxes 

were almost unchanged for several cycles of warm water flushing, suggesting good reusability (Fig. 5b). 

[194] Note that experimental work by comparing UV-irradiated grafting of AA during and after formation 

of active layer recommended the former one, since it led to a 29% (130%) improvement of pure water flux 

(NaCl rejection) using 10 wt% AA under 60 s UV irradiation accompanied with a 97.8% flux recovery in 

the BSA fouling test. [195]  The second approach caused the formation of highly dense PAA grafted layer 

and decreased pore size of membrane surface; less than 50% flux was able to be maintained after UV 

modification. [195]  This flux decline after UV grafting was also found in other works, due to greater 

resistance derived from the grafting layer. [153, 194] On the other side, plasma-induced modification 

exhibits prosperous features including relatively short treatment time, precise control of surface and little 

membrane structure damage. [153] A range of gases such as oxygen, nitrogen, helium and mixed gases can 

be used as plasma source to introduce different functional groups or work in conjunction with desired 

monomers/polymers. For example, NH3 plasma treatment introduced nitrogen-containing functional groups; 
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the treated commercial membranes (e.g. NF270, NF90, TFC-S and TFC-SR2) showed enhanced antifouling 

properties without detrimental effect on separation performance. [177] After atmospheric pressure plasma-

induced graft polymerization using monomers methacrylic acid and acrylamide, the corresponding grafted 

PA membranes had less flux decline (34% and 40%) with better permeability recovery ratios (82% and 

76%), in comparison to the commercial ESPA2 RO membrane used on site (46% and 64%) after 24 h real 

secondary wastewater treatment. [196, 197] The method above basically comprises two steps, plasma 

activation of surface followed with graft polymerization. Zou et al. reported one-step plasma polymerization 

to modify commercial SW30HR RO membrane with hydrophilic triethylene glycol dimethyl ether (triglyme) 

polymer; which shows advantages to increase crosslinking density of material, improve uniformity and 

adhesion of coating, and simplify preparation process in absence of harsh solvent. [198] After accelerated 

organic fouling test (BSA/alginate), the flux was nearly unchanged with 99.5% restoration by water cleaning; 

but ~30% flux reduction and 89% flux recovery were observed during the usage of control membrane. [198] 

Fig. 5. (a) Schematic representation of temperature responsive properties of poly(N-isopropylacrylamide) 

(PNIPAM) brushes grafted on TFC membrane surface; (b) repeated water flux results of grafted membrane 

as a function of applied pressure: after each cycle, the membrane was placed in flushed with lukewarm water 

(40 °C) for cleaning (modified from [194]). 

Continuous effort is still being devoted to exploring other effective methods with regards to membrane 

modification. Initiated chemical vapour deposition (iCVD) method is a dry and solvent-free polymerization 

technique, which can be carried out at low temperature. As compared with those methods, e.g. UV, plasma, 

and solution polymerization, it can largely retain functional groups on membrane surface during 

modification. [166, 199-204] Gleason and co-workers deposited an ultrathin (30 to 300 nm) anti-biofouling 

coating onto commercial TFC membranes (Fig. 6a-b) using iCVD; the as-prepared membranes exhibited 

similar salt rejection and maintained 86% of water flux to the pristine commercial RO membrane (Fig. 6c-d), 

particularly with good fouling resistance (Fig. 6e) and chlorine stability. [201] This method was considered 
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to be scalable and comparable with current membrane fabrication infrastructure, thus showing the potential 

for promoting energy-efficient RO desalination process. [201]  

 

Some problems by adopting surface grafting have been noticed despite significant improvements achieved. 

It usually leads to permanent change of membrane chemistry and structure. Sometimes its impact on 

membrane performance is too difficult to be accurately predicted. Use of harsh solvents or high temperatures 

in chemical modification may cause defects and in turn poor separation performance. Moreover, some 

grafting requires complex and multiple steps, involves intensive chemical use and is time consuming, thus 

increasing cost and limiting next commercialization. [205] Other drawbacks are also noticed, such as 

difficult reproducibility and scale up for plasma-induced modification. [153] Note that optimization of 

chemical use and fabrication protocol is required in both physical coating and chemical grafting to minimize 

adverse impact of coating on membrane. [195, 198, 206] Although selecting materials, such as 

polyelectrolytes or hydrogels, as antifouling coatings has been widely agreed because of their characteristics 

(i.e. high hydrophilicity and smoothness), some issues should not neglected. For instance, an excessive 

amount of such coating on membrane surface can uptake a large amount of water, increase concertation 

polarization and build up resistance, leading to low flux.   

To date, a majority of work that is relevant to surface modification of commercial TFC membranes towards 

improved antifouling property has been concentrated on selection of various polymers or monomers; 

however, the introduction of inorganic materials has been proved considerably effective. [207-213] 

Fig. 6. Antifouling zwitterionic coating applied onto commercial RO membranes via iCVD. (a-b) Cross-

sectional SEM image of (a) bare and (b) iCVD coated RO membrane; (c) salt rejection and (d) water flux of 

bare and coated membranes; (e) surface coverage by V. cyclitrophicus on bare glass (black) and iCVD 

zwitterionic surface (orange) and relative fouling index F1 (blue). The relative fouling index F1 (blue) is 

defined as the fraction of surface coverage for the coated surface compared to the bare glass control 

(modified from the reference [201]). 
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Especially, attaching inorganic particles, including Ag, Cu, Al2O3, and graphene oxide (GO), onto 

membrane surface seems a favourable route to maximize direct contact between particles and foulants for 

optimal antifouling efficiency, when compared to MMMs (Section 2.2). Ag is one of most commonly 

adopted biocides; Yin et al. developed a method to covalently attach Ag nanoparticles onto PA TFC 

membrane surface via a bridging agent cysteamine. [208] Excellent antibacterial property was demonstrated, 

with better water flux (69.4 LMH) and comparable salt rejection (93.6%), in relative to the control (49.8 

LMH and 95.9%) at 20.7 bar by flowing 2000 ppm NaCl feed solution. [208] Instead of extensive chemical 

use, a rapid and facile method applied AgNO3 solution onto the SW30XLE TFC membrane surface, 

followed by reacting with a reducing agent NaBH4  and in situ forming Ag. [207] Despite a minor loss of 

water permeability, a dramatic reduction in the number of attached live bacteria and biofilm development on 

its surface suggested promising antibacterial activity. [207] This simple approach was applicable to coat Cu 

nanoparticles onto membrane surface as well, which is considered as a cheaper leachable biocidal agent in 

comparison to Ag. [213] However, due to the fact of Ag or Cu dissolution in aqueous solution, recharge of 

those nanoparticles onto membrane surface is needed after a certain period of operation; this would increase 

operational complexity and costs. In contrast, CNTs represent non-depleting biocides. The CNTs treated by 

ozonolysis could increase their sidewall functionalities and maximize cytotoxic property; and deposition of 

such antimicrobial CNTs in membranes achieved up to 60% inactivation of attached bacteria in 1 h. [212] In 

recent years GO nanosheets have seen an upward trend in research as water purification membrane materials, 

because of their unique transport properties, hydrophilicity, and chemical stability. After LbL deposition of 

negatively charged GO and positively charged aminated-GO nanosheets onto the TFC membrane, the layer 

of nanosheets worked as a protective layer against foulant (BSA) and chlorine. Flux reduction of ~15% and 

rejection decline of ~4% were recorded for the GO-modified TFC membrane after 12 h 100 ppm BSA 

fouling test and 1 h 6000 ppm chlorine treatment, as compared with around 34% and 50% for the pristine 

PA TFC, respectively. In particular, by compensating resistance of stacked nanosheets, the unique water 

transport property and hydrophilicity derived from GO could help largely maintain membrane flux with 

unchanged NaCl rejection. [210] Attempt in this interesting field of research was also extended to the 

modification with multiple types of inorganic materials by taking virtues of each component for 
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distinguishing overall property. A novel design system by functionalizing the commercial BW30 TFC 

membrane with GO, Au nanostars and polyethylene glycol (PEG) resulted in enhanced antifouling capacity 

to CaCO3 and CaSO4 (mineral scalants), humic acid (organic matter), and E. coli (bacteria), accompanied 

with increased salt rejection and water flux. [211] In these studies, it is important to strengthen interaction 

between membrane surface and particles, avoid delamination or early detachment of coating materials from 

membrane active layer, as well as minimize reduction of separation performance (e.g. flux). Further research 

is also needed to systematically study their efficiency and stability in treating complex feed and long-term 

operation. For those heavy metal (Ag and Cu) based antimicrobial coatings, issues including how to well 

control their leaching or dissolution during RO, maximize lifetime of antifouling membranes, implement 

recharge after depletion, as well as ensure safety to environment must be well addressed.  

2.1.2.4 Modification of active layer towards increased chlorine stability  

PA TFC membranes exhibit excellent separation performance (e.g. water flux and salt rejection); however, 

they are sensitive to chlorine. [214-217] Chlorine is generally added at the intake to control microorganisms 

and provide biological disinfection before desalination membrane units. When exposed to chlorine, PA 

undergoes a number of reactions, which are dependent on chlorination pH, concentration, and duration. The 

proposed mechanisms include N-chlorination, chlorination-promoted hydrolysis, or ring chlorination by 

direct chlorination or an intermolecular rearrangement. Consequently, changes in chemical composition, 

hydrophilicity, charge density and surface morphology occur, some of which do not favour separation 

performance. [218-226] Current SWRO desalination requires chlorination-dechlorination-rechlorination; in 

which the extra dechlorination and rechlorination steps increase chemical use, energy consumption and 

operation cost. [1] To solve this problem, one solution is to develop new chlorine-tolerant membrane 

materials. Indeed it should not be neglected that under well controlled environment, e.g. at pH 9 and 100 

ppm of chlorine concentration (Fig. 7), water permeability and salt rejection could both be increased in 

conjunction with higher hydrophilicity and in turn potentially greater fouling resistance. [225] Therefore, 

chlorination may potentially be employed as a means to improve PA TFC NF or RO membrane performance 

if the membranes are stable in such conditions. [218, 225, 227, 228]  
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Fig. 7. (a) Effect of chlorine concentration (ClT) and solution pH on membrane properties by two competing 

mechanisms of chlorination-promoted hydrolysis and N-chlorination; (b) performance of NF90 membranes, 

both virgin and chlorinated for 100 h at different ClT and pH (at 584.4 ppm NaCl feed and 6.89 bar). Salt 

rejection (%) shown by the numbers in white and water flux (LMH) shown by the numbers in parentheses; 

NP: membrane failed to perform (modified from the reference [225]). 

 

To eliminate or protect chlorine-sensitive sites of PA and in turn improve membrane chlorine resistance, it is 

necessary to select suitable monomers in IP reaction of fabricating TFC membranes. [229] Use of secondary 

amines or attachment of CH3 or OCH3 to MPD’s phenyl ring enhanced chlorine stability of PA. [216, 230-

232] As compared to MPD-TMC derivate, the PA membrane made of 2,6-diaminotoluene and TMC 

exhibited improved chlorine tolerance with similar desalination performance or even better flux. [230] By 

introducing primary diamine bearing hexafluoroalcohol groups on phenyl ring, the synthesized TFC 

membrane could effectively reduce chlorine attack on its PA functional groups. [233] Especially, at pH ~10, 

the membrane hydrophilicity and charge density were enhanced, thus increasing water flux and salt rejection; 

the resulting membrane was suggested for suitable use at high pH desalination. [233] The adoption of 

melamine, which has low toxicity and reactivity featuring a triazine ring structure, resulted in a TFC 

membrane showing stable performance during 96 h immersion in 200 ppm NaClO solution; however, more 

than 20% of Na2SO4 rejection was compromised when the secondary amine PIP was selected.  [234]  

Using surface grafting or coating to improve membrane chlorine stability proceeds at a slower pace as 

opposed to the success achieved in the field of antifouling property. Surface modification is able to improve 

chlorine resistance of TFC membranes by introducing protective and/or sacrificial layers to minimize 

chlorine impact on sensitive sites, e.g. amide linkage and end amine groups. [143, 235-238]  Liu et al. 

coated P(NIPAM-co-Am) onto the aromatic PA TFC membrane through hydrogen bonding between PA and 

coating layer, which caused almost no change of salt rejection and water flux recorded after 1 h exposure to 

3000 ppm hypochlorite at pH 4. [143] On the other side, the pristine PA membrane encountered 28% and 3% 

decline of flux and rejection, respectively. [143] A protective and sacrificial coating of novel hydrophilic 
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random copolymer poly(methylacryloxyethyldimethyl benzyl ammonium chloride-r-acrylamide-r-2-

hydroxyethyl methacrylate) crosslinked by glutaraldehyde could maintain its modified membrane selectivity 

(>96%) until 32 h exposure to 500 ppm NaClO (pH = 7); whereas, a dramatic reduction in salt retention was 

observed after 3 h and 6 h for the commercial LCLE and BW30 membranes, respectively. [235] By 

considering stability over long term or under severe chlorination environment, chemical grafting method 

would be preferable to physical coating by impeding detachment of protective layer. Through unreacted acyl 

chloride groups of PA, covalent binding of N, N-dimethylamino propylamine and subsequently anchoring of 

sorbitol polyglycidyl ether onto TFC membrane surface efficiently protected it against chlorine attack and 

improved stability after exposure to 100 ppm free chlorine (pH = 7) up to 38 h. [237] Using silane 

compounds, stable Si-O-N or Si-O-C chemical structures formed from the amide or carboxyl groups of 

commercial SWC1 membrane surface could assist in retaining >99% salt rejection of membrane after 12 h 

chlorine exposure to 2000 ppm NaClO (pH = 7 – 8). [238]  

Very often modification targeting at enhanced chlorine stability also brought improvement in antifouling 

property, due to more hydrophilic and less rough membrane surfaces. [235, 237, 239, 240] Wang’s group 

reported the attempt on improving both chlorine and fouling resistances of RO membrane by introducing a 

multifunctional N-halamine precursor for the first time, [239, 241, 242] e.g. 3-monomethylol-5,5-

dimethylhydantoin or 3-allyl-5,5-dimethylhydantoin. A reversible transition between N-halamine and N-H 

group on a hydantoin ring endowed the membranes with regenerable anti-biofouling property and improved 

chlorine resistance, when coupled with periodical chlorination pre-treatment. [241, 242] The chlorine 

resistance of treated membranes was improved relative to the pristine membranes, albeit water and salt 

passage both increased following grafting. Furthermore, the modified membranes showed good sterilization 

and substantial prevention effects on E. coli. To further enhance chlorine durability, imidazolidinyl urea (IU) 

with six N-H groups was used in modification instead of monofunctional N-halamine precursor. [243] As 

shown in Fig. 8a, in addition to function as N-halamine precursor, there is an equilibrium between 

hydroxymethyl group of IU and methylene glycol, which could then dehydrate to form formyl group 

inhibiting microbial growth. For the IU-modified membrane, a relatively stable separation performance (>96% 

rejection and ~80 LMH at 2000 ppm NaCl feed and 15.5 bar) with slight changes in chemical structure and 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



30 
 

surface morphology was recorded in 100 day simulated periodical free chlorine pre-treatment (Fig. 8b). [243] 

However, the modified membrane suffered ~25% flux reduction possibly due to additional resistance of 

coating material (Fig. 8b). [243]  

Fig. 8. (a) Schematic of antifouling and chlorine resistant properties of imidazolidinyl urea (IU)-modified 

membrane; (b) water flux and salt rejection (at 2000 ppm NaCl and 15.5 bar) of both virgin and IU-modified 

membrane during 100 day investigation by simulating periodical free chlorine pre-treatment. [243] 

2.1.3 Polyelectrolytes 

The route of layer-by-layer (LbL) assembly of polyelectrolytes, via alternating coating of cationic and 

anionic polyelectrolytes onto a charged support (e.g. polymer or ceramic membranes), has been employed to 

prepare separation membranes. [244-256] In particular, the use of polymeric supports may favour 

manufacturing of spiral would membrane module for high pressure RO desalination; attributed to its 

flexibility and mechanical strength. [257] Dip-coating is most commonly selected method in the membrane 

preparation apart from spray-coating and spin-coating; [253] this may be considered as a “static” method 

since polyelectrolyte solution only flows across membrane surface without any permeation through. Some 

recent studies suggested use of dynamic self-assembly method by passing polyelectrolyte solution through 

porous support surface under vacuum filtration or cross-flow filtration to produce membranes with enhanced 

separation performances. [258, 259] For example, the NF membrane, which was prepared by cross-flow 

dynamic assembly of 3 poly(diallyl-dimethylammonium chloride) (PDADMAC)/PSS bilayers, showed a 

permeation flux of 60 LMH at 10 bar (2000 ppm Na2SO4 feed solution), which was superior to the 

commercial DL membrane. [259] Its rejection (~82%) could be further improved up to approximately 90% 

when combining cross-flow dynamic and static assembly. [259]  

Selection of constituent polyelectrolytes greatly affects resultant membrane properties, e.g. surface charge, 

composition, hydrophilicity, thickness, etc., and in turn separation performance, e.g. flux and rejection. [248, 

255, 257, 260-265] Some early work fabricated polyelectrolyte multilayer membrane consisting of a large 

number of successive coatings, e.g. 60 bilayers; which exhibited pure water flux of ~4 LMH and NaCl 
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rejection of 93.5% at 40 bar. [251] However, this fabrication appears time consuming; most importantly, a 

large number of coatings increased transport resistance and reduced water permeability. [259] Later work 

successfully reduced LbL assembled polyelectrolyte multilayers down to merely 4 to 5 by deposition of 

solution containing salt, e.g. MnCl2, NaBr or NaCl. [244, 266, 267] However, this indeed sacrificed NaCl 

rejection to some extent; thus making resultant membranes potentially fit for NF purpose. In comparison to 

the commercial NF270 membrane, the 4 repeated deposition of PSS/PAH polyelectrolyte solution 

(containing NaCl) onto PES support resulted in comparable flux of ~20 LMH – 47 LMH with better 

rejection (~94%) by flowing MgSO4 solution at 4.8 bar. [266]  

Another challenge is to improve stability of LbL assembled polyelectrolyte membrane during NF or RO 

separation. Crosslinking of polyelectrolyte multilayers was effective in reducing swelling of polyelectrolyte 

and enhancing rejection property. [257, 268, 269] For example, the PAH/PAA multilayered membrane was 

heated to 180 °C under vacuo for 1 h to initiate crosslinking via amide bonding between polyelectrolytes, 

resulting in reduced thickness and dense structure. [257] The thermally crosslinked 10 and 20 bilayers of 

PAH/PAA polyelectrolyte membranes exhibited good rejection rate of >80% by flowing 2000 ppm NaCl 

feed at 20 bar; which could further jump to 99% after recycle of concentrate. However, this thermally 

crosslinking method is not applicable to all types of polyelectrolytes. Furthermore, the flux of crosslinking 

PAH/PAA membrane was still not satisfactory (less than 10 LMH at 2000 ppm NaCl feed and 20 bar) as 

compared with the commercial PA TFC membranes; which might be solved by exploring other 

polyelectrolyte or crosslinking agent. [257]  

2.1.4 Aquaporin biomimetic membranes 

In 2007, Kumar et al. reported the water productivity of aquaporin (AQP)-containing poly-(2-

methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (ABA) vesicles was approximately 

two orders of magnitude greater as compared to that of the commercial SWRO membranes with a selectivity 

of ~100%. [270] This evidenced the design of incorporating AQP into membranes would achieve 

exceptional water permeability with high selectivity; that opens a new avenue to constructing high 

performance desalination membranes. [270] Most of AQP proteins feature narrow channels and unique 
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charge characteristic. Such channels exclude transport of ions or small molecules but allowing water through. 

Thanks to high water transport and excellent selectivity of AQP, over the last few years, some membrane 

designs loaded with AQP proteins have been explored as potential strategies to offset “trade-off” between 

permeability and selectivity of separation membranes. [27, 40, 271-273] Use of AQP in conjunction with 

polymersomes or liposomes may also potentially be a modification method to improve membrane separation 

performance, e.g. modification of UF for NF purpose. [274] Some of prior attempts on inclusion of AQP 

into separation membranes reported unsatisfactory monovalent salt rejection. [275-278] Their limited 

stability also raises difficulty in the fabrication of large-scale and defect-free membranes and the continuous 

separation under hydraulic pressure driven process.  

An ideal AQP-incorporated membrane for desalination purpose is expected to possess high permeability and 

selectivity, coupled with good mechanical and chemical stability. Seen from the schematic (Fig. 9), when 

using such a biomimetic membrane in hydraulic pressure driven separation, water molecules from feed enter 

AQP via water channel, further transport through protein, and finally exit from porous support. Salts or other 

molecules are excluded at feed side. For fabricating high performance AQP-incorporated membranes, it 

requires favorable substrate surface and suitable building blocks for embedment. Supports should be highly 

porous, thus giving no extra resistance to extremely fast water transport through AQP. Inorganic supports 

have prosperous mechanical, chemical and thermal features; whilst adoption of organic (polymeric) supports 

would be preferable, ascribed to their flexible surface and porous structures. On the other side, both lipids 

and polymers may be used as building blocks to accommodate AQP and construct biomimetic membranes. 

Advantages were suggested by using amphiphilic block polymer ABA to lipids due to their better 

mechanical and chemical stability as well as low water permeability. After AQP are incorporated into 

liposomes or polymersomes, the resultant vesicles (proteoliposomes or proteopolymersomes) are then 

immobilized via different ways, e.g. direct or pressure assisted vesicle fusion, charged induced or magnetic 

enhanced deposition, and chemical interaction driven vesicle rupturing, [275, 277-282] onto porous support. 

Another foreign polymer may be added as a part of active layer; it can play a role in protecting AQP vesicles, 

improving strength and stability of biomimetic membrane during separation. [283] Due to the lower water 

permeability derived from polymer as compared with that through water channels of AQP, water molecules 
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preferably pass through proteins. Defects need to be avoided between polymer matrix and vesicles; which 

may make salt molecules escape through and in turn lower rejection. [284] 

Fig. 9. Water molecules in the feed solution penetrate the membrane in 3 steps: (1) passing from the feed 

solution to the vesicles through the aquaporin (AQP) water channel located at the polymer bilayer facing the 

feed solution, (2) passing from the vesicles to the support through the AQP located at the polymer bilayer 

facing the support membrane, and (3) penetrating the porous support into the permeate solution. Other 

solutes in the feed solution will be rejected. [284] 

Lipids are regarded as excellent biomimetic components for constructing vesicles. [281, 285] Wang’s group 

compared direct vesicle fusion on a hydrophilic NF-270 membrane and pressure facilitated vesicle fusion on 

positively charged lipid-modified NF-270 membrane. [277] The latter method was proven necessary to 

facilitate vesicle fusion and less defect density, despite both methods observed with reduced rejection and 

flux relative to the pristine control. [277] Moreover, the AQP-immobilized membrane exhibited a poor flux 

and rejection. This revealed that AQP did not play their function as expected; which was explicated relating 

to low lipid mobility on the support. Issues when using liposomes in fabricating biomimetic membranes 

include improving stability of liposomes and promoting non-defect active layer with good stability and 

strength. Sun et al. formed a hydrophobic polymer mesh by crosslinking methacrylate monomers and amine-

functionalized proteoliposomes under UV. [274] The as-prepared amine-functionalized proteoliposomes 

were then immobilized on a PDA-coated microporous PAN flat sheet followed by crosslinking. This 

resulted in a NF membrane with good stability under hydraulic pressure and strong agitation ascribed to the 

polymer network within lipid bilayers. [274] As compared to the control without AQP, the membrane with 

AQP:lipid ratio of 1:100 significantly increased water flux to ~14.5 LMH by 65% and NaCl rejection to 

66.2% by 41%, respectively, against 200 ppm salt at 5 bar. [274] Wang et al. reported the progress of 

biomimetic NF membrane by immobilizing positively charged AQP-incorporated DOPC/1,2-dioleoyl-3-

trimethylammo-nium-propane (chloride salt) (DOTAP) vesicles onto a PEI/PSS LbL polyelectrolyte 

membranes. The as-prepared membrane showed a good flux of 22 LMH with 97% MgCl2 and 75% NaCl 

rejection against flowing 500 ppm single salt feed solution at 4 bar; a relatively high performance stability 
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was recorded over 36 h. [286] Li and co-workers immobilized PDA-coated proteoliposomes on a PAI 

support, followed by PEI deposition and its subsequent crosslinking to PAI in water bath to form active 

layer. [283] The water flux of AQP-embedded membrane was around 2 – 3 times higher than the 

commercial NTR-7450 and NF-270 flat sheets with comparable rejection under similar testing condition. 

Most importantly, because the proteoliposomes were completely protected in crosslinked PEI layer which 

was covalently bonded to the support; good structural stability and AQP activity could be largely sustained 

under pressure and toxic feed. [283]   

Starting from Kumar and co-workers’ prior work, [270] the ABA block copolymers have been widely 

studied as biomimetic materials to incorporate AQP, due to their lipid-bilayer-like amphiphilic structure as 

well as chemical, mechanical stability and low water permeability. [281] Duong et al. used AQP-

incorporated polymer vesicles prepared from disulfide-functionalized ABA to enhance vesicle spreading on 

gold-coated alumina support via covalent interaction between disulfide functionality and gold surface. [282] 

The created biomimetic layer on top of substrate remarkably enhanced water flux and rejection to the 

nascent ABA copolymer, proving the activity of AQPs in membrane; but more work needed to reduce 

defects on the biomimetic membrane. [282] On the other side, ABA copolymers with methacrylate end 

groups was utilized to cover the flat sheet CA membrane functionalized with acrylate functionality; after UV 

polymerization the planar biomimetic NF membranes were produced. [281] Increasing ratio of AQP:ABA 

resulted in higher water flux and rejection, indicating positive role of AQP water channels in water transport. 

A promising pure water flux of 171 LMH under 5 bar was given by the CA-supported membrane 

comprising AQP:ABA ratio of 1:50; however, merely ~33% NaCl rejection was recorded against 200 ppm 

salt solution. [281] Later work immobilized AQP-loaded hydroxyl-terminated ABA vesicles onto amine-

functionalized CA membrane; followed by a polymer coating after in situ redox-initiated polymerization of 

methyl methacrylate and ethylene glycol dimethacrylate at 40 °C. [284] Comparison proved AQP could 

maintain their transport characteristics under 5 bar and shear force during NF; suggesting it as an effective 

way offsetting the fragility flaw of conventional biomimetic membranes. [284] This type of membranes was 

also applicable in FO separation; the elimination of defects may possibly further enhance the salt rejection of 

membranes. [284] Although block polymers have been used in biomimetic membranes, the compatibility 
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between AQP and polymers still requires examination for better understanding. It may also help expand 

options when selecting good polymer candidate and simplifying preparation process.  

Seen from the literature, most of AQP biomimetic membranes exhibited relatively low NaCl rejection; thus 

they are more suitable for NF separation purpose. In 2012, Tang’s group reported the fabrication of PA RO 

membranes embedded with proteoliposomes via IP for the first time. [287] The water permeability and 

rejection of membrane loaded with inactive AQP are similar to those of the pristine polymeric membrane, 

suggesting marginal defects created in IP. The resulting membrane with active AQP had a high flux of ~20 

LMH (at 5 bar and 584.4 ppm NaCl feed), which was ~40% greater than the commercial brackish RO 

membrane (BW30), coupled with good NaCl rejection (~97%). [287] Particularly, this type of membranes 

could be made into an area of >200 cm2 with a good mechanical stability under pressure via adoption of 

traditional IP method, [287] thus suggesting commercialization potential for desalination. However, the 

reported separation performances seem not reach what was expected for the ultra-permeable biomimetic 

membranes; thus more should look into composition of proteoliposomes and their loading and comparability 

in PA membranes towards optimization. Some other issues remain in cost, scalability and their properties, 

e.g. stability and durability.  

2.2 Mixed matrix membranes 

Apart from organic molecules and biomolecules as modifiers, another strategy is to incorporate inorganic 

particles into/onto membranes, which can be achieved by either directly coating inorganic materials onto 

membrane surface or mixing inorganic particles in monomer/polymer solution during membrane fabrication. 

The later one normally forms mixed matrix membranes (MMMs), by integrating inorganic particles with 

polymers. Over last few years, remarkable advances have been made in the preparation of polymeric 

desalination membranes comprising inorganic particles, which demonstrated not only excellent resistance to 

fouling and chlorine but also provided potential in overriding the “trade-off” between water permeability 

and solute selectivity. [2, 17, 35, 36, 40, 44, 288-291] The overview of this progress in recent several years 

is provided in Table 2. As can be seen, research effort has been exerted on embedding a wide range of 

inorganic fillers with or without porosity (e.g. silica, silver, titanium dioxide, carbon or titanate nanotubes, 
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etc.). In addition, it has recently further extended to incorporation of hybrid organic-inorganic material, 

polyhedral oligomeric silsequioxanes (POSS). [292-294] Most of studies loaded fillers into aromatic PA thin 

layer to form MMMs, which are normally referred to “thin film nanocomposite (TFN) membranes”; [104, 

295-309] albeit polyelectrolytes, sulfonated poly(arylene ether sulfone), CA, or PES has also been selected 

as polymeric matrix for study. [310-321] Indeed a number of prior works also reported the incorporation of 

inorganic particles into sublayers of TFC membranes; which has been covered in Section 2.1.2.1 of this 

review.  

Table 2. Fabrication and properties of recently reported MMMs for water desalination.  

2.2.1 Ag and TiO2 

Until now, a considerable effort has been contributed to easing membrane biofouling problem by adding 

inorganic nanoparticles, such as silver (Ag) and titanium dioxide (TiO2). Meanwhile, those fillers could tune 

salt rejection and water flux by either affecting polymerization process or tailoring polymer network 

arrangement.  

Ag is one of most widely studied biocides killing various aquatic microorganisms. [295, 322-325] On the 

other side, TiO2 has received much research attention due to its photocatalytic property to decompose 

organic compounds and bacterial cells, which can potentially be self-cleaned for reducing fouling during 

membrane separation. [326] Addition of Ag or TiO2 directly into feed water in desalination industry may 

need a considerable amount of materials and in turn be not economical; [207] in contrast, development of 

their incorporated/coated membranes has been regarded as an alternative. Experimental results confirmed 

nanosized Ag-embedded nanocomposite membranes had improved anti-adhesive property and inhibited 

bacterial growth effectively. [327, 328] Slow dissolution of Ag might be able to maintain membrane 

antibacterial efficiency over a relatively long-time testing. [327] Accompanied with TiO2  nanoparticles, the 

use of hydrophilic poly(amide-imide) (PAI) caused resultant composite membrane surface hydrated and thus 

minimize foulant binding to it. As a result, the fouling-induced flux decline to membrane was reduced and 

the adsorbed foulant BSA could be more readily dislodged by shear force, as compared with the nascent 

membrane. [311] 
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High-performace MMMs also require unifrom disperion of nanoparticles in polymeric matrix, which is 

crucial in impeding formation of non-selective “defects” and maintaining solute rejection. In most studies 

about fabricating MMMs, synthesized nanoparticles, e.g. TiO2, are firstly dispersed in solution under 

ultrasonication before membrane formation; [311, 313, 326] which normally caused agglomeration of 

nanoparticles. Moreover, lack of good interaction between inorganic particles and organic polymer may 

seriously contribute to defects and limit enhancement in separation properties of MMMs. Surface organic-

functionalization of nanoparticles has attracted significant interest to enhance particle distribution, provide 

good adhesion to polymer matrix and improve material surface property; [295, 329] which has been widely 

studied in the field of gas separation membranes. [330] By adopting such a strategy, the functionalization of 

TiO2 with an aminosilane N-[3-(trimethoxysilyl) propyl] ethylenediamine (AAPTS) (Fig. 10), was utilized to 

reduce aggregation of nanoparticles in aqueous solution and improve their uniform dispersion in PA active 

layer. The membrane with a low concentration (i.e. 0.005 wt%) of amine-functionalized nanoparticles 

offered highest salt retention (~54%) with water flux (~12 LMH) at 7.6 bar against 2000 ppm NaCl feed. By 

increasing addition of particles to 0.1 wt%, the observed flux of TFN was almost doubled as compared with 

the TFC membrane. [295] Until to the present, there are few efforts devoted to employment of such 

functionalized inorganic fillers in improving membrane separation for desalination purpose; [331] which 

could also be an adoptable method when incorporating other types of inorganic fillers in polymeric matrix. 

Note that when using MMMs embedded with depleting biocide fillers, e.g. Ag, recharge will be infeasible 

after depletion. Some studies suggested the location of Ag nanoparticles on membrane surface would largely 

benefit the direct contact between particles and foulants, e.g. bacterial cells, for optimized antimicrobial 

performance. [207, 208, 332] Meanwhile, it is necessary to well control dissolution of Ag into environment 

and improve durability of its containing separation membranes. Taken account of those issues, the strategy 

by direct surface modification of commercial membranes appears preferable (Section 2.1.2.3). [207, 208, 

332] 

Fig. 10. Schematic of PA TFN membrane fabricated by dispersing N-[3-(trimethoxysilyl) propyl] 

ethylenediamine (AAPTS)-modified TiO2 nanoparticles in MPD aqueous solution (modified from the 
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reference [295]). 

2.2.2 Zeolite and silica 

Zeolite molecular sieves are well known for their intrinsically unique pore structure, thus providing superior 

size and shape selectivities. [304-309, 333] The concept on formation of a zeolite-PA MMM via IP started 

from utilization of zeolite A (LTA) nanoparticles with a pore opening of ~4.2 Å; the resulting MMM was 

named for the first time as thin film nanocomposite (TFN) membrane by Jeong and co-workers in 2007. 

[309] The demonstration-scale test exhibited those zeolite-impregnated TFN membranes required lower feed 

pressure and thus could achieve up to 10% savings in specific energy consumption. [334] NanoH2O Inc. 

officially launched high flux and high rejection TFN membrane modules under the brand of QuantumFlux in 

desalination membrane market in 2011. [335] However, they still need improvement in terms of some 

properties, e.g. boron rejection. [336] 

In zeolite-embedded TFN membranes, the pores in zeolites are believed to act as preferential flow channels 

only for water molecules (with a diameter of 2.7 Å) rather than hydrated sodium and chloride ions, resulting 

in dramatically improved permeability and superior salt rejection. [309] Smaller zeolites were found to 

impart greater improvement in permeability and suggested more suitable for practical application in 

fabricating hollow fibre membrane model. [304] The optimized post-treatment of zeolite-incorporated TFN 

membranes in solution containing glycerol solution, camphorsulfonic acid (CSA)-TEA salt, and sodium 

lauryl sulfate (SLS) followed by heating could further enhance separation performance. [337] Apart from 

LTA (NaA), [103, 302] research attempt has also been expanded to other groups of zeolites, such as FAU 

(i.e. NaX and NaY), MFI (i.e. silicalite) and EMT. [306, 308, 337-339] Especially, in addition to enhanced 

permeability and rejection, the selection of silicalite-1 in fabrication of TFN membrane maintained excellent 

stability in solution containing acid as well as multivalent cation (CaCl2), thus being suitable for use in 

practical desalination process, where acidification is implemented for scaling control or/and there are 

various multivalent cations in a complex feed. [338]  

Similarly to Ag or TiO2-loaded MMMs, it is essential to avoid forming non-selective voids between zeolites 

and polymer. Dispersion of zeolites in TMC organic solvent during IP could result in a homogeneous 
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membrane structure (Fig. 11b) with excellent salt rejection, as compared with dispersing zeolites in MPD 

aqueous solution, which led to gradual growth of macrovoids in sublayer (Fig. 11a). [307] Several strategies 

have been investigated to further enhance uniform dispersion in PA active layer, including organic-

functionalization of zeolite particles and modification of IP process. [302, 308, 339] The TFN membrane 

embedded with 0.05 w/v% octadecyltrichlorosilane-modified NaA zeolite exhibited better flux and rejection 

(~41 LMH and 98.5%) when flowing 2000 ppm NaCl feed at 16 bar, than those of unmodified NaA-PA 

TFN membrane (~29 LMH and 97.8%). This was explained by better dispersion of organic-functionalized 

zeolite in TMC/hexane and in turn improved its distribution in TFN active layer. [302] A new strategy called 

“pre-seeding”-assisted synthesis was utilized in TFN membrane fabrication, in which zeolite crystals 

modified with organic materials were pre-assembled on a MPD-impregnated support as “seeds”, followed 

by IP. [308] By improving zeolite/polymer interfacial contact, the as-synthesized TFN membrane (≤ 0.4 wt% 

zeolite in TMC/ethanol/hexane) showed greater flux (17.3 LMH – 31.3 LMH) with comparable salt 

rejection (>95%) at 2000 ppm NaCl feed and 15 bar, relative to TFC membrane (11.3 LMH and 98.1%). 

[308]  

As compared with hydrophilic inorganic zeolite, porous metal-organic framework (MOF) materials possess 

similar pore configuration and was reported in fabricating TFN RO membranes for the first time in 2015; 

[340] although some early attempt was started from solvent resistant NF membranes. [341] ZIF-8 is one of 

thermally and chemically stable MOF materials, with 11.6 Å cavity cages connected with 3.4 Å pore 

apertures. The imidazolate linker connecting tetrahedral zinc ions in ZIF-8 potentially improved the 

compatibility between ZIF-8 and PA. Experimental results revealed that using ZIF-8 (0.4 w/v% in 

TMC/hexane) increased the water flux of TFN membrane to ~52 LMH, which was 162% higher than that of 

TFC membrane; whilst high NaCl rejection of ~99% was retained (at 15.5 bar and 2000 ppm NaCl feed). 

[340] As the same to zeolites, the inclusion of MOF provides degree of freedom to alter TFN membrane 

performances. In particular, simulation work suggested fast water permeability through ZIF-8, which was 

several times above that of zeolite. [342] More work is required for better understanding the interaction 

between PA matrix and porous ZIF, and in turn optimize TFN membrane performances and fabrication. 
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Interestingly, MOF can also work as templates to promote pore creation and connectivity in other types of 

water treatment membranes. [343]  

Fig. 11. SEM (left) and TEM images (right) of TFN membrane with 0.1 w/v% zeolites added in MPD 

aqueous phase (a); and TFN membrane with 0.1 w/v% zeolites added in TMC hexane organic phase (b) 

(modified from the reference [307]). 

Interest in silica-embedded MMMs was initiated from incorporation of nonporous silica; which may alter 

polymerization and modify polymer structure. Thermal stability and separation performance, in terms of 

flux and rejection, of TFN membranes were improved by adding small silica content in PA. [299, 344] 

Introduction of organic-functionalized silica could further improve TFN membranes’ resistance against 

chlorine and fouling. For example, the TFN synthesized using hyperbranched aromatic PA grafted silica 

with amine groups retained ~15% higher salt rejection with almost unchanged water flux after 24 h exposure 

to 500 ppm NaOCl, compared with the TFC membrane. [320] With a proper concertation (e.g. 0.03 wt%) of 

silica treated by 3-aminopropyltriethoxysilane, the TFN exhibited better antifouling property, with 

approximately 10% less flux decline in BSA fouling test; thanks to hydrophilicity of functionalized silica. 

[345] In recent years, studies have been broadened to selection of mesoporous silica with pore size of 2 – 50 

nm, due to its uniform and controllable mesoporosity, high specific surface area, and good surface 

hydrophilicity, along with chemical stability, thermal property, and low cost. Moreover, mesoporous silica 

was considered as a substitute in fabricating TFN membrane for zeolite in which the oriented pores make 

available water flow path difficult to control. [301] A comparison between the membranes embedded with 

nonporous silica and MCM-41 porous silica (pore size of 3.85 nm) was presented in Yin’s work; which 

revealed the importance of short flow paths through MCM-41 during water transport (Fig. 12a). [300] By 

increasing MCM-41 content, the surface properties, including hydrophilicity, roughness and zeta potential, 

of TFN membranes were all enhanced. The water flux of membrane embedded with 0 wt% – 0.1 wt% (in 

TMC/hexane) MCM-41 was improved from 28.5 LMH to 46.6 LMH, coupled with stable NaCl and Na2SO4 

rejection of ~97.9% and 98.5%, respectively (at 20.7 bar and 2000 single salt feed) (Fig. 12b). [300] On the 

other side, water flux of TFN with 0.1 wt% nonporous silica increased only up to 35.8 LMH, which was 
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much lower than that with MCM-41 (46.6 LMH). [300] As mesopore size of selected silica became larger, 

water permeability of resultant TFN increased whereas salt retention was sacrificed due to additional 

pathway of mesopores. [345] Loading of silica should also be carefully controlled; excessive amount 

lowered crosslinking degree of PA, gave rise to defects in TFN and in turn compromised separation 

performance. [299, 318, 346]  

Fig. 12. (a) Schematic illustration of hypothesized mechanism of MCM-41-incorporated TFN membrane (1 

shows the feed solution containing NaCl; 2 shows the PA active layer with MCM-41 or nonporous silica; 3 

denotes the porous support); (b) water flux and salt rejection of TFN membranes with MCM-41 

nanoparticles at 20.7 bar and 2000 ppm NaCl or Na2SO4 feed. [300] 

2.2.3 Carbon nanotubes and graphene oxide 

Carbon nanotubes (CNTs) exhibit excellent mechanical and separation properties, [34, 35] but they require 

supports to avoid separating apart during pressure-driven RO separation. The concept of MMMs by 

incorporating CNTs in polymeric matrix is an effective strategy responding to that. CNTs could increase 

water permeability, salt rejection, fouling resistance and/or chlorine resistance of resulting MMMs by 

improving smoothness, hydrophilicity and surface charge on membrane surface and altering chemical 

structure of layer. [297, 315-317, 347, 348] In order to fabricate CNTs-incorporated MMMs, such as PA 

TFN membranes, organic-functionalization of CNTs with carboxylic or hydroxyl groups is generally 

required, which can be achieved via a treatment using a mixture of sulfuric acid and nitric acid. In the 

modification, amount of acid/CNTs, reaction temperature and time was found to strongly affect resulting 

CNTs’ dispersibility in solution and polymer as well as the interfacial interaction between inorganic CNTs 

and organic polymer matrix. [349] The PA TFN membrane prepared from 0.001 wt% CNTs, which were 

functionalized in a HNO3: H2SO4 mixture with a ratio of 1:3 (v/v) at 65 °C for 4 h, could achieve around 20% 

increase of flux with a similar NaCl rejection of 91%, compared with TFC membrane by feeding 2000 ppm 

NaCl at 15.5 bar. [349] Insufficient functionalization, e.g. at 25 °C for 3 h, caused a poor dispersion of 

CNTs and then agglomeration in TFN membrane; consequently, merely 10% NaCl rejection was recorded. 

[349] As shown in Fig. 13, water molecules may transport through the channels of CNTs due to capillary 
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force or slide quickly on their surfaces because of smoother wall surface, thus increasing flux. [350, 351] In 

spite of large diameter of used CNTs which was enough to allow ion transport with water, the high rejection 

to hydrated sodium or chlorine ions might be as a result of PA covering CNTs and in turn narrowing 

opening of CNTs. [349] Proper variation on surface functionalities of CNTs could even further alter the 

resultant nanocomposite membrane performances. For instance, experimental observation revealed that 

water flux was improved by over 4 times (from 11.5 LMH to 48.5 LMH) when increasing chain-like 

zwitterion functionalized CNTs in PA matrix from 0 wt% to 20 wt%; meanwhile, ion rejection ratio was 

comparable at ~98% (using 1000 ppm Na+ feed and an operational pressure of 36.5 bar). [352] The TFN 

membranes with adding CNTs which were modified with diisobutyryl peroxide exhibited a good 

compatibility between CNTs and PA, with improved hydrophilicity and charge of membrane surface. 

Increasing the amount of CNTs in MPD aqueous solution from 0 wt% to 0.1 wt% led to a change of water 

flux from 14.9 LMH to 28.1 LMH with a relatively high rejection of >90% (2000 ppm NaCl feed and 16 

bar). The as-prepared TFN membrane demonstrated an improved antifouling property to Ca(HCO3)2 and 

BSA; as well as antioxidative property when exposed to chlorine. [348] Some simulation data suggested 

separation performance of MMMs with excellently aligned CNTs could reach several orders of magnitude 

greater than experimental data. [352] However, this has encountered practical difficulty in reaching and 

requires further research effort.  

Fig. 13. Schematic illustration of fast water transport in CNTs-incorporated nanocomposite membrane. 

[349] 

Special research interest has been attracted on application of graphene oxide (GO) in fabrication of water 

treatment membranes, [353-355] owing to its special inherent properties, e.g. great surface area, large 

amount of hydrophilic functional groups, good mechanical strength, and ability to inhibit bacterial growth 

upon direct contact with cells. The coating of GO onto preformed membrane surface has been proven with 

improved chlorine resistance and antifouling property. [210] However, such coating layer may not be stable 

over long-term operation and most likely hinder water transport thus sacrificing fast water permeation 
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through membrane. In recent years, inclusion of GO nanosheets in polymer matrix to form RO membranes 

was started for study. [356, 357] The TFN membrane formed after IP process, in which GO was introduced 

in reactant solution, was seen not only improved hydrophilicity and surface charge, but also reduced 

thickness and roughness of surface layer. Thereby, it achieved a maximal water flux of 16.6 LMH, which 

was ~80% greater than the flux of TFC membrane (at 2000 ppm NaCl feed and 15.5 bar); accompanied with 

strong anti-biofouling property (to Pseudomonas aeruginosa) and chlorine resistance (in 2000 ppm NaOCl 

solution for 24 h). [358] 

Differently from introduction of single type of fillers into MMMs as aforementioned, blending and 

subsequent incorporation of various inorganic fillers may combine unique merits from each component and 

potentially strengthen separation properties. [104, 291, 312, 359] For instance, use of TiO2-coated 

MWCNTs could cause low agglomeration in casting polymer and good comparability to polymeric matrix. 

[312] The TiO2-coated MWCNTs MMM exhibited superior water flux to the pristine polymer membrane 

and solely MWCNTs or TiO2-incorporated MMMs. Meanwhile, the best anti-biofouling property was 

accompanied, which was induced by its favourable hydrophilicity, surface roughness and synergistic 

photocatalytic activity. [312] Incorporation of TiO2-decorated rGO into active layer of PA TFN could 

improve membrane hydrophilicity, decrease surface roughness and in turn enhance separation performance. 

[359] With 0.02 wt% TiO2/rGO, the TFN membrane showed a flux of 51.3 LMH and NaCl rejection of 99.5% 

against 2000 ppm NaCl feed at an operation pressure of 15 bar; while the TFC and the TFN with 0.005 wt% 

TiO2 or GO exhibited only ≤43.3 LMH and approximately 98%. [359] Moreover, TiO2/rGO, working as a 

protective layer, largely increased chlorine resistance of the TFN membrane, ascribed to the chemical 

interaction between functional groups derived from TiO2/rGO and PA, which hindered the replacement of 

hydrogen with chlorine on amide groups. [359] Lee’s group reported the mixture of acid-functionalized 

CNTs and GO as filler materials was able to facilitate good dispersion of larger amount of carbon 

nanomaterials in polymer matrix, thus improving membrane mechanical property. [291] Until the loading of 

CNTs/GO reached 0.02 wt%, increasing water flux of TFN membrane did not encounter a decrease of salt 

rejection, thanks to the surfactant effect of GO; however, the TFN membrane with 0.01 wt% CNTs or GO 

alone suffered a dramatic decline in NaCl retention. [291] Due to the inclusion of CNTs and GO both of 
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which can trap free radicals, the resultant TFN membrane had a stable performance with marginal change in 

rejection and flux after 40 h exposure to chlorine (500 ppm). [291]  

So far, a significant progress has been reported regarding to the synthesis of MMMs with a wide range of 

inorganic materials. Nevertheless, the majority of them are focusing on the incorporation of single type of 

fillers. The nanocomposite with multi-components, which has not been well explored yet, may be an 

effective way to potentially override trade-off tendency between permeability and selectivity with 

remarkable chemical and fouling resistance. This would be seen as a growing research field in the future. 

Moreover, to successfully meet the expectation on superior separation derived from MMMs, it is necessary 

to enhance uniform dispersion of inorganic fillers in polymeric matrix and stability of composite membranes 

over long-term operation. Better fundamental understanding on the transport mechanism through MMMs 

will greatly benefit the optimization of membrane design for different water treatment purposes.  

3. Forward osmosis membranes 

3.1 Polymeric membranes 

An ideal FO membrane is expected to consist of an active layer, which features by high water permeability 

and low reverse solute permeation, and a support layer, which allows high mass transfer and reduces 

concentration polarization; accompanied with good antifouling property, chemical resistance and 

mechanical stability. [20] Especially, for desalination purpose, an RO-like active layer is required due to its 

capacity to rejecting NaCl. FO membranes with NF-characteristic active layer have also been explored, 

which can be used to treat the feed contaminated by multivalent ions or other large molecules. Among a 

number of polymeric materials that have been investigated so far in fabricating FO membranes, current 

research foci are on cellulosic derivatives, PA, polyelectrolytes, etc. [12, 23-25]  

3.1.1 Cellulosic derivatives 

CTA FO membranes commercialized by HTI, [31] allows greater water flux accompanied with good salt 

rejection of >95%, in comparison with the use of commercial RO membranes. [30] However, its induced 

flux in FO process was reported to be much lower than the theoretical value, [360] which is generally 
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ascribed to external concentration polarization (ECP) and especially internal concentration polarization 

(ICP). [12, 20] ECP can be reduced by optimizing fluid hydraulic status (e.g. shear and turbulence); whilst 

ICP is dominated by membrane structure. [361] In recent years, there has been a significant development of 

CA, CTA or related FO membranes either in the module of flat sheet or hollow fibre; [362-371] which are 

generally fabricated by phase inversion, followed by heat annealing treatment. Chung's group reported 

“double-skinned” CA FO membranes comprising two thin selective layers, mechanically supported by a 

porous sublayer (as shown in Fig. 14). [364, 365, 370] A transition sublayer was also observed between the 

thin dense layer, which ensured solute rejection and allowed water transport, and the highly porous bulk 

support. Both experimental and modelling studies have proven the use of polymer membranes with this 

unique “double-skinned” structure was capable of reducing fouling and ICP phenomenon and enhancing 

separation performance. [364, 365, 372]  

Fig. 14. A schematic diagram and FESEM images of double-skinned CA membrane cast on glass plate and 

phase transition in water; which is consisting of double selective skins, transition sublayers, and a porous 

bulk support (CS is denoted as cross-section of membrane). [365] 

In the phase inversion preparation of cellulosic derived polymer FO membranes, polymer or solvent type, 

dope composition, evaporation time, heat annealing, casting substrate, and coagulant bath, etc., greatly 

affected membrane structures and performances. [362, 365-369, 373, 374] The double-skinned membrane 

with a small St (54 µm) could be created by casting CA (22.5 wt%)/acetone/NMP solution on a glass plate 

and immediately dipping it into tap water bath. [364, 365] Even though both selective layers were smooth 

without any visible pores under SEM characterization, analysis concluded the layer facing air (referred as 

top layer) was looser than the layer adjacent to glass substrate (referred as bottom layer). By using glass 

plate during casting, introduction of an intermediate immersion in NMP/water bath before dipping into tap 

water even further reduced St to 51 µm, indicating lower ICP in FO. [365] Change of glass casting substrate 

into Teflon one resulted in a relatively dense top layer supported by a fully porous bottom, attributed to 

unfavourable hydrophilic (polymer) – hydrophobic (substrate) interaction. [365] When substituting CTA for 

CA in solvent of acetone/NMP during phase inversion, the favourable polymer’s hydrophilic interaction to 
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glass casting substrate was impeded; thus forming a relatively dense top layer, a bottom layer with small 

pores, as well as a highly open-cell porous sublayer. [366] Use of dioxane/acetone solvent caused 

appearance of less porous sublayer as well as relatively dense top and bottom layers in the CTA membrane. 

[366] With including acetic acid in dioxane/acetone, it formed complexes with dioxane and acted as a pore 

forming agent, thus increasing free volume of dense layer and open porosity of sublayer. When using 2 M 

NaCl and DI water as draw and feed solution, respectively, the CTA flat sheet membrane fabricated from 

dioxane/acetone/acetic acid (before heat annealing) exhibited higher flux, ~20 LMH; whereas approximately 

4 LMH was recorded for that casted from dioxane/acetone. [366] Other pore forming agents, i.e. lactic acid, 

maleic acid or zinc chloride, have also been selected for study; which induced an increase of salt penetration 

along with enhanced flux during separation. [366, 374] Following phase inversion, thermal annealing 

treatment of freshly prepared membranes was able to tighten voids and rearrange polymer chains thus 

affecting membrane microstructures and performances. [364, 365, 367, 369] With 15 min heat annealing at 

90 °C, the rejection of CA flat sheet membrane to 200 ppm NaCl feed reached 92% at 5 bar; this was 80% 

improvement as compared with no heat treatment after phase inversion. [365] Two step heat treatment, 

including 60 °C for 60 min followed by 95 °C for another 20 min, could significantly reduce pore size and 

create dense outer skin of CA hollow fibre; thus it was preferred over one step heating at 60 °C for 60 min. 

As compared with 24.6% (no heat treatment) and 32.7% (one step heat treatment), the membrane NaCl 

rejection increased up to 90.2% (two step heat treatment); whilst the corresponding membrane pure water 

flux was reduced by over 90%. [367]  

Research suggested that use of CA favour formation of FO membranes with acceptable water flux but 

unsatisfactory rejection; on the other side, CTA FO membranes usually exhibited good rejection with 

deteriorated water flux. [363] To improve separation performance of FO membranes, another effective 

strategy is to investigate suitability of other cellulosic derived polymeric materials, except conventional CA 

and CTA. For instance, the content of functional groups in cellulose ester, e.g. hydroxyl, acetyl, and 

propionyl or butyryl, greatly influenced separation characteristics of prepared FO membranes. [375] 

Cellulose esters with hydrophobic groups exhibited good salt rejection, ascribed to low water solubility and 

hydrated free volume of polymer; whilst a high degree of hydrophilic groups endowed cellulose ester 
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membranes with high salt passage. [375] Because of the presence of propionyl functional group in cellulose 

acetate propionate (CAP), the resultant membrane had small equilibrium water content, salt diffusivity and 

partition coefficient, thus achieving low reverse salt flux. [363] A dual-layer hollow fibre membrane made 

of CA and CAP with an almost equal degree of acetyl and propionyl substitution exhibited a water flux of 

17.5 LMH associated with a reverse salt flux of 2.5 gMH (g/m2. h) in PRO mode by using 2.0 M NaCl and 

DI water as draw and feed solution. [363] Its overall FO performance was superior to those of CA-based flat 

sheet or hollow fibre FO membranes. [363, 365, 367] 

As can be seen, some improvement has been made in separation performance of cellulosic derived polymer 

FO membranes. Effort is still being made to contribute to understanding of the correlation between 

membrane structure and performance. [376] A concept of sublayer-free thin films was demonstrated; that a 

71-nm-thick CA membrane could largely minimize IPC, thus achieving superior water flux of ~22 LMH in 

simulated seawater FO desalination using 2 M NaCl draw solution. [376] Nevertheless, the poor mechanical 

strength of those thin films is not sufficient for practical application. So far, the majority of studies relating 

to CA derived membranes have emphasized water permeation and salt retention; little touched other aspects, 

e.g. antifouling property. [377] It is known that some flaws exist when using cellulosic derived materials, 

such as limited stability to pH, temperature and microorganisms. [12] Thus systematic experiment is 

necessary to verify the stability and performance of newly developed CA derived membranes in long-term 

FO operation under different conditions, i.e. by treating complex feed solution, varying pH of draw or feed 

solution or altering operation temperature. 

3.1.2 Polyamide and related polymers 

TFC RO membranes have been investigated for FO application; a high salt rejection was observed, but 

severe ICP and low flux occurred. Currently developed TFC FO membranes have a similar structure to that 

of TFC RO membranes, a porous support and a selective active layer mostly fabricated via an IP reaction. 

The structure of support has shown to greatly affect formation of active layer and in turn FO membrane 

performances; whilst it is a crucial factor controlling ICP during FO. On the other side, the reverse salt flux 

and salt rejection of TFC membrane are mainly governed by instincts of selective layer. The positive effect 
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arising from superior transport properties of active layer is as important as support structure. Therefore, 

current research targeting at fabrication of high-performance TFC FO membranes is being driven towards 

optimization of support structural characteristics and active layer transport properties.  

3.1.2.1 Effect of support properties on membrane performances  

Table 3 summarizes the recent development of TFC FO membranes made on various supports, including 

CAP, CTA, PES, and PSf. Their FO performances were also listed in terms of AL-FS mode (FO mode) and 

AL-DS mode (PRO mode). A TFC FO flat sheet membrane features a thin selective layer atop of a flat 

porous polymeric support, which is usually fabricated via phase inversion with/without a thin non-woven 

fabric. [378] More recently, nanofiber mat (e.g. prepared via electrospinning technique) was suggested as a 

promising support to minimize ICP, attributed to an intrinsically great porosity and low tortuosity. [379-384] 

CNTs Bucky-papers were also tested as support candidates due to their good flexibility, strength and 

porosity; whilst some other low cost and highly porous materials such as metal oxide nanotubes and metal 

forms were recommended for future research. [385] In parallel to the advances of TFC flat sheet module, 

hollow fibre configuration was widely studied thanks to its advantages, e.g. high packing density, enhanced 

flow pattern and self-supported structure. [386, 387] It has been found to produce much higher flux under 

the same driving force than the flat sheet membrane module. [388-391] The support structure of hollow fibre 

could be tuned by varying spinning parameters, such as air gap and composition of bore fluid, using dry-jet 

wet spinning method. [392]  

Table 3. Overview of the separation performances and testing conditions of TFC FO membranes fabricated 

on different support materials. 

 

Similarly to the requisites of supports for fabricating high-performance PA TFC RO membranes, the 

sublayers of TFC FO membranes should possess a good hydrophilicity, structure stability and mechanical 

strength. [52, 393] The stability to chemicals, temperature and oxidation as well as resistance to foulants 

could extend their potential use to other harsh industrial environment apart from desalination. [394-396] 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



49 
 

Furthermore, supports must be thin and highly porous with low tortuosity, thus being able to assist in 

minimizing degree of ICP. [397] Regarding to that, alteration of support structures and properties was 

suggested as a route, including reducing thickness, adjusting porous structure and tuning hydrophilicity. This 

might be achieved by tailoring a series of parameters in support synthesis, e.g. polymer concentration, 

solvent composition, use of additives or functionalization. [397-403] Use of co-casting technique, 

simultaneously casting of two layers of polymer solution with double-blade, was able to produce favourable 

structured supports to reduce ICP; the resultant TFC FO membranes showed enhanced water flux with 

relatively low reverse salt flux. [404-406] Properties of selected non-woven fabrics underneath polymeric 

sublayer significantly impacted uptake of polymer solution and their adhesion to polymer. [407] Selecting a 

fabric with high tortuosity, large thickness and low porosity led to a reduction in the water flux of FO 

membrane. [407] Moreover, addition of foreign components into substrate casting solution could promote 

construction of favourable substrate properties. For instance, inclusion of lignin content in PSf substrate 

enhanced its bulk porosity and reduced St, providing shorter diffusion pathway and enhancing TFC 

membrane performance. [407] Using diethylene glycol as a pore-forming agent in PSf/sulphonated poly 

(ether ketone)/NMP casting solution, greater porosity and broader pore size distribution were created, which 

helped decrease resistance of support to solution in FO but maintaining comparable salt reverse flux. [393] 

Introduction of PEG in CAP substrate preparation could not only enhance pore connectivity and avoid 

macrovoids, but also establish a favourable interaction with casting glass plate. The observed features of 

resultant support, highly porous bottom and tight top surface, was suitable for fabricating high performance 

TFC FO membrane. [408]  

A support of TFC membrane with macrovoids (or finger-like) structures was able to facilitate water 

transport and promote ICP reduction in FO. [397] However, those porous structures might become 

mechanically weak points and worsen membrane separation under continuous water flow or backwashing in 

practice. [389, 392] High porosity of support might also increase difficulty in forming an excellent active 

selective layer with required transport properties. [397] In contrast, the sponge-like structure, consisting of 

small pores surrounding by dense walls, could be favourable to form an integral thin active layer and 

exhibited advantageous mechanical stability over the finger-like feature; but, it increased resistance to mass 
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transfer. [378, 389, 397] Experimental works suggested the ideal support with a sponge-like thin layer on 

top of a finger-like sublayer would be crucial in fabricating high performance TFC FO membranes. [29, 378] 

Recently, nanofiber support layers with a scaffold-like and interconnected porous structure have been shown 

promising characteristics to overcome the main obstacle of sponge-like structure. [379, 380, 382] The 

nanofiber-supported PA TFC membranes exhibited much lower St (~80µm), in relative to a commercial HTI 

FO membrane (St = 620 µm); thus 5-fold increase of flux was observed in FO mode by using 0.5 M NaCl as 

draw solution and DI water as feed solution. [382] 

Chung and co-workers suggested hydrophilicity and thickness of support be more critical factors in 

controlling water transport; [389, 393, 399] the TFC membrane atop of a hydrophilic and fully sponge-like 

porous substrate favoured water flux than that supported by a hydrophobic and finger-like porous substrate. 

A number of hydrophilic materials have been explored for preparing or modifying  supports, e.g. sulfonated 

polysulfone, copolymer made of polyethersulfone and polyphenylsulfone (PESU-co-sPPSU), sulphonated 

poly(ether ketone), polydopamine (PDA) or PVA. [393, 398, 399, 409-412] Using a support containing 

PESU-co-sPPSU, the TFC FO membrane exhibited 33.0 LMH water flux in PRO mode, when using DI 

water and 2 M NaCl as feed and draw solution; this was 19.5 LMH greater than that of FO membrane 

derived from the nascent support without sulphonated content. [399] Hydrophilic PDA was coated on a PSf 

support (PDA@PSf), enhancing smoothness and hydrophilicity coupled with reduced pore size and 

distribution. [410, 411] The PDA@PSf supported PA TFC membrane showed optimal water flux of 24 

LMH in PRO mode (2.0 M NaCl and DI water as draw agent and feed solution); which was significantly 

greater than 7.5 LMH by using the PSf-supported membrane. [411] However, highly swollen hydrophilic 

coating materials may not be perfect for use, due to poor mechanical stability. Moreover, when the modified 

support is too hydrophilic, its different swelling characteristics would cause a poor adhesion to active layer. 

[410] The strategy by covalently bonding the thin layer onto the support can improve stability. For example, 

use of acyl chlorides as linking molecules to react with hydroxyl groups on a hydrolysed CA support 

resulted in forming a high separation performance membrane with superior structure stability. [413, 414] 

However, the reverse salt flux of TFC membrane using TMC as a linking molecule could reach up to ~123 

gMH against DI water by running 3.8 M NaCl draw solution under PRO mode. More systematic 
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investigation may be carried out to explore other potential linking molecules for optimizing performaces of 

FO membranes and study their long-term physical stability.  

In recent years, some research effort has also been contributed to the preparation of supports with inclusion 

of fillers. [406, 415-422] Ismail’s group synthesized TFC membranes on top of TiO2-incorporated PSf 

support; which exhibited favourable structures for improving mass transfer and reducing ICP, thus enhanced 

water flux was observed in FO. [415-418] In BSA fouling test (under PRO mode), the TFC membrane with 

TiO2-embedded support could recover 92% flux after 30 min-rinsing under water flow; whereas the flux 

recovery for the PSf-supported counterpart was only 79%. [415] The TFC membrane with a support derived 

from blending of montmorillonite, potassium sulfonated polyether sulfone and PES outperformed the neat 

PES-based TFC membrane by a factor of over sixfold in terms of water flux with reduced reverse salt 

leakage flux in FO. [421] In addition to adjusting parameters during support preparation, introduction of 

porous materials is an alternative way altering pore structure, achieving small St and in turn minimizing ICP. 

For example, zeolites, which were incorporated in PSf, improved surface porosity, reduced contact angle, 

and decreased thickness of resultant support, thus providing effective water pathways and effectively 

controlling ICP in FO. [420] The TFC membrane using MWCNTs-PES support exhibited improved 

separation performance, due to the open and interconnecting pores within support as well as surface 

smoothness of separation membrane. Meanwhile, the incorporation of MWCNTs increased tensile strength 

of support, thus being favourable for fabricating fabric-free support. [419] Undoubtedly, in depth 

understanding should be promoted on the correlation among inorganic fillers, supports, and their supported 

TFC membranes. In addition to the fillers which have been reported in literature, the search may be 

broadened to other mesoporous or microporous inorganic materials.  

3.1.2.2 Effect of active layer on membrane performances  

Preparation of PA TFC FO membranes is similarly to that of TFC RO membranes; requiring optimization of 

IP, e.g. composition of monomers, reaction time, and air drying duration. Vankelecom and co-workers 

suggested both use of surfactant additive and drying time of excess amine solution on PAN support before 

reaction be two critical parameters for control. [396] Addition of SDS enhanced polymerization to form 
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uniform and highly crosslinked PA film, thus promoting membrane salt rejection from ~57% to over 95% 

without seriously compromising permeability. One the other side, removal of excessive amine solution 

before interacting with TMC led to the formation of less rough membranes with improved salt rejection. 

[396] The presence of cetyltrimethylammonium chloride (CTAC) could alter reaction of monomers and 

molecular aggregation of polymer, because of ionic interaction between CTAC and MPD in aqueous 

solution. [423] By increasing CTAC content, linear PA structure of active layer increased followed by more 

microcrystalline structure appearing; as a result, the water flux of PES-supported PA TFC hollow fibre 

membrane decreased despite higher reverse salt selectivity. [423] The post-treatment on TFC FO 

membranes using SDS/glycerol followed by thermal annealing facilitated removal of unreacted monomers 

from active layer, increased free volume size/fractional free volume and reduced membrane overall 

thickness; thus it was an effective way to improve flux without loss of rejection. [408]  

Another great challenge in FO is membrane fouling, nevertheless it was reported to be less severe and more 

reversible as compared to that in RO. Undoubtedly, the structures of supports significantly tailor 

characteristics of active layers and in turn fouling property of TFC FO membranes. The surface with high 

roughness and large leaf-like structures is more prone to accumulation of foulants, leading to a dramatic 

decline of flux and difficulty in flux restoration by physical cleaning. [402] As a commonly adopted strategy, 

modification of TFC FO membrane surface, e.g. by covalently linking with PEG, significantly reduced its 

propensity to various foulants due to existence of barrier sheltering surface from foulant adsorption. [424-

426] On the other side, attachment of functionalized silica on TFC membrane via covalent amide bonds 

between amine groups of functionalized nanoparticles and carboxyl groups of TFC surface improved fouling 

resistance and reduced adhesion to BSA or alginate; [427] which could be explained by the tightly bound 

hydration layer and neutralization of carboxyl groups on the TFC membrane surface. [427, 428]  

In general, AL-DS (PRO) orientation provides higher flux in relative to AL-FS (FO) mode, but might 

promote fouling if feed containing scalants/foulants due to their easy transport into porous supports of FO 

membranes. [388, 429] To alleviate scaling or fouling without losing water flux in AL-DS mode, a design of 

FO hollow fibre with double layers was recommended by Wang’s group; in which two active layers were on 
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the top and bottom sides of a highly porous support. [429] The hollow fibre membrane with RO and NF-like 

skins (Fig. 15a and b) fabricated on a PAI support after IP reaction and PEI modification exhibited superior 

water flux and reverse solute flux (41.3 LMH and 5.2 gMH against DI water using 2.0 M NaCl draw 

solution in AL-DS mode), [429] to those commercial HTI FO membrane and CA double-skinned 

membranes. [364, 365] Furthermore, the presence of NF-like layer on the support could largely enhance 

scaling resistance in AL-DS mode. The 2 h backwash recovered up to 96% of water flux from the CaHPO4-

scaled double-skinned hollow fibre; however, the flux recovery of hollow fibre membrane comprising a 

single RO selective layer was only 78% (Fig. 15c). [429] Latest work improved the approach without 

chemical modification of support but using polyelectrolyte LbL to form NF-like skin whilst keeping 

formation of PA RO-like skin layer. [430] The formed NF-like skin effectively avoided the direct contact 

between feed and support, thus avoiding transport of foulants, e.g. humid acid, dextran and lysozyme, and 

subsequent pore clogging. A stable water flux with less than 10% decline over 4 h was recorded for resulting 

double-skinned hollow fibre, whereas that for RO-skinned hollow fibre was as high as ~30% – 40% using 

the feed of 200 ppm foulant. [430] 

Fig. 15. SEM  images of cross-section of a double-skinned FO hollow fibre with (a) inner RO skin and (b) 

outer NF skin; (c) effect of cleaning on scaled double-skinned FO hollow fibre membrane (denoted as FO-

RO/NFs) and FO hollow fibre membrane with only RO active layer (denoted as FO-ROs) (scaling test was 

carried out by flowing mixture of CaCl2 and K2HPO4 as feed and 0.5 M NaCl as draw solution) (modified 

from the reference [429]). 

 

3.1.3 Polyelectrolytes 

Despite a difficulty existing in large scale production of LbL assembled polyelectrolyte membranes, they 

may offer good water flux and rejection to divalent ions accompanied with good solvent resistance and 

thermal stability. [431, 432] This group of materials has been regarded as suitable candidates in fabricating 

FO membranes with NF-like separation performances. Most current studies of LbL assembled 

polyelectrolyte FO films demonstrated flat sheet module by successive soaking of cation and anion 
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polyelectrolyte onto single side of flat support; later research extended to hollow fibre module. [430, 433] 

On the contrary to the commonly adopted single-skinned membranes, double-skinned LbL polyelectrolyte 

FO membranes (Fig. 16a) showed much better antifouling performance as compared to the single-skinned 

counterpart (Fig. 16b), by largely minimizing foulant clogging within porous support and then reduction of 

mass transfer. [434] Incorporation of antimicrobial Ag nanoparticles in LbL PAH/PSS FO membrane 

provided excellent antibacterial properties against both Bacillus subtilis and E. coli; and showed great 

potential to reduce biofouling in desalination. [310] 

The first study reported utilization of polyelectrolyte PAH/PSS multilayer FO membranes fabricated by LbL 

assembly method in 2011. [431] In AL-FS mode, a remarkable flux of 28.7 LMH was achieved by flowing 

1.0 M MgCl2 and DI water as draw and feed solution. Unfortunately, the severe reverse solute flux was 

more than 15 gMH under this condition. [431] Assembling greater bilayers of polyelectrolyte enhanced 

solute retention of resultant films; however, a reduction in water permeability was encountered. [431, 435-

437] Chemical crosslinking method may also improve separation performance as well as their long-term 

stability. [438] As compared to non-crosslinked membrane, the glutaraldehyde-crosslinked PAH/PSS FO 

membrane showed better MgCl2 rejection rate over a wide range of concentration. Especially, it could reach 

water flux of approximately 100 LMH against DI feed water using 2 or 3 M MgCl2 draw solution in AL-DS, 

strongly revealing their applicability for high flux FO application. [437] A subsequent exposure of 

glutaraldehyde-crosslinked PAH/PSS FO membrane to UV irradiation could future improve its rejection 

capacity to monovalent ion. [436] A highly crosslinked PAH/PSS membrane exhibited reverse salt flux as 

low as ~8 gMH flux and water flux of ~11 LMH in AL-DS mode by flowing relatively low concentration 

draw solution (0.3 M NaCl). [436]  

Just as important in CA asymmetric and PA TFC FO membranes, hydrophilicity and porosity of sublayers 

are essential in generating LbL polyelectrolyte FO membranes with improved performances. PAN was 

commonly selected as the substrate material; which was hydrolysed by NaOH to be negatively charged and 

hydrophilic for subsequent LbL assembly. Addition of inorganic fillers could alter characteristics of supports. 

For example, the presence of hydrophilic porous silica gel particles in PAN substrate layer significantly 
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increased water permeability of PAH/PSS LbL membrane; ascribed to porosity of silica gel and improved 

support porosity. [439] The LbL chitosan/PAA polyelectrolyte membrane on top of the support integrating 

PVA and functionalized montmorillonite clay was able to achieve 34 LMH water flux when using 2 M NaCl 

draw solution in synthetic wastewater treatment (AL-DS mode). [440] Careful control on the introduction of 

fillers into polymeric supports is highly required yielding desired performance, since high loading of 

inorganic particles caused agglomeration, decreased effective water transport through support, and 

deteriorated membrane separation performances. [439] 

Fig. 16. (a) Conceptual illustrations of double-skinned LbL membrane fabrication; (b) normalized flux for 

double-skinned LbL membranes under different fouling conditions (300 ppm dextran, 20 ppm alginate, or 

300 ppm alginate) (In the membrane symbols of “xLbL3-0”, “xLbL3-1”, “xLbL3-2”, and “xLbL3-3”, the 

two numbers are referred to the number of polyelectrolyte layers for the top and bottom rejection skins; 

“xLbL” represents crosslinked LbL membranes). [434] 

 

3.1.4 Others 

Since commercially developed by Celanese Corporation in 1983, polybenzimidazole (PBI), well known for 

its good chemical, mechanical, and thermal properties, has been employed as an attractive separation 

membrane material. [441, 442] Thanks to heterocycle imidazole ring, hydrogen bonding between PBI 

molecules and delocalization of proton of imidazole group make PBI self-charged in aqueous solution 

accompanied with high hydrophilicity. [443, 444] The first prepared PBI asymmetric FO hollow fibres via 

phase inversion yielded high rejection to divalent ions (i.e. MgSO4 >99%) and slightly lower monovalent 

salt rejection (NaCl ~97%) in FO against DI water using 2.0 M single salt draw solution. However, under 

that condition, the maximal permeation flux was merely 9 LMH. [442] In order to enhance both selectivity 

and permeation, modification would be carried out towards more hydrophilic PBI membrane with tunable 

pore sizes. The crosslinking of PBI hollow fibre with p-xylylene dichloride improved salt selectivity but it 

sacrificed water permeance. [443] Later studies further verified functionalization of PBI flat sheet 

membranes, e.g. activation by 4-(chloromethyl) benzoic acid and subsequent surface modification 
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with taurine, p-phenylene diamine (PD), ethylene diamine, and poly(acrylamide-co-acrylic acid) (P(Am-co-

AA)), finely increased negative surface charge, improved hydrophilicity, and adjusted pore sizes of 

membranes; thus promotion in separation performance was seen. [445-447] Especially, in addition to higher 

degree of NaCl rejection, the membrane treated by  P(Am-co-AA) and PD could induce water flux of 5.6 

LMH, which was approximately twofold increase to the nascent membrane, against 0.1 M NaCl solution 

driven by using 2 M NH4HCO3 draw solution across the permeate side of membrane. [445] Further 

experiment is needed with additional investigation on the effect of parameters in FO conditions, e.g. type or 

concentration of feed or draw solution and membrane orientation, on the modified membranes.  

Poly(amide-imide) (PAI), known as Torlon®, exhibits an excellent mechanical, thermal, and chemical 

stability; which has been utilized for fabricating FO membranes in the modules of flat sheet and hollow fibre. 

[28, 448-451] The first study exploring a simple chemical post-treatment by immersing PAI hollow fibre 

into polyethyleneimine (PEI) solution under moderate heating to initiate reaction between imides of PAI and 

amines of PEI; this formed positively charged hollow fibres with a NF-like thin layer. [448] When using 

0.5 M MgCl2 and DI water as draw and feed solution in AL-DS and AL-FS, the water fluxes of modified 

PAI membranes were around 13 LMH and 9 LMH, respectively, with a rejection of ~92%. [448] Using a 

dual-layer hollow fibre with PEI-crosslinked PAI outer layer supported by PES inner layer could avoid 

formation of a denser substrate, which negatively affected permeation flux during FO. The resultant fibre 

exhibited water flux as high as 27.5 LMH coupled with reverse salt flux of 5.5 gMH against DI water using 

0.5 M MgCl2 draw solution in AL-FS. [450] However, this modification of PAI layer by PEI increased 

positively charges on surface and might easily attract negatively charged foulants in feed; [449] coating of 

polyelectrolytes would be a versatile way to alter charges as well as tighten pores of active layer. Deposition 

of negatively charged PSS onto PEI-modified PAI hollow fibre decreased zeta potential and enhanced 

membrane resistance to protein foulant; stable flux of approximately 11 LMH against feed mixture of 

1000 ppm BSA and 2000 ppm Na2SO4 was observed in 4 h FO separation using 0.5 M Na2SO4 draw 

solution. [449] Similarly, the double-layer hollow fibre, consisting of an outer PEI-crosslinked PAI layer 

and an inner PES layer, was treated by multilayer deposition in a sequence of PSS/PAH/PSS. Due to PSS as 

last layer, the zeta potential of resultant fibre was reduced; meanwhile remarkably high water flux of 
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39.3 LMH with 13.8 gMH reverse salt flux was recorded in AL-DS (0.5 M MgCl2 and DI water as draw and 

feed solution). [451]  

As aforementioned in Section 2.1.4, AQP biomimetic membranes have been seen as potentially new 

generation water treatment membranes; however, they suffer some challenges, especially poor mechanical 

property under pressure for RO/NF purpose. Some recent studies explored their use in FO process, which is 

in principle driven by osmotic differential without use of hydraulic pressure. In the design of biomimetic FO 

membranes, several issues were identified in prior works. For instance, the activity of AQP should be 

sustained for effective water transport. Even though less mechanical strength is required in FO, the 

biomimetic FO membranes should be stable by preventing vesicles being peeled off via water flow in FO; 

thereby supports and vesicles normally need proper functionalization. Chung’s group applied 

proteopolymersomes consisting of AQP and ABA with methacrylate end group onto acrylate functionalized 

gold-coated polycarbonate tracked-etched (PCTE) support under pressure, followed by UV to initiate 

covalent bonding between functional groups of ABA and support. It created an ultrathin active layer on the 

support; which could facilitate water flux of ~18 LMH at AQP:ABA molar ratio of 1:400 when flowing 0.5 

M NaCl draw solution and ultrapure water feed. [275] However, a small amount of defects might still exist 

in the resultant membranes and a part of AQP could have lost function during that preparation. Following 

the similar strategy, the UV-crosslinked proteopolymersomes with acrylate and disulphide groups were 

immobilized onto the gold-coated PCTE membrane and then encapsulated by PDA-histidine coating. [278]  

Any defect between vesicles and pores of substrate would be reduced by using PDA coating. As compared 

to the aforesaid work with the same AQP:ABA ratio of 1:400, [275] the water flux was enhanced by around 

2-fold to 40 LMH (with 7.1 gMH salt reverse flux) when using 0.5 M NaCl and water as draw and feed 

solution (in PRO mode). However, the dramatic decrease (~25%) in NaCl rejection between its use under 

FO and NF conditions revealed the instability of membrane. To simplify complex preparation in creating 

stable biomimetic membranes, the LbL polyelectrolyte assembly method shows advantageous characteristics. 

After PAH-PSS/PAA assembly onto a hydrolysed PAN support, deposition of poly-L-lysine (PLL)-

protected proteoliposomes, and finally coating of PSS/PAA, the resultant membrane demonstrated a 
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satisfactory stability along with >25% higher permeability as compared to the counterpart without 

embedment of liposomes under agitation at 4 bar. [279] To further enhance the deposition of AQP-

embedded vesicles, magnetic nanoparticles were incorporated into them (Fig. 17a). [280] With the aid of a 

strong magnet during the deposition of PLL-encapsulated magnetic proteoliposomes, confocal laser 

scanning microscopy (CLSM) confirmed adsorption and coverage of liposomes on the membrane surface 

was greatly improved (Fig. 17b). The biomimetic membrane with 2% magnetic proteoliposomes exhibited 

83.5 LMH flux against DI water feed when using 1.5 M MgCl2 draw solution (in PRO mode), which was 

~70% improvement compared with the nascent membrane (49 LMH). [280] These high performance 

biomimetic FO membranes offer chance for revolution in the research field of water treatment membranes. 

Some promising progress has been made towards commercialization for practical use by Aquaporin A/S and 

its Singaporean subsidiary Aquaporin Asia Pte. Ltd. [27, 452] Special efforts are still needed to simplify 

fabrication and in turn reduce manufacturing cost. Low-cost production of active proteins and scale-up 

fabrication of non-defect biomimetic membranes would be other challenges during commercialization. 

Meanwhile, their long-term stability and integrity in permeation tests is urged for investigation in the future 

studies.  

Fig. 17. (a) Schematic representation of the fabrication process for the magnetic-aided LbL membrane; (b) 

representative CLSM images of liposome adsorbed LbL films as a function of deposition time, (i) with and 

(ii) without the magnetic driving force. Scale bar: 10 μm. [280] 

3.2 Mixed matrix membranes  

Differently from the significant development of inorganic-organic MMMs for RO desalination, it is a 

relatively early stage for their utilization in FO separation. Improvement in separation performances, 

including water permeation and salt retention, has been motivating research interest at inclusion of inorganic 

fillers in polymeric matrix. [453-459] Inspired by zeolite-PA TFN RO membrane, a similar approach was 

reported to fabricate zeolite-PA TFN membranes for FO purpose in 2012. [454] The water flux of PA TFN 

membrane with 0.1 wt/v% zeolite (in TMC/hexane) was overall around 50% higher than that of TFC 

membrane in either AL-DS or AL-FS mode; however, further increasing zeolite content in membrane 
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increased solute flux and in turn did not endow remarkably additional improvement in water permeation. 

[454] Similarly to zeolites, CNTs have been theoretically suggested in early work for their enormous 

potential in fabricating high performance water treatment membrane. [460] For the first time, experimental 

results proved the MPD-TMC TFN membranes incorporated with 0.1 wt/v% (in MPD aqueous solution) 

amine-functionalized MWCNTs exhibited water flux of 95.7 LMH and solute flux of 4.8 gMH, which were 

approximately 160% higher and 30% lower than those of the TFC FO membrane, respectively (2 M and 10 

mM NaCl draw and feed solution; in AL-DS); representing a dramatic improvement regarding to FO 

membranes. [455] This similar concept was further explored in the double-skinned configuration of TFN 

membrane to induce significantly lower ICP but higher water flux; additionally, much better antifouling 

property to humic acid was observed as compared with the single-skinned membrane. [457]   

Until now, only limited work has been initiated on integration of multiple types of fillers into polymeric 

matrix for fabricating FO membranes; [461] this is believed to provide additional opportunity to improve 

membrane separation. Moreover, the progress in utilization of MMMs for FO separation is still at its initial 

stage. Fundamental studies are needed to explicate the transport mechanisms governing this group of 

membranes; and facilitate optimization between loading of inorganic fillers and membrane separation 

performances.  

4. Conclusions and future perspectives 

RO process has been widely used for desalination for decades as one of the main technologies to tackle 

water shortage and scarcity crisis worldwide. Due to its simplicity and relatively low cost, RO technology is 

believed to play a crucial role in the water desalination in the future. The demand to reduce energy 

consumption and subsequent cost continuously has motivated research into exploration of RO membrane 

materials with high permeability and salt rejection. Significant interest also remains in discovering fouling-

resistant and chemical-stable RO membranes, as alterative strategy to reduce energy and cost in RO 

desalination. Meanwhile, the research on FO separation, as an osmotically driven process, has blossomed in 

the last few years. FO process has shown vast potential in various applications such as desalination, 

wastewater treatment, and food processing. Note that the water flux of FO membranes is still unsatisfactory 
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as compared with RO desalination process under the similar theoretical applied pressure. In the short run, 

FO is suggested as a potential pre-treatment integrated into conventional RO desalination process to remove 

soluble species and in turn help improve quality of water product, including enhanced removal of boron and 

trace organic compounds. [462] In recent years studies have been focused on the improvement in water 

permeability and salt retention of FO membranes. FO and RO membranes, made of cellulosic ester, 

polyamide, zeolite-polyamide or aquaporin (Table 4), are commercially available in market; each of them 

has its own advantages and disadvantages. Research will continue on exploring RO and FO membranes with 

superior properties.  

Table 4. Summary of commercially available RO and FO membranes developed thus far.  

In the case of RO polymeric membranes, the improvement of flux and rejection undoubtedly has been the 

focus of research, targeting at outperforming conventional RO membranes. Meanwhile, significant research 

has been conducted to address two main issues with current desalination membranes, e.g. chlorine stability 

and fouling resistance. More attention was paid to the development of high flux and high rejection PA or 

related TFC membranes although some membranes fabricated in other types of structures or materials were 

developed because of niche applications. With regards to those newly developed membranes, water 

permeability and rejection of monovalent and divalent ions have been investigated to some extent; but 

research is needed to look into their removal of other compounds such as boron or trace organic compounds, 

which are commonly present in the natural water environment. The performances of those novel RO 

membranes reported in the literature, in terms of salt rejection and water permeability, have not been far 

superior to those of currently commercial PA TFC membranes. [463] Moreover, because of lack of data 

from long term and large scale operation, their stability and performances in the real world are yet to be 

known. 

Compared to the research into novel polymeric materials, surface modification of commercial membranes 

by either chemical grafting/crosslinking or physical coating seems more preferable, ascribed to its relatively 

low cost and ease of operation. Especially, it may be more feasible for commercial implementation based on 

currently available membrane manufacturing processes. Until now, a variety of potential coating materials 
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have been investigated. In particular, some of the selected materials such as hydrophilic and biocompatible 

polyelectrolytes or zwitterionic materials have been found to improve not only separation performances but 

also antifouling property and chlorine stability. Despite some progress, there are still some issues associated 

with surface modification. For instance, in addition to pore blockage on the active layer, some modifiers 

such as polyelectrolytes may uptake water and then mask membrane surface, thus increasing concentration 

polarization and reducing water flux. The layer formed after modification should be ultrathin, which can 

largely avoid increasing transport resistance and sacrificing water permeability. Good chemical and 

mechanical stability must be sustained for long-term operation when using those modified membranes; 

which have not been studied in depth in most cases. As compared with physical surface coating, chemical 

grafting would be a more favourable approach to achieve that. The surface coating of nanoparticles such as 

Ag and Cu could largely maximize the contact between antibacterial materials and foulants, showing 

advantageous aspects as opposed to the adoption of traditional MMMs or direct addition of nanoparticles 

into feed of water treatment processes. Importantly, the route using surface modification makes the recharge 

of those depleting antimicrobial materials feasible to operate. From a more practical perspective, the quest 

on the observation on the stability and efficiency of those modified membranes over long term should be 

continued. Moreover, there is an urgent need to simplify their preparation process and reduce related cost in 

large scale manufacturing. 

Mixed matrix membranes (MMMs) with nanostructured fillers, taking advantages of distinct characteristics 

of each phase, have offered exceptional performances in terms of permeability, rejection, chlorine and 

fouling resistance for RO desalination. Until now, tremendous progress has been made as seen from the 

published laboratory work; some conclusive findings have driven their practical application and 

commercialization. For example, zeolites-PA TFN membranes have been successfully commercialized. It is 

believed that enormous market potential also exists in MMMs with other inorganic fillers. The class of 

carbon nanomaterials such as CNTs and GO stand out as interesting fillers and they have achieved some 

exciting results in the fabrication of MMMs despite some hurdles yet to be overcome. For example, if proper 

orientation of CNT pore opening to flow direction, such RO MMMs may have extremely high permeability, 

potentially several orders of magnitude greater than current membranes; however, this is difficult to achieve 



62 
 

at a reasonable cost for large scale fabrication. Additionally, the integrated use of multiple types of fillers is 

expected to further advance performances of MMMs. Some challenges line in the preparation of MMMs, 

including uniform dispersion of inorganic particles into polymeric matrix as well as improved interfacial 

correlation between polymer and fillers. To optimize the preparation process, a holistic understanding on the 

separation mechanisms of MMMs is necessary; on the other hand, the use of these membranes in treating 

real water will provide reliable data on their practical performances. The safety issue by using such 

nanostructured materials in separation membranes should also be well investigated in the future work. Last, 

but not least, it requires careful consideration on their suitability into current membrane modules and 

manufacturing process as well as cost of producing such nanostructured materials and membranes.  

In recent decade, some breakthroughs have been reported in the development of FO membranes, such as 

using phase inversion (e.g. CA asymmetric membranes), IP (e.g. PA TFC membranes), and LbL assembly 

(e.g. polyelectrolyte multilayer membranes). For instance, double-skinned FO membranes, featuring two 

selective skin layers and a fully porous support, have been theoretically and experimentally shown to induce 

low fouling propensity and minimize ICP. Similarly to RO membranes, ideal FO membranes are expected to 

have the characteristics of high water permeability and salt retention, in addition to good antifouling 

property and chemical stability. The use of FO membranes with low reverse salt flux would also reduce the 

loss of draw solution during FO. It is known that FO membranes need small values of structural parameter 

(St) (e.g. <200 µm), which reflects the thickness, porosity and tortuosity of FO membrane supports, thus 

minimizing ICP. [33] Despite some debate, it is generally accepted that highly porous, hydrophilic and thin 

support helps achieve low St. Note that a small St value indicates low transport resistance within the 

structure, which may sacrifice mechanical strength of membrane. Suitable mechanical strength of 

membranes is essential to sustain their performances under shear forces induced by cross-flow over 

membrane surface. Some prior works initiated interest in use of nanofibers and incorporation of porous 

materials, which may further be explored in future research. In addition, the structures of supports strongly 

impact the formation of active layers with desirable transport properties. A much better understanding of 

correlation between supports and thin layers will promote optimization of materials selection, membrane 

structure, and fabrication process. Meanwhile, most of current studies focus on the testing of newly 
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developed FO membranes (in FO or PRO mode) using DI water or low concentration of salt solution (e.g. 

NaCl) as feed even though they are intended for practical applications in water treatment or desalination. 

Thus it is necessary to verify their performances using actual feed water for a specific application. 

Especially, when using the feed contaminated with foulants or scalants, the fouling on FO membranes 

requires detailed investigation.  

Since 1970s, the concept of osmotic power has attracted research attention. PRO membranes used for that 

purpose share some similarity to FO membranes, but they require greater mechanical strength due to 

hydraulic pressure involved. [49] Seen from the current development of membranes [464-474], little 

information has been available on mechanical stability or durability in relation to PRO application. The 

continuing research may provide more insight into PRO operation and PRO membrane design. 

Biomimetic membranes have shown remarkable performances for potential application in both FO and 

RO/NF and thus captured a great deal of research interest. They are believed to have opened an avenue for 

fabricating high-performance water treatment membranes. Albeit some existing results have been achieved, 

the widespread application of biomimetic membranes still faces a number of challenges. It is crucial to 

further improve membrane mechanical strength and integrity for practical applications, including FO and 

RO. Moreover, more work should look into how to maximize the function of AQP during membrane 

fabrication and practical operation. Other issues remain in manufacturing cost and simplicity, and the 

difficulty in large-scale fabrication of defect-free biomimetic membranes also needs to be addressed.   
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Figure Captions 

 

Fig. 1. Schematic diagram illustrating the working principles of (a) reverse osmosis (RO) and (b) forward 

osmosis (FO) processes. Water flows in different directions in RO and FO (indicated by blue arrows); green 

arrow shows reverse salt diffusion from draw solution to feed in FO. Hydraulic pressure is used as driving 

force in RO, whilst osmotic pressure differential between feed and draw solution serves as driving force in 

FO. [20]  

 

Fig. 2. Cross-sectional SEM images of CA RO membrane (a; GE Osmonics CE), PA TFC RO membrane (b; 

Dow Filmtec SW30 XLE), and CTA FO membrane (c; HTI). [52] 

 

Fig. 3. Comparison of the membranes in terms of flux and rejection at the feed of 2000, 3000 and 5000 ppm 

NaCl, corresponding to 0, 30 and 60% recovery for a feed concentration of 2000 ppm NaCl at 15.5 bar (a) 

and 31.0 bar (b). “High-flux” and “Commercial” are denoted to the PA TFC membrane, which was prepared 

with 2.85 wt% o-aminobenzoic acid-triethylamine salt (o-ABA-TEA) and optimal post-treatment, and a 

commercial membrane, respectively (modified from the Reference [128]). 

 

Fig. 4.  (a) Oxidative polymerization of amino acid 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA) and 

surface adsorption resistance to organic matter imparted by the hydrated zwitterionic coated surface; (b) 

normalised flux of the original and modified SW30XLE RO membranes (“12 hr SW30XLE” and “24 hr 

SW30XLE” are referred to the SW30XLE RO membranes with a 12-hr and 24-hr coating) as a function of 

time during BSA/sodium alginate (100 ppm of each; 18 bar) fouling (the dashed part shows the treatment of 

water cleaning) (modified from the reference [170]). 
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Fig. 5. (a) Schematic representation of temperature responsive properties of poly(N-isopropylacrylamide) 

(PNIPAM) brushes grafted on TFC membrane surface; (b) repeated produced water flux results of grafted 

membrane as a function of applied pressure: after each cycle, the membrane was placed in flushed with 

lukewarm water (40 °C) for cleaning (modified from [194]). 

Fig. 6. Antifouling zwitterionic coating applied onto commercial RO membranes via iCVD. (a-b) Cross-

sectional SEM image of (a) bare and (b) iCVD coated RO membrane; (c) salt rejection and (d) water flux of 

bare and coated membranes; (e) surface coverage by V. cyclitrophicus on bare glass (black) and iCVD 

zwitterionic surface (orange) and relative fouling index F1 (blue). The relative fouling index F1 (blue) is 

defined as the fraction of surface coverage for the coated surface compared to the bare glass control 

(modified from the reference [201]). 

Fig. 7. (a) Effect of chlorine concentration (ClT) and solution pH on membrane properties by two competing 

mechanisms of chlorination-promoted hydrolysis and N-chlorination; (b) performance of NF90 membranes, 

both virgin and chlorinated for 100 h at different ClT and pH (at 584.4 ppm NaCl feed and 6.89 bar). Salt 

rejection (%) shown by the numbers in white and water flux (LMH) shown by the numbers in parentheses; 

NP: membrane failed to perform (modified from the reference [225]). 

  

Fig. 8. (a) Schematic of antifouling and chlorine resistant properties of imidazolidinyl urea (IU)-modified 

membrane; (b) water fluxes and salt rejections of both virgin membrane and IU-modified membrane during 

the three operation cycles (at 2000 ppm NaCl and 15.5 bar). [243] 

 

Fig. 9. Water molecules in the feed solution penetrate the membrane in 3 steps: (1) passing from the feed 

solution to the vesicles through the aquaporin (AQP) water channel located at the polymer bilayer facing the 

feed solution, (2) passing from the vesicles to the support through the AQP located at the polymer bilayer 

facing the support membrane, and (3) penetrating the porous support into the permeate solution. Other 

solutes in the feed solution will be rejected. [284] 
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Fig. 10. Schematic for PA TFN membrane fabricated by dispersing N-[3-(trimethoxysilyl) propyl] 

ethylenediamine (AAPTS)-modified TiO2 nanoparticles in MPD aqueous solution (modified from the 

reference [295]). 

 

Fig. 11. SEM (left) and TEM images (right) of TFN membrane with 0.1 w/v% zeolites added in MPD 

aqueous phase (a); and TFN membrane with 0.1 w/v% zeolites added in TMC hexane organic phase (b) 

(modified from the reference [307]) 

 

Fig. 12. (a) Schematic illustration of hypothesized mechanism of MCM-41-incorporated TFN membrane (1 

shows the feed solution containing NaCl; 2 shows the PA active layer with MCM-41 or nonporous silica; 3 

denotes the porous support); (b) water flux and salt rejection of TFN membranes with MCM-41 

nanoparticles at 20.7 bar and 2000 ppm NaCl or Na2SO4 feed. [300] 

Fig. 13. Schematic illustration of fast water transport in CNTs-incorporated nanocomposite membrane. [349] 

Fig. 14. A schematic diagram and FESEM images of double-skinned CA membrane cast on glass plate and 

phase transition in water; which is consisting of double selective skins, transition sublayers, and a porous 

bulk support (CS is denoted as cross-section of membrane). [365] 

Fig. 15. SEM images of cross-section of a double-skinned FO hollow fibre with (a) inner RO skin and (b) 

outer NF skin; (c) effect of cleaning on scaled double-skinned FO hollow fibre membrane (denoted as FO-

RO/NFs) and FO hollow fibre membrane with only RO active layer (denoted as FO-ROs) (scaling test was 

carried out by flowing mixture of CaCl2 and K2HPO4 as feed and 0.5 M NaCl as draw solution) (modified 

from the reference [429]) 

Fig. 16. (a) Conceptual illustrations of double-skinned LbL membrane fabrication; (b) normalized flux for 

double-skinned LbL membranes under different fouling conditions (300 ppm dextran, 20 ppm alginate, or 

300 ppm alginate) (In the membrane symbols of “xLbL3-0”, “xLbL3-1”, “xLbL3-2”, and “xLbL3-3”, the 
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two numbers are referred to the number of polyelectrolyte layers for the top and bottom rejection skins; 

“xLbL” represents crosslinked LbL membranes). [434] 

 

Fig. 17. (a) Schematic representation of the fabrication process for the magnetic-aided LbL membrane; (b) 

representative CLSM images of liposome adsorbed LbL films as a function of deposition time, (i) with and 

(ii) without the magnetic driving force. Scale bar: 10 μm. [280] 
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Table Captions 

 

Table 1. Summary of selection of monomers or reactants for fabricating active layers of TFC membranes 

and their properties reported in recent literature.  

 

Table 2. Fabrication and properties of recently reported MMMs for water desalination.  

 

Table 3. Overview of the separation performances and testing conditions of TFC FO membranes fabricated 

on different support materials. 

Table 4. Summary of commercially available RO and FO membranes developed thus far.  
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Table 1.  

Aqueous phase monomers Organic phase monomers Properties Ref. 

m-phenylenediamine (MPD); 

 
3,5-diamino-N-(4-aminophenyl) benzamide 

(DABA) 

 

trimesoyl chloride (TMC) 

 

More flexible, more hydrophilic, 

smoother and thinner as increasing 

DABA concentration; improved 

flux from 37.5 LMH (0 w/v% 

DABA) to 55.4 LMH (0.25 w/v% 

DABA) with salt rejection of 98.4% 

- 98.1% (20 bar and 2,000 ppm 

NaCl solution). 

[124] 

dopamine 

 

trimesoyl chloride (TMC) 

 
 

Hydrophilic surface; lower flux and 

higher rejection at pH >6, by 

increasing reaction time and 

temperature, or monomer 

concentration; good chemical 

stability.   

[475] 

m-phenylenediamine (MPD) 

 
 

2,4,4’,6-biphenyl tetraacyl chloride 

(BTAC) 

 
2,3’,4,5’,6-biphenyl pentaacyl 

chloride 

(BPAC) 

 
2,2’,4,4’,6,6’-biphenyl hexaacyl 

chloride 

(BHAC) 

 
3,3’,5,5’-biphenyl tetraacyl chloride 

(BTEC) 

 
trimesoyl chloride (TMC) 

 

Decreasing film thickness and 

roughness in the order of MPD-

TMC, MPD-BTAC, MPD-BPAC, 

and MPD-BHAC; surface 

hydrophilicity in the order of MPD-

BTAC ≈  MPD-BPAC > MPD-

TMC > MPD-BHAC; 43.3 LMH, 

31.2 LMH, and 22.1 LMH for 

MPD-BTAC, MPD-BPAC, MPD-

BHAC compared with 54.1 LMH 

for MPD-TMC with similar 

rejection of ~99.0% at 15.5 bar and 

2000 ppm NaCl feed.  
Hollow MPD-BTEC fibre 

membrane featuring three-layer 

structure: a loose low crosslinked 

initial layer, a high cross-linked 

dense middle layer and a loose low 

cross-linked surface layer; lower 

flux and higher rejection by longer 

immersion time in MPD or higher 

concentration of MPD or BETC; 

increased rejection from ~47% to 

98% and reduced flux from ~17 

LMH to 4.5 LMH by increasing 

reaction time (7 bar and 1,000 ppm 

NaCl). 

[114, 

476]  

piperazine (PIP) 

 

3,3’,5,5’-biphenyl tetraacyl chloride 

(BTEC) 

 

Positively charged surface; higher 

rejection with reduced flux at 

greater monomer concertation; PIP-

BTEC: 56.6 LMH and 58% NaCl 

rejection; PIP-BHAC: 49.7 LMH 

and 59.6% (500 ppm NaCl and 4 

[477, 

478] 
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2,2’,4,4’,6,6’-biphenyl hexaacyl 

chloride 

(BHAC) 

 

bar).  

disulfonated bis[4-(3-

aminophenoxy)phenyl]sulfone 

(S-BAPS) 

 

trimesoyl chloride (TMC) 

 

Greater flux with reduced rejection 

at lower TMC or higher S-BAPS 

concertation; 55 LMH with NaCl 

rejection of 87.9 % at 15.5 bar and 

2,000 ppm NaCl; lower 

chlorination tolerance than MPD-

TMC TFC. 

[479] 

ethylenediamine (EDA) 

 
diethylenetriamine (DETA) 

 
hyperbranched polyethyleneimine (PEI)  

 

trimesoyl chloride (TMC); 

 
terephthaloyl chloride (TPC) 

  

Negatively charged surfaces for 

EDA-TMC and DETA-TMC; 

positively charged surfaces for PEI-

TPC and PEI-TMC; PEI-TMC, 

DETA-TMC, PEI-TPC, EDA-TMC 

membranes had fluxes of ~38 

LMH, 17.3 LMH, 12.4 LMH, and 

4.7 LMH with varied rejections 

depending on different ions 

(1,000 ppm feed and 4 bar). 

 

[125] 

m-phenylenediamine (MPD) 

 

trimesoyl chloride (TMC); 

 
5-isocyanato-isophthaloyl chloride 

(ICIC) 

 
chloroformyloxyisophthaloyl 

chloride (CFIC) 

 

Decreasing skin layer thickness, 

roughness and chlorine stability, as 

well as increasing adsorption and 

hydrophilicity in the order of MPD-

CFIC, MPD-TMC, MPD-ICIC; 

negatively charged membrane 

surface; 40 LMH, 48 LMH, 58 

LMH and rejection of >98% for 

MPD-CFIC, MPD-TMC, and 

MPD-ICIC (2,000 ppm NaCl feed 

solution and 16 bar). 

[132] 

m-phenylenediamine (MPD) 

  

chloroformyloxyisophthaloyl 

chloride (CFIC) 

  
isophthaloyl chloride (IPC) 

  
terephthaloy chloride (TPC) 

Improved separation by adding IPC 

or/and TPC in MPD-CFIC (~39 

LMH and 99.45%), using hexane 

(38.8 LMH and 99.23%), 

optimizing curing (42.5 LMH and 

99.46%) and post-treatment (41 

LMH and 99.41%) (35,000 ppm 

NaCl feed solution and 55 bar). 

 

[129] 
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m-phenylenediamine-4-methyl (MMPD) 

  
N,N’-dimethyl-m-phenylenediamine 

(DMMPD) 

  
m-phenylenediamine (MPD) 

 
 

 

chloroformyloxyisophthaloyl 

chloride (CFIC) 

 
trimesoyl chloride (TMC) 

 
 

Improved chlorine stability up to 

8000 ppm h; lower rejection ratio 

(~95%) and flux (~23 LMH) for 

MMPD-CFIC@CFIC-DMMPD, 
compared with MPD-TMC TFC 

(~36 LMH and 97%) (2,000 ppm 

NaCl feed and 15.5 bar). 

[134] 

m-phenylenediamine-4-methyl (MMPD) 

 

 
m-phenylenediamine (MPD) 

 

cyclohexane-1,3,5-tricarbonyl 

chloride (HTC) 

 
 

trimesoyl chloride (TMC) 

 

MMPD-HTC, MMPD-TMC, MPD-

HTC, and MPD-TMC membrane 

had rejections of 97.5, 98.3, 98.2, 

and 99.2%, and fluxes of 53.2 

LMH, 34.8 LMH, 89.6 LMH, and 

52.6 LMH (1,500 ppm NaCl feed 

and 15 bar); improved rejection and 

reduced flux of MMPD-HTC by 

increasing reaction (10 s - 20 s), pH 

(7.5 -9.5), HTC concertation, curing 

temperature and time; MMPD-HTC 

had a chlorine resistance of 

~3,000 ppm h and good stability 

over 3 months.  

[480] 

bisphenol A (BPA)  

 

 

trimesoyl chloride (TMC) 

 

Decreasing water permeance by 

increasing IP time and BPA 

concentration; more susceptible to 

humic acid foulant at pH = 3; lower 

fouling by TFC fabricated with 

2w/v% BPA in 10 s IP. 

[481] 

4-aminobenzoylpiperazine (4-ABP) 

 

trimesoyl chloride (TMC) 

 

Decreasing flux and salt rejection at 

greater 4-ABP concentration and 

curing temperature; increasing flux 

but lower rejection at higher TMC 

concentration;  NaCl rejection of 

~20% and flux of 46 LMH for the 

TFC prepared with 1% 4-ABP, 

0.25% TMC, cured at 70 °C for 

15 min (1,500 ppm NaCl and 4 

bar). 

[482] 

m-phenylenediamine (MPD) trimesoyl chloride (TMC) Smoother and enhanced negatively 

charged at greater BDSA content; 

[483] 
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2,2’-benzidinedisulfonic acid (BDSA)  

 
 

 

increased pure water flux from 22 

LMH to 45 LMH with NaCl and 

MgCl2 rejection of above 97.5% 

and 98.4% for TFC prepared with 

0% to 10% BDSA in MPD solution 

(at 16 bar). 

piperazine  (PIP) 

 
N-aminoethyl piperazine propane sulfonate 

(AEPPS) 

 

trimesoyl chloride (TMC) 

 

Increased size of nodular structures 

and hydrophilicity at greater 

AEPPS; improved flux from ~25.5 

LMH to 46 LMH with slight 

decrease of NaCl rejection from 

30% to 26% when AEPPS from 0 

wt% - 1.05 wt% (1,000 ppm NaCl 

and 6 bar); improved antifouling 

property by adding AEPPS. 

[135] 

triethanolamine (TEOA) 

 
 N-methyl-diethanolamine (MDEOA) 

 

trimesoyl chloride (TMC) 

 

Best pure water flux (16 LMH) for 

TFC membrane fabricated at 3 

w/v% LiBr in TEOA solution (6 

bar); lower pure water flux but 

improved rejection when adding 

LiBr in MDEOA solution; more 

hydrophilic surface by adding LiBr. 

[122] 

polyamine polyvinylamine (PVAm) 

  

isophthaloyl chloride (IPC) 

  

Rejection and water flux affected 

by PVAm and IPC concentration;  

good stability (~ 25 LMH and 93% 

rejection) for 90 days at 1,000 ppm 

MgSO4 and 6 bar. 

 

[484] 

branched polyethyleneimine (PEI) 

 

trimesoyl chloride (TMC) 

 

Composite hollow fibre; tightened 

skin layer, low pure water 

permeability and high rejection for 

composite with PEI of lower MW; 

higher pure water permeability and 

lower rejection when using high 

concertation PEI and low 

concertation TMC; performance 

with flux of 21.8 LMH and  

rejection of 96.7% (MgCl2), 41.2% 

(NaCl), 54.2% (Na2SO4) (at 2 bar 

and 1,000 ppm solution).  

[485] 

m-phenylenediamine (MPD) 

 
o-aminobenzoic acid-triethylamine salt  (o-

ABA-TEA) 

trimesoyl chloride (TMC) 

 

Greater flux and comparable 

rejection by increasing amine salt 

concentration; performance affected 

by post-treatment; ≥98% rejection 

and flux of 52 LMH for the 

optimized membrane with 

2.85 wt% o-ABA-TEA (15.5 bar 

and 2,000 ppm NaCl). 

By introducing 1.0 wt% o-ABA-

TEA, TFC had 75.4 LMH with   

99.41% salt rejection under 

desalination of synthetic seawater at 

[127, 

128, 

160] 
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m-aminobenzoic acid-triethylamine salt 

 
2-(2-hydroxyethyl) pyridine 

  
 4-(2-hydroxyethyl) morpholine 

 

55.2 bar; improved antifouling 

property.  

m-phenylenediamine (MPD) 

 
 

2,4,6-pyridinetricarboxylic acid 

chloride (PTC) 

 
trimesoyl chloride (TMC) 

 

A lower tendency towards bacterial 

attachment; best result of ~50 LMH 

and 92.5% rejection at 1,500 ppm 

and 13.8 bar. 

[486] 

m-phenylenediamine (MPD) 

 
1,3–diamino-2-hydroxypropane (DAHP)

 

trimesoyl chloride (TMC) 

 

Reduced ultrathin layer thickness 

and higher flux at 12.8% 

DAHP/MPD, whilst maintaining 

good rejection (96%-98%) (15 bar 

and 2,000 ppm NaCl). 

[126] 

bis-2,6-N,N-(2-hydroxyethyl) diaminotoluene 

 
 

trimesoyl chloride (TMC) 

 

 

Increasing rejection with lower flux 

by increasing monomer 

concentration, and polymerization 

time; good stability to 200 ppm 

NaOCl for more than 50 h. 

[487] 

melamine 

 

trimesoyl chloride (TMC) 

 

Reduced flux at higher 

concentration melamine, reaction 

time and curing temperature; better 

thermal and chlorine stability 

compared to PIP-TMC TFC 

membrane. 

[182] 

m-phenylenediamine (MPD) trimesoyl chloride (TMC) Improved hydrophilicity and 

antifouling without significantly 

[162] 
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MPD-terminated  polyethylene glycol  

(MPD-PEG-MPD) 

 
(MeO-PEG-MPD) 

 
 

 

 
 

affecting NaCl rejection (~95%). 

m-phenylenediamine (MPD) 

 
melamine 

 
MPD-terminated  polyethylene glycol (MeO-

PEG-MPD) 

 

trimesoyl chloride (TMC) 

 
 

Enhanced overall antifouling 

property for TFC membrane 

prepared with 1:1:0.5 w/w ratio of 

MPD: melamine: MeO-PEG-

MPD with flux of 38 LMH and 

rejection of 93% at 2,000 ppm 

NaCl and 14 bar.  

[488] 

piperazine (PIP) 

 

isophthaloyl chloride (IPC)  

  
trimesoyl chloride (TMC) 

 
 

Water flux and rejection of 60.0 

LMH and 51.8% for PIP-IPC at 

20.7 bar and ~1,462 ppm NaCl; 

lower permeability, greater 

antifouling property and fouling 

reversibility of PIP-IPC than PIP-

TMC. 

[164] 

m-phenylenediamine (MPD) 

 
 

1,2,4,5-benzene tetracarbonyl 

chloride (BTC) 

 
trimesoyl chloride (TMC) 

 
 

Optimized water flux and rejection: 

31.9 LMH and 98.8% (at 15.5 bar 

and 2,000 ppm NaCl); improved 

chlorine resistance.  

[229] 

piperazidine (PIP) trimesoyl chloride (TMC) Improved hydrophilicity, increased 

flux from 25.5 LMH to 41 LMH 

with slightly reducing rejection 

[489] 
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2,2’-oxybis-ethylamine (2,2’-OEL)  

  
 

from 30% - 18% by increasing 

amount of 2,2’-OEL (7 bar and 

2,000 ppm NaCl feed); good 

stability against fouling.  
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Table 2.  

Polymer matrix Inorganic filler Preparation method Properties (compared to parent polymeric 

membrane) 

Ref. 

PA Ag  IP with dispersing Ag in MPD aqueous 

solution and using MWCNTs-

incorporated PSf as support; cured at 

60–70 °C.  

Improved pure water flux (~20%) with 

comparable (88.1%) rejection when 

loading with 10 wt% Ag (2,000 ppm 

NaCl feed and 13.8 bar); enhanced 

surface hydrophilicity, antibacterial and 

antifouling properties.  

[104] 

PAI/PES TiO2 (20 ± 5 nm) Phase inversion with TiO2 in NMP/ 

1,4-dioxane solution of PAI/PEI. 

Improved hydrophilicity and antifouling 

property; increasing rejeciton and pure 

water flux with TiO2 loading; good 

chlorine stability. 

[311] 

 

PA TiO2 (20 nm) Dip coating support in TiO2 ethanol 

solution, followed by IP and cured at 

80 ºC. 

Greater hydrophilicity; increasing flux 

(21.7 LMH – 48.9 LMH) with slightly 

higher NaCl rejection (76% - 84%) than 

prestine one (12 LMH and 70%) (2,000 

ppm NaCl feed); greater flux recovery 

and antibacterial property.   

[490] 

PA AAPTS-TiO2 

(~21 nm) 

IP by dispersing functinalized TiO2 in 

MPD aqeous solution; cured at 70 ºC.  

Greater thermal stability; more 

hydrophilic and smoother; improved pure 

water fluxes (13 LMH – 27 LMH) than 

virgin one (12 LMH) at 2,000 ppm NaCl 

feed and 7.6 bar. 

[295] 

PVA carboxylated TiO2 

(~21 nm) 

Dip coating PVDF support in PVA 

solution containing functinalized TiO2; 

crosslinked and dried at 110 ºC. 

Improved interfacial adhesion beween 

filler and polymer; higher hydrophilicity; 

lower initial pure water fluxes but with 

good rejection and antifouling properties. 

[329] 

PA ZnO IP with dispersing ZnO in either TMC 

hexane solution or branched PEI 

aqueous solution; cured at 90 °C. 

Improved fluxes (23 LMH – 40 LMH) 

with slightly lower NaCl rejection (50.1% 

- 57.2%) compared with the control (22 

LMH and 58.4%) at 10 bar and 1,753 

ppm NaCl; better ZnO distribution 

uniformity by dispersion in PEI aqueous 

phase.   

[491] 

PA Silica (10-20 nm) IP by dispersing silica in MPD/ 

glycerol/NMP/SDS/TEA aqueous 

solution; cured at 80 ºC. 

Highest flux with 0.1 wt% of SiO2 (50 

LMH) with rejection of >90% (44 bar and 

11,000 ppm NaCl feed); greater 

hydrophilicity and roughness.  

[492] 

PA with sulfonated 

poly(arylene ether 

sulfone)  

hyperbranched 

aromatic 

polyamide-grafted 

silica  

IP; treated at 60°C. Comparable salt rejection (91%) and 

higher flux (78 LMH) than MPD-TMC 

PA membrane (27 LMH and 95%) at 

32,000 ppm NaCl feed and 55 bar; 

enhanced choline stability.  

[320] 

PA with sulfonated 

poly(arylene ether 

sulfone) 

hyperbranched 

aromatic 

polyamide-grafted 

silica 

IP by dispersing silica in 

MPD/sulfonated poly(arylene ether 

sulfone)/TEA in aqueous solution; 

treated at 60 °C. 

Higher water flux (34.5 LMH) with 

comparable salt rejection (97.7%) than 

MPD-TMC PA membrane (22.1 LMH 

and 98%) at 32,000 ppm NaCl feed and 

55 bar; enhanced choline stability. 

[493] 

sulfonated poly(arylene 

ether sulfone) 

mesoporous silica 

(100 nm) 

IP with adding silica in 

TMC/cyclohexane solution; post-

treatment. 

Increasing rejection and decreasing flux 

up to 1 wt% SiO2, followed by abrupt 

reduction of rejection and increase of 

flux; 32 LMH with 96.8% rejection for 1 

wt% SiO2 cured at 70°C (2,000 ppm 

NaCl and 15.5 bar). 

[318] 

PA MCM-41 (100 

nm) 

IP with adding MCM-41 in 

TMC/hexane solution; treated at 80 °C. 

More hydrophilic, negatively charged and 

rougher surface; better fluxes (33 LMH – 

47 LMH) and comparable rejection 

(>97.5%) at 20.7 bar and 2,000 ppm NaCl 

feed.  

[300] 
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PA mesoporous silica 

(164 nm) 

IP with adding silica in TMC/hexane 

solution; heat treatment.  

Greater hydrophilicity; comparable 

rejection (>96%) and greater fluxes (35 

LMH – 53 LMH) at 2,000 ppm NaCl feed 

and 16 bar. 

[301] 

PA ZIF-8 (~200 nm) IP with dispersing ZIF-8 in 

TMC/hexane solution.  

Increased flux and NaCl rejection (~51 

LMH and 98.5% for 0.4 w/v% loading at 

15.5 bar and 2,000 ppm NaCl feed 

solution); less crosslinked and more 

hydrophilic surface. 

[340] 

CA/PEG silica Phase inversion of CA/PEG acetone 

solution with adding silica alkaline 

solution.  

Better flux and rejection with adding 

silica; improved hydrophilicity, thermal 

and mechanical stability. 

[494] 

PA amine-

functionalized 

EMT zeolite  

IP with dispersing zeolite in aqueous 

solution; cured at 60 °C. 

Better flux (37.8 LMH) and comparable 

rejection (98.8%) at 55 bar and 32,000 

ppm NaCl feed. 

[339] 

PA octadecyltrichloro

silane-modified 

NaA zeolite (100 

nm) 

IP with adding zeolite in TMC/hexane 

solution; cured at 60°C. 
Better hydrophilicity; similar or greater 

fluxes (17.5 LMH – 41 LMH) and 

improved rejections (94% – 98.5%) (2000 

ppm NaCl feed and 16 bar). 

[302] 

PA silicalite (50-110 

nm) 

IP with adding zeolite in TMC/hexane 

solution; heat treated at 65 °C. 

Highest fluxes (9.9 LMH) and lowest 

rejection (50%) with 0.5 w/v% of zeolite 

in solution (at 2,000 ppm NaCl feed and 

34.5 bar). 

[287] 

PA NaA zeolite (250 

nm) 

IP with dispersing zeolite in 

TMC/hexane solution and using 

zeolite-PSf or pure PSf; heat treated at 

82 °C.  

More stable flux; improved hydrophilic 

and more negatively charged smooth 

surface.  

[103] 

PA NaA zeolite ( ∼

250 nm) 

IP with dispersing zeolite (0.2 wt%) in 

TMC/Isopar-G solution; post-

treatment. 

Post-treatment changed molecular 

structure of membranes; comparison with 

commercially SWRO membrane. 

[305] 

PA NaX zeolite (40-

150 nm) 

IP with dispersing zeolite in 

TMC/hexane solution; heat cured at 

70 °C. 

Smoother, more hydrophilic, and thinner 

membrane with larger pore sizes; 

improved fluxes (8.8 LMH – 13.3 LMH) 

and comparable rejection (~95%) at 12 

bar and 2,000 ppm NaCl feed. 

[306] 

PA NaA zeolite (70-

80 nm) 

IP with dispersing zeolite in 

TMC/hexane or MPD/aqueous 

solution. 

Greater fluxes (23 LMH – 33 LMH) and 

rejection (~97.5%) when loading of 

zeolite was ≥ 0.025 w/v% in organic 

phase (at 2,000 ppm NaCl feed and 16 

bar). 

[307] 

PA NaY zeolite 

(~250 nm) 

Pre-seeding assisted IP with dispersing 

zeolite in TMC hexane/ethanol 

solution. 

Compact and flat surface morphology; 

higher flux (17.3 LMH – 37.3 LMH) and 

comparable salt rejection (87.8% - 

97.6%) with loading of 0.05 wt% - 0.6 

wt% at 15 bar and 2,000 ppm NaCl feed. 

[308] 

PA NaY zeolite 

(~100-200 nm) 

IP by dispersing zeolite in MPD/CSA-

TEA/SLS aqueous solution; post-

treatment. 

Increasing flux from 39.6 LMH without 

zeolite to 74.2 LMH with 0.15 wt% 

zeolite; rejection ≥  ~98%; 85.9 LMH 

with 98.4% rejection achieved by 

optimizing post-treatment (at 2,000 ppm 

NaCl feed and 15.5 bar). 

[337] 

PA NaA zeolite and 

silicalite-1 (50-

150 nm) 

IP with dispersing zeolite in 

TMC/hexane; heat cured at 60 °C. 

Improved hydrophilicity; increasing flux 

from 20 LMH (without zeolites) to 33.9 

LMH (NaA) and 66.6 LMH (silicalite-1) 

with >95% rejection (16 bar and 2,000 

ppm NaCl feed); excellent acid and 

multivalent ion resistance by silialite-1. 

[338] 

PA zwitterion-

functionalized 

CNTs  

IP on PES layer after depositing of 

SWCNTs via vacuum filtration.  

Increasing water flux (23.8 LMH – 48.5 

LMH) and slightly changed rejection ratio 

(>93%) as increasing fraction of CNTs, 

compared with 11.5 LMH and 97.6% of 

pristine membrane (1,000 ppm Na+ feed 

and 36.5 bar). 

[352] 
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PA acid-modified 

CNTs  

IP with dispersing CNTs (0.002 wt %) 
in MPD aqueous solution; treated at 

100 °C. 

Higher water flux (47 LMH – 85 LMH) 
and variable salt rejection (5% – 92%) 
in relative to the virgin membrane 
(~37 LMH and 90%) at 15.5 bar and 
2,000 ppm NaCl feed solution; 
membrane separation performance 
affected by functionalization of CNTs; 
greater stability.  

[349] 

polyester acid-modified 

MWCNTs  

Improved IP with dispersing MWCNTs 

in TEOA-surfactant aqueous solution; 

post-treated at 60 °C.  

Higher roughness and hydrophilicity; 
highest pure water flux and rejection with 

0.5 mg/mL MWCNTs; good stability in 

long-term separation. 

[315, 

316] 

PES TiO2 coated 

MWCNTs 

(diamter = 25 nm; 

length = 0.5-1 

µm) 

Phase inversion with dispersing TiO2-

coated MWCNTs in PES/PVP/DMAc. 

Greater porosity, hydrophilicity, and pure 

water flux (4.35 LMH – 5.66 LMH) with 

addition of fillers (0.1 wt% – 1 wt%), 

copmared with bare membrane (3.71 

LMH at 5 bar); improved antifouling 

property. 

[312] 

PES acid-modified 

MWCNTs  

Phase inversion with dispersing 

MWNTs in PES/PVP/DMAc. 

Less roughness, better fluxes and 

rejection, improved antifouling property 

by adding MWCNTs; best antifouling 

when 0.04 wt% MWCNTs. 

[317] 

PAA/PAH acid-modified 

MWCNTs  

LbL assembly with dispersing 

MWCNT in PAA aqueous solution; 

cured at 180 °C under vacuum. 

Improved chlorine stability and lower salt 

rejection (~90% with flux of 2 LMH – 4 

LMH at 15.5 bar and 2,000 ppm) than the 

PA membrane. 

[314] 

PA acid-modified 

MWCNTs 

IP with dispersing MWCNTs in MPD 

aqueous solution; cured at 60 °C. 

More hydrophilic surface, greater fluxes 

(25 LMH – 71 LMH) and lower rejection 

(94% – 81.5%) with increasing loading of 

MWNTs (0 w/v% –0.1 w/v%) (16 bar 

and 2,000 ppm). 

[296] 

PA MWCNTs 

modified with 

acid and 

diisobutyryl 

peroxide  

IP with dispersing MWCNTs in MPD 

aqueous solution; cured at 60 °C. 

Higher flux (15 LMH – 28 LMH) with 

slight decreased rejection (95% - 90%), at 

greater amount of MWCNTs (0% - 0.1%) 

(2,000 ppm NaCl and 16 bar); improved 

hydrophilicity, better antifouling and 

chlorine stability.  

[348] 

PA poly(methyl 

methacrylate)-

modified 

MWCNTs 

IP with dispersing MWCNTs in 

TMC/toluene solution; cured at 80 °C. 

Improved pure water flux and NaCl 

rejection by adding MWCNTs up to 

0.67g/L MWCNTs followed by a drop; 

best with 62% flux improvement over the 

TFC membrane. 

[495] 

PA hydrophilized 

ordered 

mesoporous 

carbon 

IP with dispersing carbon in MPD 

aqueous solution; cured at 60–70 °C.  

Greater hydrophilicity; decreasing NaCl 

rejection from 68.2% to 45% with 0 wt% 

-6 wt% carbon; increasing pure water flux 

till with >5 wt% carbon followed by a 

decrease. 

[298] 

PA aluminosilicate 

SWNTs (diameter 

~ 2.7 nm; length = 

150 nm) 

IP with dispersing aluminosilicate 

SWNTs in TMC/hexane solution. 

Increasing pure water flux from 7.5 LMH 

to 16 LMH when SWNTs loading from 0 

w/v% to 0.2 w/v% at 12 bar; slightly 

higher NaCl rejection of ~96% with 

SWNTs. 

[496] 

PA acid-

functionalized 

CNTs, GO or 

mixture 

IP with dispersing CNTs, GO or 

mixture in MPD aqueous solution; 

heated at 100 °C. 

Best performance for PA membranes with 

CNTs (44.2 LMH and 96.8%), GO (39. 2 

LMH and 97.0%), and CNTs/GO (59.0 

LMH and 96.2%) when using 0.001 wt%, 

0.001 wt%, and 0.02 wt% carbon 

nanomaterials in MPD solution (15.5 bar 

and 2,000 ppm NaCl); improved 

mechanical strength, durability, and 

chlorine resistance. 

[291] 

PA halloysite 

nanotubes (inner 

IP with dispersing halloysite in 

TMC/cyclohexane solution; cured at 

Improved hydrophilicity; increasing flux 

from 19 LMH (TFC) to 36 LMH (TFN 

[497] 
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diameter: 5 nm - 

15 nm) 

90 °C. with 0.05 w/v% halloysite) and slight 

change of rejection from 97.2% to 95.6% 

at 15 bar and 2,000 ppm NaCl; improved 

antifouling capacity.    

PA amino -

functionalized 

titanate nanotubes 

(OD =5–25 nm) 

IP with dispersing titanate in 

TMC/cyclohexane solution; cured at 

90 °C. 

Improve fluxes (26 LMH – 58 LMH) and 

comparable rejection (>85%) (with 

loading of 0.01 w/v% - 0.1 w/v%) at 

2,000 ppm NaCl feed and 15 bar; good 

antifouling property. 

[498] 

PA GO IP with dispersing GO in MPD 

aqueous solution; cured at 60 °C. 

Improved flux up to 25 LMH followed by 

a decline of flux when GO loading > 0.20 

wt%; ~90% rejection at 15 bar and 2,000 

ppm NaCl; excellent antifouling 

properties towards BSA and humic acid. 

[499] 

PA GO IP with dispersing GO in MPD 

aqueous solution. 

Reduced roughness and thickness; 

increased hydrophilicity and anti-

biofouling property; good chlorination 

stability; improved flux from 9 LMH 

(control) to 16.6 LMH (38 ppm GO in 

MPD solution) with high rejection ratio 

of >99% at 2,000 ppm NaCl feed and 

15.5 bar.  

[358] 

PA GO IP with dispersing GO in MPD 

aqueous solution; cured at 70 °C. 

Increasing flux with sacrificed salt 

rejection; strong antibacterial activity. 

[500] 

PA TiO2-decorated 

rGO 

IP with dispersing TiO2/rGO in 

MPD/CSA-TEA aqueous solution; 

cured at 70 °C. 

Reduced roughness and higher 

hydrophilicity; improved chlorine 

resistance; increasing flux from 43 LMH 

to 51 LMH with rejection of >98.5% 

when adding 0.002 wt% - 0.02 wt% 

TiO2/rGO (15 bar and 2,000 ppm NaCl 

feed).  

[359] 

PA POSS IP with dispersing POSS in MPD 

aqueous solution. 

Improved water flux (44.6 LMH) and 

rejection (99.6%) compared with the PA 

(33.7 LMH and 99.0%) at 32,000 ppm 

NaCl feed and 55 bar.  

[292] 

PA POSS IP with dispersing POSS in either 

TMC/hexane solution or MPD aqueous 

solution.  

Tailorable membrane chemistry and 

performance by varying types and amount 

of POSS. 

[293] 

CA CA-anchored 

POSS 

Phase inversion with CA-anchored 

POSS/CA/acetone/formamide solution. 

Higher flux (2 LMH – 9 LMH) and lower 

salt rejection (9% – 15%) at 2,000 ppm 

NaCl and 10 bar when 0.5 wt% - 5wt% 

CA-POSS; better compaction resistance 

and lower mechanical strength. 

[319] 
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Table 3.  

Support Structure  Performance                       Testing condition Ref. 

  AL-FS (FO)  AL-DS (PRO)    

  Water 

flux 

(LMH) 

Salt flux 

(gMH) 

 Water flux 

(LMH) 

Salt flux 

(gMH) 

Feed solution Draw solution  

PSf flat sheet  9.5/12.0 2.4/4.9  18.1/20.5 6.3/5.9 10 mM NaCl 0.5 M NaCl [29] 

PSf    flat sheet 20.1 2.0  33.1 2.6 DI water 0.5 M NaCl [405] 

PSf/SPEK  flat sheet  35 7  50  9 DI water 2.0M NaCl [393] 

PES/PESU-co-sPPSU  flat sheet  21.0 2.2  33 2.8 DI water 2.0 M NaCl [399] 

sPPSU  flat sheet  48 7.6  54 8.8 DI water 2.0 M NaCl [501] 

hydrolysed CTA 

(further modified by 

linking molecule) 

flat sheet  − −  2.4-6.7 8.0-47.8 DI water 1.5 M NaCl [413, 

414]  

PDA-modified PSf flat sheet  8.2  1.4  24  1.8 DI water 2.0 M NaCl [411] 

PSf/PES  flat sheet  27.6 37.5  − − DI water 2.0 M NaCl [502] 

PES/SPSf (1) flat sheet  26.0 8.3  47.5 12.4 DI water 2.0 M NaCl [398] 

carboxylated PSf  flat sheet 18 2.2  27 5.5 DI water  1.0 M MgCl2 [403] 

PSf-PET fabric flat sheet  0.5-25 95.8-

99.3(2) 

 − − DI water 1.0 M NaCl [397] 

PSf-PET fabric flat sheet  18.2 97.4%(3)  − − DI water 1.5 M NaCl [378] 

          

PSf-PET fabric flat sheet 

(co-casting) 

60.3 17.6  31.1 8.5 DI water 1.0 M NaCl [404] 

PSf/silica (3 wt%)-

PET fabric  

flat sheet 

(co-casting) 

31.0 7.4  60.5 16.0 DI water 1.0 M NaCl [406] 

PSf/TiO2 (0.5 wt%） flat sheet  17.1 2.9  31.2 6.7 10 mM NaCl 0.5 M NaCl [416] 

PSf/ rGO-modified 

graphitic carbon 

nitride (0.5 wt%) 

flat sheet 41.4 9.6  − − DI water 2.0 M NaCl [422] 

PSf/zeolite (0.5 wt%) flat sheet  40 28  86 57 DI water 2 M NaCl [420] 

PES/MWCNTs 

(2.0 wt%) 

flat sheet  − −  12 94.7(%) 10 mM NaCl 2 M glucose [419] 

PVDF nanofiber flat sheet  11.6/28 3.5/12.9  30.4/47.6 6.4/21.6 DI water 1.0 NaCl [384] 

PETA nanofibre-PSf  flat sheet  12.9 96.8(4)  − − DI water 1.0 M NaCl [381] 

CA/PAN nanofiber-

PET fabric 

flat sheet  27.6 3.85  43 1.7 DI water 1.5 M NaCl [380] 

PETA/PVA nanofiber flat sheet  − −  47.2 9.5 DI water 0.5 M NaCl [379] 

polyketone  flat sheet 12.6-29.3 2.0-3.8  22.6-41.5 2.8-5.0 DI water 0.6 M NaCl [395] 

PAN flat sheet 9.25/9.25 5.8/6.4  11.6/13.9 5.8/6.4 DI water 0.5 M NaCl [396] 

nylon 6,6 

microfiltration 

membrane 

flat sheet 6 0.7  21.5 0.8 DI water 1.5 M NaCl [401, 

412] 

CAP  flat sheet 80.1 10.0  128.8 19.4 DI water 2.0 M NaCl [408] 

CAP (1) flat sheet  − −  31.8/35.0 1.6/1.9 DI water 2.0 M NaCl [400] 

PEI/PAA-coated 

hydrolyzed PAN-PET 

fabric 

flat sheet 24.6 2. 4  32.9 3.8 DI water 0.5 M NaCl [503] 

hydroxyl 

functionalized PTA-

POD  

flat sheet 37.5 5.5  78.4 12.3 DI water 1.0 M NaCl [394] 

PES  hollow fibre  16.7-18.7 1.2-2.0  43.6-49.4 2.8-4.0 DI water 0.5 M NaCl [391] 

PES  hollow fibre  − −  42.6 4.0 DI water 0.5 M NaCl [390] 

PES  hollow fibre  5/14 2.1/1.8  12.9/32.2 5.0/3.5 DI water 0.5 M NaCl [386] 

PES  hollow fibre  32.1- 6.2-9.9  57.1-65.1 6.9-12.3 DI water 2.0 M NaCl [389] 
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34.5  

PES hollow fibre 

(double-

skinned)(5) 

14.2-17.3 3.5-4.2  32.7-38.4 3.6-4.0 DI water  0.5 M NaCl [430] 

PAI hollow fibre 

(double-

skinned) (5) 

16.9 16  41.3 5.2 DI water 2.0 M NaCl [429] 

Matrimid® hollow fibre 

(tri-bore) 

11.8 2.5  50.5 3.5 DI water  2.0 M NaCl [387] 

 

(1) TFC membranes were made of PPD-TMC PA active layer; others in Table 3 were fabricated from MPD-TMC IP.  

(2) NaCl salt rejection % in RO at 27.6 bar and 50 mM NaCl solution. 

(3) NaCl salt rejection % in RO at a pressure drop of 27.2 bar and 50 mM NaCl feed solution. 

(4) NaCl salt rejection % in RO at 13.8 bar and 50 mM NaCl feed solution. 

(5) Double-skinned FO hollow fibres were made of two selective layers: RO layer (MPD-TMC) and NF layer (PAI-PEI or 

crosslinked PSS/PAH). 
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Table 4. Summary of commercially available RO and FO membranes developed thus far.  

Membrane Advantages  Disadvantages  Application  

CA asymmetric  • Low cost; 

• Chlorine tolerance. 

• Limited chemical resistance; 

• Susceptibility to biodegradation; 

• Narrow pH and temperature 

operating range;  

• Low permeability.  

RO and FO 

PA TFC  • Wide operating pH and 

temperature range; 

• High flux and salt retention; 

• Good structure durability and 

mechanical strength; 

• Wide application in desalination.  

• Limited chlorine and fouling 

resistance.  

RO and FO 

zeolite-PA TFN  
• As above to PA TFC; 

• Reduced feed pressure required. 

• As above to PA TFC; 

• High cost; 

• Improvement needed for removal of 

some pollutants, e.g. boron. 

RO 

Aquaporin  • High permeability and good 

rejection. 

• High cost; 

• Limited data available, e.g. 

regarding to its long term operation. 

FO  

 

 


