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Abstract Understanding how the search space is explored for a given constraint problem –
and how it changes for different models, solvers or search strategies – is crucial for efficient
solving. Yet programmers often have to rely on the crude aggregate measures of the search
that are provided by solvers, or on visualisation tools that can show the search tree, but
do not offer sophisticated ways to navigate and analyse it, particularly for large trees. We
present an architecture for profiling a constraint programming search that is based on a
lightweight instrumentation of the solver. The architecture combines a visualisation of the
search tree with various tools for convenient navigation and analysis of the search. These
include identifying repeated subtrees, high-level abstraction and navigation of the tree, and
the comparison of two search trees. The resulting system is akin to a traditional program
profiler, which helps the user to focus on the parts of the execution where an improvement
to their program would have the greatest effect.
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1 Introduction

Modern approaches to solving combinatorial problems focus on developing a model that
describes the problem in terms of parameters, variables, constraints and (optionally) an
objective function. The parameters can later be instantiated with input data describing a
particular instance of the problem. To solve an instance, the programmer selects the con-
straint solver that will be used to handle the constraints in the model and the search strategy
used to explore its search space. We refer to the combination of model, input data, solver
and search strategy as the constraint program. Importantly, the same problem can be solved
using many different constraint programs. Efficiency, measured in terms of how quickly a
(good enough) solution to the problem can be found, depends crucially on the combination
of model, solver, and search strategy selected by the programmer.

Finding the best combination of model, solver, and search is a very challenging, iterative
process, particularly for real-world problems with large-scale input data. This process is
a classic instance of profiling, where the workflow typically involves three steps that are
iterated: (1) we observe the behaviour of the program; (2) we develop a hypothesis about
why certain unwanted or unsatisfactory behaviour occurs; (3) we modify the program to test
the hypothesis (by observing a change in behaviour).

Performance profiling tools are designed to support and speed up this process in a vari-
ety of ways. For constraint programs the existing profiling tools (e.g. [1, 3, 8, 11, 14, 18,
21, 22]) mostly focus on visualising the search tree (for those based on tree-search), visu-
alising constraints and variables and their domains, showing solutions or gathering crude
aggregate measures. While these tools can provide very useful information, they are also
somewhat limited. In particular, most (with the exception of CPViz [22]) require close cou-
pling between the profiling tool and the solver or search strategy, thus making it difficult
for the profiling tool to integrate new solvers and search strategies, or to compare differ-
ent solvers. Also, the information provided by many of these profiling tools leaves the user
to explore the search tree in a relatively unguided way, which is particularly problematic
for large trees. Finally, and most importantly, none of these tools support the comparison
of different executions when solving the same problem, but with one or more aspects of
the model, solver, or search strategy modified – with the exception of recent work which
compares the behaviour of propagators across executions [26].

This paper presents an architecture and tool set specifically designed to support program-
mers during the performance profiling workflow. In particular, the presented profiling tool
enables programmers to extract the information they need to build hypotheses; and it helps
them validate their hypotheses by identifying and visualising the effect of changes in the
program (be it changes in the model, solver, or search strategy). The former is achieved by
providing different views and analyses of the execution as well as efficient navigation tools
to help users focus their attention towards the parts of the execution that might be worth
modifying. The latter is achieved by providing two tools, one that can replay searches using
a different model or solver, so that the user can isolate the effect of a change; and a sec-
ond tool that can visually “merge” the common parts of two executions and allows users to
explore those parts that differ. The idea of replaying search was developed simultaneously
with that of Van Cauwelaert et al. [26], who use a similar method to compare propagators.

The architecture is designed to easily accommodate new solvers and search strategies. It
is fully implemented, andavailable under an open-source license at https://github.com/cp-
profiler.
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The rest of the paper is organised as follows. Section 2 provides a brief summary
of the required background. Section 3 introduces the proposed architecture. Section 4
illustrates how this architectures helps programmers extract information from a single
execution. Section 5 illustrates how it helps programmers form hypotheses and validate
them by supporting the comparison of two executions. Section 6 provides a brief summary
of the implementation. Section 7 discusses related work. Finally, Section 8 presents our
conclusions.

2 Background

A constraint satisfaction problem consists of a set of variables, each with a domain of pos-
sible values, and a set of constraints that restrict the combinations of values the variables
can take. The task is to assign values to all variables such that all constraints are satisfied.
A constraint optimisation problem adds to this an objective function whose value is to be
minimised or maximised.

Constraint programming systems often solve constraint problems using a combination
of propagation and tree search. The propagation engine uses the constraints and the current
domains of the variables to infer smaller domains. If it detects a constraint that cannot be
met, or a variable with an empty domain, it reports failure. If all variables have a single value
and all constraints are satisfied, it reports success. Otherwise, the system begins to search.

A typical tree search process splits the problem into two or more subproblems that par-
tition the search space. Each subproblem is the same as its “parent” but with an additional
constraint, which we refer to as the branching decision. The propagation engine is run on
each subproblem, and further splitting is done if necessary. In this way, the search moves
towards subproblems that can be immediately detected as being satisfiable or unsatisfiable.
This process implicitly defines a search tree rooted by the original problem where each
node represents a branching decision, which is used as the node’s label.

Different branching decisions and different actions when reaching failure result in differ-
ent kinds of searches. For example, in a simple depth-first search the tree search continues
branching until either a solution or a failure is found/reached. In the case of a failure, the
search backtracks up the tree, undoing previous decisions until it reaches a node where an
alternative decision can be made. In a Restart Based Search, the tree search is interrupted
occasionally (e.g., after reaching a certain node limit or encountering a failure), at which
point the search goes back all the way up to the root node to explore a different area of the
search tree. This way the search does not get stuck in an area of the tree with no solution or
little information to learn, which is particularly important for large problems. Some solvers
also offer a parallel search mode, with several threads running concurrently, each exploring
a particular part of the tree. This does not only serve as an effective exploration technique,
but also as a way to support modern multi-core CPUs. A variation of Parallel Search is a
Distributed Search, where the work is performed across several computers.

In addition, some modern solvers (e.g. CPX [9], Chuffed [5] or MinisatID [15]) combine
tree search with clause learning technology (e.g. Lazy Clause Generation [9]). This involves
recording the reasons for each propagation step and using these upon encountering a failure
to derive additional constraints called no-goods, which encode the reasons for the failure.
No-goods allow the search to backjump through the search tree (i.e., go back to the node in
the search tree that caused the failure), and also to improve propagation later in the search
– in both cases possibly pruning large parts of the search tree.
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3 Profiling architecture

This section presents a high-level overview of the architecture of our constraint profiling
tool chain. Details regarding its components and how they are used to support the profiling
workflow are given in the subsequent sections.

As shown in Fig. 1, the architecture is centred around the broker, which receives data
regarding the search state from the executing solver. In turn, the broker can either send the
data directly to different visualisation/analysis tools or write the data into a database. Simi-
larly, when any of the visualisation/analysis tools requests data, the broker can directly ask
the solver or retrieve it from the database. In this way, visualisation/analysis tools are decou-
pled from the data source and are, thus, independent of whether the execution is proceeding
in real time or has already been completed. Storing the execution data also means that the
analysis can be continued or repeated at a later point in time without re-running the solver.
The decoupling of the solver from the broker is realised using a simple network protocol,
which also enables the broker to receive data from several sources simultaneously. This fea-
ture is important for profiling parallel exploration techniques, including distributed search
across multiple computers.

In addition to the pure structure of the search tree, partial information regarding the state
of the solver at each search node can also be recorded. Examples for such additional infor-
mation can be the variable domains, the amount of domain reduction caused by constraint
propagation, or the actual solution in the case of solution leaf nodes. This information can be
used to analyse the current execution, and to test hypotheses in a different execution about
potential changes in model, solver or search strategy (see Section 5 for an example where
search decisions are used to replay the search of a different model). Sending this additional
information is optional in order to keep the communication overhead minimal when the
information is not needed.

Fig. 1 Architecture of the profiling toolchain
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The current implementation of our system includes several visualisation and analysis
components. Some of these allow users to find subtrees that are repeated within a single
search (see Section 4.1), some give users a high-level overview of how the search behaves
over time (see Section 4.2), and others allow users to compare two executions (see Sec-
tion 5). Note that we have modified the conventional search tree visualisation (i.e. where
solver states are represented by nodes, and edges show parent-child relation) to support dif-
ferent types of search (see Section 4.3), such as restart-based search, parallel search and
backjumping.

We have so far implemented interfaces to the broker for three different solvers: the
Gecode CP solver [19], the CPX clause learning solver [9], and the Choco CP solver [13].
See Section 6 for more on this and other implementation details.

4 Profiling a single execution

A visual representation of the search tree is one of the standard tools that is used to extract
information from the solving process that can be used for profiling constraint programs.
Whenever the execution of a program takes more time than expected, one would like to
analyse the search tree to determine which parts of the search possibly cause the undesired
behaviour and, hopefully, which changes to the program might speed up its execution.

Our implementation of this form of visualisation is based on the tool Gist integrated in
Gecode [20]. Similar to Gist, our visualisation (see e.g. the top half of Fig. 2) shows: nodes
where a solution or failure has been reached as diamonds and squares, respectively; nodes
with children as circles, indicating there are still some decisions to be made; and entire
failed subtrees as triangles.

A major disadvantage of this kind of search tree visualisation as an effective profiling
tool is that while the tree may contain the information we seek, it is often so large that we
struggle to find the interesting parts of the tree. This section explores how we can focus on
interesting parts and navigate large trees, and how the tree visualisation has been adapted to
handle the trees produced by learning solvers, parallel searches and restart-based searches.

4.1 Improving focus

One of the ways to facilitate the analysis of a program’s execution is to provide users with
some guidance regarding the parts of the search tree on which to focus their attention. This
can be achieved in a variety of ways, each useful for detecting different problems. For
example, CPViz [22] provides an invariant checker that can be used to detect nodes where
the constraint propagation performed by the solver is not as strong as it could be and lead
to extra search that might be costly. That way, the user can focus on those search nodes that
show poor propagation.

Our focusing approach aims at identifying entire subtrees of the search that show inter-
esting behaviour, by detecting similar subtrees that occur repeatedly in the search tree. This
can, for example, indicate the presence of symmetries and the need for some symmetry
breaking strategy. To achieve this, our profiler identifies repeated subtrees that have the
same shape. The shape of a subtree describes how far the subtree extends horizontally at
each vertical level. That is, for each level of the subtree, the shape records the horizontal
position (in pixels, relative to the root of the subtree) of the leftmost and rightmost nodes at
that level. The reason for choosing this particular definition of shape is that it is the one that
is already used by the layout algorithm for drawing the tree, and therefore can be obtained
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Fig. 2 Viewing similar subtrees

without any overhead. Note that this definition disregards the exact decisions taken by the
solver in each branch, and captures the outside contour of the tree, without distinguishing
between the inner nodes. As a result, this definition allows efficient computation and com-
parison of the shapes and permits subtrees with similar, but not exactly the same, structure to
be matched. The tool then sorts the similar subtrees by their size and number of occurrences,
enabling the user to quickly find subtrees of interest.

We illustrate this with an example on the Social Golfers problem, using the model
golfers1 from the MiniZinc benchmarks library.1 In this problem, a cohort of golfers
are to be partitioned into smaller groups over several rounds such that no two golfers play

1See https://github.com/MiniZinc/minizinc-benchmarks
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together more than once. Figure 2 shows the result of identifying a large set of repeated
subtrees in the search for the 4-5-5 instance of the problem. The window on the bottom
shows the results of the shape analysis. The profiler allows users to set (top left corner) the
minimum size of the subtree of interest and the minimum number of occurrences. For any
choice of size and occurrences, the profiler shows a set of horizontal bars, each correspond-
ing to a particular subtree of those characteristics, with the length of the bar indicating the
number of occurrences. If the user clicks in one of these bars, the associated search tree
is shown (in the figure, the top bar is selected, which is the default). The window on the
top shows the part of the search tree where the occurrences appear (highlighted in grey
background).

Based on this information we can now formulate a hypothesis. By viewing the branching
decisions that lead to these subtrees, we can see that they are the same except for the trans-
position of some of the groups within a round. By the definition of the problem, the groups
of golfers within a round are symmetric and, therefore, transposing them has no effect;
consequently, there is unnecessary repeated search of the same subtree. Having identified
the presence and cause of this redundant search, we can eliminate it by adding a symme-
try breaking constraint on the rounds – the original golfers1 model has constraints that
break the symmetry within each group in each round, but not between different groups of
the same round. Specifically, we add a constraint that forces the groups within each round
to be ordered; that is, the “smallest” golfer in the first group is less than the smallest golfer
in the second group, and so on for all adjacent groups. The extended model can be found as
golfers1b in the MiniZinc benchmark suite.

Finally, after adding this constraint to break the symmetry we would like to verify our
hypothesis and confirm that the repeated subtrees have been eliminated. One way is to
run the similar subtree analysis again and check that the trees no longer appear. Another
approach in our profiler is to use path bookmarks. In the search tree for the original model
we can record the sequence of search decisions that lead to a point of interest – in this case,
one of the symmetric repeated subtrees. Then, we can instruct the profiler to follow this
same path in the search tree of the improved model to find the same subtree, or to confirm
that it has been eliminated. In general, this feature allows users to save interesting points in
the tree and retrieve them later, and also allows them to find corresponding points in related
but different search trees.

4.2 Different ways to view and navigate the search

Another way to facilitate the analysis of large search trees is to provide users with different
ways in which to view and navigate the search tree.

The size of search tree visualisations is usually managed by automatically collapsing
any failing subtree (that is, sub-trees without any solutions). This is indeed the case for
our profiler, where collapsed subtrees are shown as triangles. In addition, we allow users
to collapse subtrees based on a user-defined number of nodes N instead, resulting in a
view that reflects the amount of exploration effort. Any subtree with fewer than N nodes is
collapsed, and the size of the resulting triangle is scaled according to the number of nodes
in the subtree. This way the size of a subtree can be estimated by the number of triangles,
while the entire tree can still be shown in a compact way. Figure 3 shows a search tree that
has been collapsed with N set to 1000. In this view, it is easy to identify the root node of
the subtree where most of the work has been spent (as highlighted in the figure). When
collapsing subtrees without a size limit, the highlighted subtree would be shown as a single
triangle since it does not contain any solution, and therefore would be indistinguishable from
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Fig. 3 Collapsed subtrees by size (N = 1000)

all other collapsed subtrees. Collapsing subtrees by size thus makes it possible to determine
at a glance where most of the search effort was spent.

Indented Pixel Tree Plots [2] provide another way of viewing a search tree, where the
behaviour of the search over time is more prominent. Pixel trees are designed to clearly
represent hierarchical structures and substructures, their sizes and their depths, and to scale
up to millions of elements. They represent leaf nodes as single square objects (e.g. pix-
els), inner nodes as vertical lines, and edges only implicitly by the indentation between the
objects (lines and squares): Parent nodes are placed immediately to the left of their sub-
tree and the leaves of each subtree are grouped to the rightmost position. As demonstrated
in [2], the resulting plot can be easily scaled vertically and horizontally, can incorporate
additional information using different colours, and it is easy to interact with (expand, col-
lapse, filter, etc). Further, it allows users to perform tasks such as detecting similar subtrees
and estimating which of two subtrees is larger, even for very large trees.

As an example, consider the basic search tree shown in Fig. 4. For each node from the
search tree on the left, there is a corresponding pixel (square) on the pixel-tree on the right.
(For illustration, the pixels are scaled up; also some nodes/pixels are annotated with labels,
so that nodes/pixels with the same label represent the same entity). Pixel trees preserve the

Fig. 4 Basic search tree (left)
and corresponding pixel tree
(right)
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vertical position of a node, or depth: e.g. node ‘2’ lies on the second level in the search tree,
and so does the corresponding node on the pixel tree. However, horizontal position of nodes
on the pixel-tree represent depth-first-search exploration order: node ‘2’ is positioned to the
right of its parent ‘1’, which is not the case in the conventional tree visualisation on the left.
Nevertheless, the pixel tree preserves the hierarchical structure: e.g. the immediate ancestor
of node ‘3’ can be found as the closest node to the left of node ‘3’ that lies one level above
(node ‘1’ in this case).

While not being as easy to interpret as conventional trees (although studies show [2]
that the ability to read such trees improves greatly with just a bit of practice), two of their
properties are particularly important for us: a) they show very clearly the relationship
between node exploration and time (i.e. a node is guaranteed to have been explored prior to
all the nodes to its right); b) they scale well horizontally, which is crucial for showing large
trees.

The conventional tree visualisation sacrifices the node-time relationship in favour of
showing a node’s ancestry more clearly. Note also that conventional trees, when presented
in a compressed way (usually by focusing on one part of the tree and hiding/collapsing the
rest) do not give a good overview of the whole tree. A pixel tree, on the other hand, can
be compressed in a different way: adjacent nodes can be squashed together to form vertical
lines of pixels. If some of these nodes also happen to be on the same depth level, they will
be collapsed into a single pixel, and the colour of the pixel will represent the node density
in that case. Of course, a pixel tree that is compressed this way does not convey the same
amount of information as the original, but still preserves the overall structure.

We highlight the location of each solution in the pixel tree with a vertical line. This
allows for a clear representation of the amount of effort between solutions, and can be
used to immediately identify different patterns of behaviour. Consider for example the three
pixel trees depicted in Fig. 5. The rightmost one corresponds to finding the first solution
in golfers1, the top-left one corresponds to the FullXY model of the All Interval Series
problem provided in [4] for n = 12, and the bottom-left one corresponds to the quaternary
version of the Golomb ruler model from [25]. Clearly, they depict very different search
behaviours, from one that follows a steep, single assignment path except for a significant

Fig. 5 Different search behaviours shown with pixel trees
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amount of search performed mid-way through the tree (golfers1), to one whose fractal-
like pattern (quaternary Golomb ruler) we believe might be associated with a generate-and-
test-style search due to lack of propagation.

The modularity of the architecture facilitates using the profiler as a test bed for experi-
mental measurements. For example, the two left windows in Fig. 5 show, under each of the
pixel trees, three histograms of extra information associated with the node (or nodes when
compressed, which is always the case except for toy instances) depicted in the pixel tree:
time taken to produce the nodes, average domain size at those nodes, and average amount of
domain reduction from the parent to the nodes. While the interpretation of these measures
is not yet clear, we have found some interesting patterns. For example, the tree in Fig. 6 has
a distinct area rich in solutions, and the corresponding time-per-node histogram underneath
shows that nodes in that area were significantly harder to compute (propagation takes longer
to reach a fixpoint), while in the rest of the search the node rate appears to be practically
constant.

The pixel tree can also be used to drive navigation of the conventional tree view: clicking
on a point in the pixel tree will highlight and scroll to the corresponding part of the con-
ventional tree view. This permits the user to identify an interesting region via the high-level
pixel tree view, and then immediately examine it in detail in the conventional tree view.

4.3 Visualising different kinds of search

The profiling architecture is flexible enough to support search methods that are not straight-
forward depth-first traversals of the search tree. We have adapted the conventional tree
visualisation to display backjumps, parallel search and restart-based search.

To display backjumps it is necessary to distinguish a node that was not explored from
one which was deliberately skipped due to a backjump in a learning solver. We mark such
skipped nodes with lighter grey squares (see Fig. 7), which allows users to see how much
of the search space has been skipped thanks to the inferred no-good.

The extension for parallel solvers is straightforward, as the broker receives data using a
network protocol and does not require the data to come from a single source. The profiler
can therefore readily consume data from solvers working in parallel. Figure 8 shows the
search tree for a Golomb ruler with 7 marks solved using Gecode’s parallel search engine.
Each solver process is assigned its own colour and the subtrees are highlighted accordingly.
Note that the rightmost triangle has a white background despite being contained in the
coloured subtree on the right. This indicates that the first (white) process did not have any
work left and was able to steal some from the fourth process. This kind of visualisation can
be useful to see whether specific techniques, developed for distributing work in real time
during the search, are effective and result in the expected granularity.

A restart-based search, in effect, explores a new search tree every time it restarts. We
display this by considering each new search tree to be the child of a dummy root node,

Fig. 6 Histogram showing slower node rate in a solution-rich area
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Fig. 7 Solving the Golomb ruler
problem (5 marks) with opturion
CPX

combining the separate search trees into one super-tree (Fig. 9). Note that white circles
represent nodes that are unexplored because search restarted before the solver reached them.

After collapsing the subtrees according to their size (see Section 4.2), the tree shows
a high-level view of how the search effort is distributed over the restarts and where the
solutions are found. In this case, one can see that most of the work is done during the
second-last restart.

5 Comparing several executions

As described earlier, profiling usually involves hypothesising about the causes for undesired
behaviour, and then changing the model, search strategy or solver to validate the hypothesis.
In order to determine the effect of a given modification and thus select those changes that
have the biggest impact, users need to be able to compare the two executions. Currently,
this is only possible by means of relatively crude aggregate measures, such as the run-time
or the size of the search tree. Our profiling system allows users to more closely examine
the differences between two executions. Let us illustrate this by using a small case study as
demonstration.

Choi et al. [4] consider several models for the All Interval Series Problem, including
the MY model, which has variables for the positions of the numbers (referred to as the Y

variables), and the FullY dual model, which also includes variables to represent the inverse
viewpoint (referred to as the X variables) and channeling constraints to connect the two
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Fig. 8 Execution of Golomb ruler problem (7 marks) with four parallel threads

viewpoints. The idea is that by including both viewpoints, constraint propagation will be
stronger. Both models are executed using a first-fail search strategy on the Y variables, that
is, branching on the Y variables and choosing at each step the Y variable with the smallest
domain.2 Note that this is a dynamic search strategy, i.e., the individual decisions depend
on how much the constraint propagation engine has been able to narrow down the variable
domains at each node.

The experimental results of Choi et al. show that the FullY model performs significantly
better than the MY model, both in terms of search space reduction and time reduction.
However, from these measures alone one cannot tell what causes the improvement: stronger
propagation obtained from the extra constraints, or a difference in the search decisions due
to the differences in propagation. We would like to understand where the improvement
comes from and, thus, determine whether further improvements are possible.

Our profiler allows us to replay the search decisions made in one execution onto a sepa-
rate execution, that is, execute a possibly different program (where the search variables have
not changed) branching on exactly the same decisions as a previously executed program.
Note that this is different from simply using the same search strategy in both executions:
since the variable domains may be different using different models, the same strategy may
make different decisions. In this case, we can take the search decisions made when solv-
ing the MY model and replay them using the FullY model. With the two searches made
identical, any differences in execution can be attributed to the propagation strength alone.

Using Gecode, we experimentally compared three variations: the MY model using first-
fail search, the FullY model using first-fail search, and the FullY model using a replay of
the search recorded for the MY model. The results are shown in Table 1.

As found by Choi et al. [4], executing model FullY using first-fail is better than executing
model MY with first-fail. Further, our results show that FullY using the replayed MY search
also performs better than MY . Since every decision taken during the execution of FullY in
the replay search is the same as for MY , this shows that the considerable reduction in search
space is entirely due to propagation. Interestingly, the replay execution of FullY gives better

2The FullXY model mentioned above, is the same as FullY but executed searching first on the X and then on
the Y variables.
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Fig. 9 Restart-based search with subtrees collapsed

results than those obtained using first-fail. This behaviour is unexpected – why should the
decisions that were guided by the weaker propagation yield better behaviour than those
guided by stronger propagation?

We can use the search tree comparison feature of our profiler, shown in Fig. 10, to pin-
point where the two executions diverge. Our comparison algorithm analyses two trees by
traversing both of them in lockstep until they diverge. This point of divergence is shown in
the tree as a pentagon, and the diverging subtrees are shown as children of that pentagon
node. The traversal then backtracks to find the next point of divergence, until the trees are
exhausted. In the figure the box on the bottom displays a list of all points where the trees
diverge; each column corresponds to one execution and, for each column, the row shows
the sizes of the two differing subtrees. In the highlighted case there is a large difference
between the two subtrees. This prompted us to select that case for examination by clicking
on that row. Upon selection, the two subtrees are highlighted in different colours, centred
in the screen, and each tree is annotated with its first search decision. Another point later in
the search (not shown) has a similar difference of approximately 1000 nodes. In both cases,
the FullY search has chosen to branch on variable Y3 and the replayed search has chosen
Y11. The ability to focus on where the search strategy has the most impact can suggest to
the modeller where some insight into the best strategy may be gained.

6 Implementation

As with other profiling tools for constraint solvers, our architecture requires solvers to be
modified to produce the necessary information. Importantly, the changes we require are
minimal and not onerous, as we only need solvers to generate small amounts of easily

Table 1 All interval series
problem, number of failures to
find all solutions

n MY first-fail FullY first-fail FullY replay

11 254472 3954 3504

12 1483831 13341 11528

13 9183752 49243 41654
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formatted data every time the search branches. For instance, adding the profiling capabilities
to Gecode and CPX (the two have a similar architecture) required only about ten lines
of code for each of the search engines. The integration of Choco (a solver whose source
code we were unfamiliar with) for most non-advanced profiling capabilities required adding
about 20 lines of code took about 5 hours to integrate (with most of the time spent on
familiarising with the source code).

A typical unit of information sent from a solver to the profiler to describe each node in
the search must contain the following fields: the node’s identifier, the identifier of its par-
ent, the number of the node’s children, the identifier of the node among its siblings, and
its status. This is sufficient to build the search tree structure. However, solvers are encour-
aged to provide additional information for each node: branching decisions (labels), domain
size, etc.

Each message is packed in a binary format using the Protocol Buffers serialisation
library [10], which can construct messages of dynamic size and content (there is no cost
for sending empty information if the solver does not provide certain fields). Additionally,
solvers can add arbitrary information to be attached to a search tree visualisation.

It is important to make sure the message encoding is efficient, especially in the case of
distributed search, where the bandwidth of the network can be a limiting factor. Average

Fig. 10 Search tree comparison, showing where two search trees diverge
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size of a message with a short label is about 32 bytes, but if the node sent is, for example,
a solution node, one can attach text describing the solution to the message and the size of
these particular messages will increase.

The communication between solvers and broker is implemented using the cross-
platform socket library ZeroMQ [12], which is fast and supports bindings for most modern
programming languages. The latter means our architecture is practically independent of the
implementation language of the solver and, while Gecode, CPX and the profiling tools are
all written in C++, the solvers written in other programming languages (like Choco, which
is written in Java) can be integrated as easily. For solvers in Java and C++ we provide
an API for easy integration, encapsulating all network-related routines. Using socket-based
communication also allows for the solver and the profiler to run on different computers, so
that the profiler need not contend for resources with the solver.

For the sake of simplicity, we use a SQLite database for storing and retrieving executions.
It is ‘server-less’ (in contrast to most other SQL-based engines) and lightweight, but still
provides reasonable performance.

The visualisation of a search tree in our architecture will inevitably introduce overheads
resulting from the need to communicate information between the solver and the visualiser,
store the tree in memory, and draw the tree. How much these extra operations will affect the
execution time depends on how much time the solver spends in processing the nodes. The
overhead for communication is constant per node; therefore, the smaller the solving time
per node, the bigger the communication overhead. To measure the overhead in a worst-case
scenario, we have built a simple model where there is no propagation and, therefore, the
solver spends virtually no time in processing each node. This provides an upper bound to
the overhead introduced by our architecture. Table 2 shows the execution times (wall-clock
time in seconds) needed to solve different instances of this model with no visualisation,
visualising using Gist (which only works with the Gecode solver), and visualising using
our tool. As expected, both visualisations introduce significant overheads for this case, with
our profiler being approximately 8 times slower than the original execution. The improved
performance of our profiler compared to Gist is due to the overhead being spread over
several components which can run in parallel – the communication and visualisation run
in separate threads from the solver. Nonetheless, the results also show that we can have
solver-independent visualisation of multi-million node search trees at a reasonable cost.

Of course, on more realistic models most of the time is spent on propagation as can
be seen in Table 3, which shows the results for two instances of the well-known Golomb
Ruler problem with our visualisation taking approximately 40 % longer than the original
execution. In this case our profiler is slightly slower than Gist, since the parallelisable part is
a much smaller proportion of the overall runtime. Importantly, our current implementation

Table 2 Time taken in a
worst-case scenario (no
propagation)

Size (nodes) No visual. Gecode Gist (solver- Our tool (solver-

specific visual.) independent visual.)

2.1M 0.5s 10.5s 3.1s

4.2M 1.0s 21.9s 9.3s

8.4M 2.0s 43.6s 15.3s
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Table 3 Time taken for the Golomb ruler (GR) problem

Instance (size) No visual. Gecode Gist (solver- Our tool (solver-

specific visual.) independent visual.)

GR 11 marks (640k) 5.8s 7.1s 7.6s

GR 12 marks (5.4M) 56.0s 69.9s 71.9s

is a prototype; there remains the opportunity to further improve performance and reduce the
overhead.

The full implementation is available under an open-source license at https://github.com/
cp-profiler.

7 Related work

Our work builds on the results of previous research on profiling (and debugging) of con-
straint programs to improve runtime performance (e.g., [1, 3, 6–8, 11, 14, 18, 21, 22]). While
the focus of this paper is tree search visualisation, it is important to note that there has been
significant work in related areas such as matrix-based visualisations of the variables and/or
their domains (e.g. [3, 6, 14, 22, 27]), visualisation of the constraint-network (e.g. [16, 17,
24]), and problem-specific and/or custom visualisations (e.g. [8]). All these kinds of visu-
alisations are also important for gaining insight into the program’s execution, particularly
when combined with tree search visualisation. We have started to integrate some of these
approaches (variable/domain evolution and constraint networks) into our profiler.

Regarding tree search visualisation, the closest work is that of CPViz [22], a generic
visualisation platform implemented in Java that can operate with any solver that outputs
an appropriate XML execution trace. CPViz is a very complete system that integrates not
only different views of the search tree (conventional, compact and TreeMap), but also vari-
able/domain visualisations, custom visualisations, and an invariant check visualisation. The
main differences with respect to our profiler are as follows. First, CPViz is a post-mortem
system, a decision made to ensure solver-independence (and inherited from [7]). While we
also want to be able to integrate solvers easily, we believe it is crucial to allow certain,
restricted forms of interaction that can provide deep insight without significantly increas-
ing solver integration (e.g., those that allow us to replay an execution). Second, we support
user navigation through the tree by connecting it to the pixel tree, which makes it much eas-
ier to select individual solutions and get an overview of the tree in relation to solving time.
Third, we can focus the attention of the user towards interesting parts of the tree, such as
those displaying similar tree shapes. Most importantly, our profiling architecture supports
the comparison of trees, which allows users to determine the effect of changes to a given
program. As far as we know, no other tool (including CPViz) can support this.

As mentioned before, our conventional tree-visualiser is an extension of Gist [20]. While
Gist supports real-time profiling as well as the capability to control the search process step-
by-step, this requires it to be deeply coupled with the solver (Gecode). The same is true for
its ancestor Oz Explorer [18] and existing tools for SAT solvers [23, 24]. Again, none of
these tools supports comparison of different search executions, or facilitates navigation.
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8 Conclusion

We have presented an architecture and system for the visual profiling of tree search. The
presented tools allow users to extract information about solver performance by helping them
navigate the search tree and focus on interesting parts of the tree, as well as to validate their
hypotheses thanks to the possibility to replay search and compare two different executions.

The architecture allows for solvers to be easily integrated without imposing an unrea-
sonable overhead on the program’s execution. The modularity of its design supports the
combination of many different visualisation and analysis components. This opens up several
avenues for future work.

The no-goods produced by learning solvers are crucial to good performance, but it is dif-
ficult to explore the set of learned no-goods. We intend to develop analysis and visualisation
tools for such no-goods that may yield new insights into difficult problems; for example, to
associate the no-goods learnt at a specific failure in the search tree. We also seek to incor-
porate mixed integer programming and SAT solvers into the system, to shed more light on
how these typically black-box solvers operate. Indeed, the architecture supports the com-
parison of executions of different kinds of solver (e.g. constraint programming and SAT) on
the same problem. Further, we plan to add more visualisation and analysis components for
use with all kinds of solvers, particularly focus-based components guided by the statistical
analysis of the search tree.
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