ILCOR CONSENSUS STATEMENT

ILCOR Scientific Knowledge Gaps and Clinical Research Priorities for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

A Consensus Statement

ABSTRACT: Despite significant advances in the field of resuscitation science, important knowledge gaps persist. Current guidelines for resuscitation are based on the International Liaison Committee on Resuscitation 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations, which includes treatment recommendations supported by the available evidence. The writing group developed this consensus statement with the goal of focusing future research by addressing the knowledge gaps identified during and after the 2015 International Liaison Committee on Resuscitation evidence evaluation process. Key publications since the 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations are referenced, along with known ongoing clinical trials that are likely to affect future guidelines.

Since 1992, when the International Liaison Committee on Resuscitation (ILCOR) was created, resuscitation experts from around the world have regularly convened to evaluate the existing evidence, to achieve consensus on science, and, when appropriate, to provide treatment recommendations for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care. Between 2012 and 2015, the 7 ILCOR task forces identified 165 resuscitation-related questions by using the PICO (population, intervention, comparator, outcome) format.1 Topic experts performed systematic reviews based on a formal search of the published literature,2 and the strength of recommendation and quality of evidence were reported by use of the Grading of Recommendations, Assessment, Development, and Evaluations methodology and Guideline Development Tool.3 A standardized evidence-to-recommendation framework was used to guide the task forces when writing treatment recommendations.4

The 2015 International Consensus on CPR and Emergency Cardiovascular Care Science With Treatment Recommendations (CoSTR) publication was a focused update of key topics and, as with prior evidence review cycles, was notable for the limited number of treatment recommendations supported by high-quality science.5,6 To promote transparency, each systematic review was accompanied by a list of knowledge gaps identified by the task forces as they wrote treatment recommendations that were frequently qualified as weak on the basis of low-quality evidence. When insufficient or conflicting evidence prohibited formulation of a treatment recommendation, the following language was used: “The confidence in effect estimates is so low that the panel feels a recommendation to change current practice is too speculative.” The 7 ILCOR member resuscitation councils used the

Key Words: AHA Scientific Statements ◼ cardiopulmonary resuscitation ◼ emergency treatment ◼ research

http://circ.ahajournals.org
resultant 2015 CoSTR to develop council-specific, evidence-based resuscitation guidelines and educational materials.

The objective of this consensus statement is to provide the resuscitation science community with a focused account of knowledge gaps identified during and after the 2015 ILCOR evidence evaluation process. Each major content area (basic life support [BLS]; advanced life support [ALS]; pediatric life support; education, implementation, and teams; and first aid) includes a synopsis of recent data and a summary of current evidence to characterize the existing state of the field. More details on the specific studies that were evaluated to inform the 2015 CoSTR can be found in the original publication and its hyperlinked systematic reviews.\(^5,6\) The writing group members recognize that this statement does not exhaustively review the scientific literature since publication of the October 2015 CoSTR, nor does it include every knowledge gap listed because prioritization by the task force members led to the exclusion of some gaps in favor of others. Efforts were made to reference sentinel articles and high-quality investigations in progress (eg, randomized controlled trials [RCTs]).

The writing group members of this statement were selected from the ILCOR task forces involved in the 2015 evidence evaluation and consensus on science processes. We sought to achieve representation from each of the 7 member councils and included experts from the ILCOR steering committee, as well as individuals involved in managing conflict of interest. The writing group was asked to query the remaining task force members, and with the use of a survey process, the top 5 gaps were identified and rated in terms of impact and priority, reflecting the potential to save lives or years of life, and feasibility, indicating the potential to design a study to answer the specific question. The Figure represents the selected knowledge gaps as they correspond to the links in the chain of survival, reflecting a wide range of opportunities to answer critical questions. It is our hope that directing research efforts toward areas of high priority and impact will drive future progress in resuscitation outcomes.

SCOPE OF THE PROBLEM

Data from the World Health Organization show that ischemic heart disease remains the leading single cause of mortality worldwide, accounting for \(\approx13\%\) of all deaths. In 2008, this equated to an estimated 17.3 million lives lost.\(^7\) In Europe alone, there are an estimated 4.1 million deaths from cardiovascular disease annually.\(^8\)

Global estimates of the incidence of out-of-hospital cardiac arrest (OHCA) show marked variation between countries, making the total number of cardiac arrests worldwide difficult to quantify.\(^9\) According to the Resuscitation Outcomes Consortium Epistry, \(\approx 347\) 000 adults in the United States experienced emergency medical services (EMS)–assessed OHCA in 2015; of the \(\approx 52\%\) who were treated by EMS, the survival rate to hospital discharge was 11.4\%.\(^10\) In the CARES Registry (Cardiac Arrest Reporting to Enhance Survival), among EMS-treated adults with nontraumatic OHCA, the survival rate to hospital discharge was 10.6\%, and the survival with favorable neurologic outcome was 8.6\%.\(^10\) This equates to an estimated US annual loss of 311 000 lives and 3.3 million life-years.\(^12\) In England, 2014 data indicated there were 28 729 EMS-treated cardiac arrests (53 per 100 000 population), and the survival to hospital discharge rate was 7.9\%.\(^13\) In Japan, a nationwide OHCA registry is used to track the incidence of cardiac arrest. During calendar years 2005 to 2009, 547 143 episodes of OHCA were recorded, with the annual incidence rate increasing from 80.7 to 90.4 per 100 000 population during the study period.\(^14\)

Adult in-hospital cardiac arrest (IHCA) rates and outcomes vary widely, and estimates are based on limited data from voluntary registries. In the United States, data from the American Heart Association Get With The Guidelines–Resuscitation program estimated that 209 000 hospitalized adults are treated for cardiac arrest annually, with a survival rate of 24.8\%.\(^15\) The United Kingdom National Cardiac Arrest Audit found an incidence of IHCA of 1.5 per 1000 admissions across 144 acute care hospitals, with an unadjusted survival rate of 18.4\%.\(^16\)

BLS AND AUTOMATED EXTERNAL DEFIBRILLATORS

Accurate recognition of cardiac arrest, prompt initiation of high-quality CPR, early defibrillation, and rapid activation of EMS are key interventions associated with improved outcome from adult cardiac arrest.\(^17\)-25 The 2015 CoSTR considered several topics related to the role of emergency dispatchers to improve the recognition of and bystander response to OHCA. Given the global burden of lives lost and years of life lost from cardiac arrest, studies to address the knowledge gaps associated with cardiac arrest recognition, dispatch-assisted CPR, and public-access defibrillation programs are considered to be of high impact and priority and are quite feasible.

Training/Protocols for Dispatcher-Assisted Recognition of Cardiac Arrest and Interventions to Promote Bystander CPR

Bystander CPR improves survival rates by 2- to 4-fold.\(^19\)-22,25 The 2015 CoSTR noted a strong association between telephone-assisted CPR instruction and the provision of bystander CPR.\(^26,27\) Specifically, unconsciousness and...
abnormal (agonal) breathing are the key diagnostic features to enable dispatchers to recognize cardiac arrest. Enhancing dispatcher recognition of cardiac arrest is likely to be one of the most cost-effective solutions to improving survival. Dispatcher training and protocol configuration can assist with cardiac arrest recognition, but further research is required to define the optimal system and processes. Specific areas that may benefit from further research include the influence of a dispatcher’s background (clinical/nonclinical), the impact of and solutions to language barriers, and optimal questions/instructional sequence to provide to callers. Future studies should report the diagnostic performance characteristics (eg, sensitivity, specificity), time to key events (recognition of cardiac arrest, initiation of bystander CPR, time of first responder/EMS arrival), and relevant clinical outcomes (survival to hospital discharge and favorable neurological outcome).

Conventional Versus Compression-Only CPR During Dispatch-Assisted CPR

The 2015 CoSTR recommends that dispatchers provide direction for chest compression–only CPR for adults with suspected OHCA.26,27 These recommendations were drawn largely from randomized and observational studies of adults with cardiac arrest from a presumed cardiac cause. A recent systematic review supported that the use of telephone-assisted continuous chest compressions by bystanders, compared with interruption of compressions for rescue breathing, improved survival to discharge for nonasphyxial OHCA.28 The 2015 CoSTR noted a paucity of evidence on the most effective strategy (conventional or compression-only CPR by bystanders) when the cause of arrest is believed to be noncardiac. Specific knowledge gaps include the optimal dispatch-assisted CPR recommendations for individuals with OHCA (compression-only or conventional CPR) and, if conventional CPR is to be given, the optimal instruction sequence for coaching callers. If conventional CPR is advised, the number of chest compressions to provide before ventilations are introduced also needs to be determined.

System Configuration for Public-Access Defibrillation and Automated External Defibrillator Program Characteristics

Defibrillation within the first few minutes after cardiac arrest can lead to survival rates of 50% to 70%.22 Systems enabling the public to have access to defibrillation have been developed and are associated with improved
survival. Training first responders (volunteers, police, fire services) to use an automated external defibrillator can also reduce time to defibrillation and positively affect survival. Although evidence supports the clinical effectiveness of these approaches, there is relatively little evidence informing the optimal system configuration or the most cost-effective approach. Specific knowledge gaps include the effect of strategies to improve public-access defibrillation use and where best to place automated external defibrillators for public access. The role of digital/social media tools and applications to enhance volunteers’ and first responders’ ability to deliver timely defibrillation appear promising and warrant further evaluation.

CPR Quality

High-quality chest compressions are associated with better patient outcomes. Evidence from observational studies supported the 2015 CoSTR recommendations on optimal chest compression depth and rate, minimization of interruptions in chest compressions, and avoidance of leaning. The various components of chest compressions were noted, however, to be interrelated. For example, faster chest compression rates are associated with lower chest compression depth and greater leaning. Further research is needed to identify which of the individual components of chest compressions should be prioritized when delivering CPR. At present, CPR feedback and prompt devices, which measure the quality of CPR delivered, are the most frequently used systems. Some studies have suggested that optimizing CPR to achieve specific physiological end points such as diastolic blood pressure, end-tidal carbon dioxide (ET\textsubscript{CO}{}), or cerebral oximetry may be beneficial. These studies highlight a key knowledge gap: identifying the best target(s) for optimizing CPR performance.

ADVANCED LIFE SUPPORT

The success of ALS interventions depends on the early recognition of cardiac arrest and use of BLS/automated external defibrillator treatments for cardiac arrest. ALS interventions that interfere with the provision of high-quality chest compressions may reduce the likelihood of return of spontaneous circulation (ROSC). Postresuscitation care is increasingly recognized as a critical factor in outcome for patients achieving ROSC after cardiac arrest.

Tracheal Intubation During CPR

The 2015 CoSTR recommended use of bag-mask ventilations, a supraglottic airway, or an advanced airway for initial airway management during CPR and noted that selection and efficacy of an airway intervention depend on rescuer skills. The role of tracheal intubation during CPR for both IHCA and OHCA remains uncertain with the possibility of both benefit and harm. A recent retrospective review from the Get With The Guidelines–Resuscitation registry found that for IHCA tracheal intubation anytime during the first 15 minutes of resuscitation, compared with no intubation during that minute, was associated with decreased survival to hospital discharge. In contrast, another large retrospective series showed an inverse relationship between time to intubation during IHCA and survival to discharge and favorable neurological outcome. Specific knowledge gaps include the type and duration of training required for performing advanced airway management during CPR.

Because most patients receive >1 type of airway intervention during CPR, the study of the effect of tracheal intubation on outcome is difficult. Two large RCTs are in progress to compare tracheal intubation with supraglottic airway devices during OHCA and should further inform our understanding of the role of an advanced airway during CPR. The 2 trials use different devices and end points: AIRWAYS-2 (Airway Management in Out of Hospital Cardiac Arrest Patients; ISRCTN08256118), being conducted in the United Kingdom, is using the i-gel supraglottic airway and modified Rankin Scale score at hospital discharge, whereas PART (Pragmatic Airway Resuscitation Trial; NCT02419573), in progress in North America, is using the laryngeal tube and 72-hour survival.

Vasopressors During Cardiac Arrest

For many decades, the injection of epinephrine for cardiac arrest has been considered a standard of care during ALS. Given the limitations of observational studies and therefore the uncertainty about benefit or harm with regard to long-term survival, the 2015 CoSTR suggested that epinephrine continue to be administered to patients in cardiac arrest by using existing dosing and timing strategies. It is important to note that there have been no placebo-controlled prospective trials with adequate power to assess the effect of epinephrine on long-term outcome after cardiac arrest. An underpowered RCT of epinephrine versus placebo for OHCA documented a higher rate of ROSC without improving survival to discharge or neurological outcome, but in a meta-analysis of large observational studies, epinephrine has been associated with no change in survival to discharge and worse long-term neurological outcomes, although ROSC rates were higher. In a propensity-matched analysis of the Get With The Guidelines–Resuscitation registry published since the 2015 CoSTR, the administration of epinephrine within the first 2 minutes after the first defibrillation to patients with IHCA and an initially shockable rhythm was associated with decreased odds of survival (odds ratio, 0.70; 95% confidence interval, 0.59–0.82;
Physiological Targets During Postcardiac Arrest Care

Approximately 60% of adult patients admitted to an intensive care unit (ICU) after either OHCA or IHCA die before hospital discharge.\(^48-52\) Reducing postcardiac arrest hospital mortality to 50% would save 1 additional life for every 10 patients admitted to an ICU after resuscitation from cardiac arrest. Improving the neurological outcome of those who survive is also a key metric of success.

In terms of the 2015 CoSTR recommendations related to physiological targets during postcardiac arrest care,\(^36,37\) there are multiple knowledge gaps related to what deviations from normal or baseline physiological values are harmful or, perhaps, protective in postcardiac arrest patients and what timing, magnitude, and duration of these deviations affect outcome. Specific parameters that have been most widely studied include mean arterial pressure, partial pressure of oxygen and carbon dioxide in arterial blood (Pa\(_O_2\) and Pa\(_CO_2\)), central venous oxygen saturation (Scv\(_O_2\)), temperature, and serum glucose. With the exception of temperature, values significantly below and above the normal range have been associated with worse outcomes in retrospective observational studies, but prospective clinical trials comparing specific target ranges have been underpowered or are yet to be completed. In contrast, the currently recommended target temperature range of 32°C to 36°C for comatose adult cardiac arrest survivors is based on prospective randomized clinical trials demonstrating improved outcomes compared with no temperature control.\(^51,52\) However, a follow-up trial detected no difference in outcomes with a target temperature of 33°C versus 36°C, although the time to reach target temperature was not reported.\(^53\) A recent ILCOR advisory statement incorporated these findings as an update to the systematic review performed for the 2015 CoSTR recommendations.\(^54\)

There is ongoing interest to determine whether targeted temperature management (TTM) provides outcomes equivalent to a strategy of controlled normothermia with strict avoidance of fever. The TTM2 study (Targeted Hypothermia Versus Targeted Normothermia After Out-of-Hospital Cardiac Arrest; NCT02908308), a follow-up to the TTM study comparing 33°C and 36°C targets,\(^55\) will be an international, multicenter, parallel-group, noncommercial, randomized superiority trial in which a target temperature of 33°C will be compared with standard care with early treatment of fever (\(\geq 37.8\)°C) for adults who remain unconscious after cardiac arrest.\(^55\) Likewise, the optimal target temperature for postarrest management is being evaluated by the FROST study (Finding the Optimal Cooling Temperature After Out-of-Hospital Cardiac Arrest), comparing target temperatures of 32°C, 33°C, and 34°C after ROSC for adults with OHCA and initial shockable rhythm.\(^56\)

It is challenging to design a prospective clinical trial examining a goal-directed strategy that optimizes only 1 physiological parameter. One study currently underway in Belgium is the NEUROPROTECT trial (Neuroprotective Goal Directed Hemodynamic Optimization in Post-Cardiac Arrest Patients; NCT02541591).\(^57\) NEUROPROTECT is an adult prospective randomized study comparing a hemodynamic optimization strategy that includes a mean arterial pressure 85 to 100 mm Hg and Scv\(_O_2\) of 65% to 75% with a control group with a mean arterial pressure goal of >65 mm Hg and no Scv\(_O_2\) goal.

Many experts believe that the most successful approach will be a personalized precision strategy that individually optimizes each patient’s key physiological parameters on the basis of prearrest status, severity of injury, response to injury, and response to therapeutic interventions. However, which physiological parameters are the most significant and the timeframe within which optimization is beneficial remain to be determined. Moreover, more sophisticated monitoring modalities may be required such as a comparison between cerebral oxygen delivery and demand in real time at the bedside. The other significant challenge for this line of investigation is delays in physiological optimization during early (pre-ICU) postcardiac arrest care when monitoring capabilities are limited. However, if successful, the impact of optimizing immediate postcardiac arrest physiology could be significant.

Emergency Angiography in Comatose Patients After ROSC

Numerous observational studies have shown the consistent benefit of emergency angiography and primary percutaneous coronary intervention in comatose patients with ST-segment–elevation myocardial infarction who...
have achieved ROSC, and a meta-analysis supports use for patients with a mixed pathogenesis of OHCA. The most recent systematic review completed as part of the 2015 CoSTR also confirmed the benefit found in post-ROSC patients with non-ST-segment elevation, but the studies were not consistent or explicit in the criteria for patient selection. The evidence for those patients with non–ST-segment elevation on postarrest ECG is more limited, and the decision to undertake emergent catheterization was infrequently documented, but it was commonly made at the discretion of the treating team. A number of factors could have influenced the decision, including age, duration of CPR, hemodynamic instability, presenting cardiac rhythm, neurological status on hospital arrival, and perceived likelihood of cardiac cause.

Specific knowledge gaps include determination of which subgroups of patients with non–ST-segment elevation are the most likely to benefit and which patients may not benefit at all. Although there are no published randomized studies on emergency angiography and primary percutaneous coronary intervention after ROSC, multiple prospective trials are in progress. The COACT study (Coronary Angiography After Cardiac Arrest), currently in progress in the Netherlands, is a prospective randomized study of immediate versus delayed coronary angiography for post-ROSC patients with non–ST-segment elevation with a primary outcome of 90-day survival. The PEARL trial (Pilot Randomized Clinical Trial of Early Coronary Angiography Versus No Early Coronary Angiography for Post–Cardiac Arrest Patients Without ECG ST-Segment Elevation) is a US multicenter study that will assess the safety and efficacy of early (<120 minutes) angiography in adults with suspected cardiac cause of cardiac arrest and without ST-segment elevation on ECG after ROSC. In Germany, the TOMAHawk study (Immediate Unselected Coronary Angiography Versus Delayed Triage in Survivors of Out-of-Hospital Cardiac Arrest Without ST-Segment Elevation) will also assess the time of angiography with a primary outcome of 30-day survival. The DISCO trial (Scandinavian Direct or Subacute Coronary Angiography for Out-of-Hospital Cardiac Arrest) will compare the safety and efficacy of these 2 approaches. The ARREST study (A Randomised Trial of Expedited Transfer to a Cardiac Arrest Center for Non-ST Elevation Ventricular Fibrillation Out-Of-Hospital Cardiac Arrest) will explore the effectiveness of transfer to a cardiac arrest center and immediate percutaneous coronary intervention in patients without ST-segment elevation on postarrest ECG. The National Institutes of Health–funded ACCESS trial (ACCESS to the Cardiac Cath Lab in Patients Without STEMI Resuscitated From Out-of-Hospital VT/VF Cardiac Arrest) will compare early cardiac catheterization and treatment for patients with ventricular fibrillation/ventricular tachycardia OHCA with cardiac catheterization laboratory activation only after ICU admission and consideration by the cardiology and treatment teams. These studies will help to determine whether emergency angiography should be performed in all comatose patients after ROSC or whether there should be clearer criteria for selection.

Neuroprognostication in Comatose Survivors of Cardiac Arrest

Determining the prognosis for recovery for patients after cardiac arrest is important for planning and coordinating postresuscitation care. In some settings, life-sustaining treatments are limited when the treating team believes favorable functional recovery is not possible; the use of postarrest hypothermia added another layer of complexity. The 2015 CoSTR identified multiple methods of patient assessment for estimating prognosis: clinical examination, neurophysiological studies, blood biomarkers, and imaging studies. There were specific knowledge gaps about prognostic tests and global concerns related to the design of prognosis studies. First, understanding how sedative drugs and neuromuscular blocking drugs alter prognostic testing requires prospective studies on drug pharmacokinetics and pharmacodynamics in postcardiac arrest patients.

In most prognostication studies, treating teams were not blinded to the results of tests, and the results were used as a criterion for limitation or suspension of life-sustaining treatment. This lack of blinding may bias results toward overestimation of the accuracy of tests for predicting poor outcomes or death (“self-fulfilling prophecy”). Many studies of computed tomography and magnetic resonance imaging included very selected populations who were referred for imaging. Prospective studies in unselected patient cohorts resuscitated from cardiac arrest are needed to determine the actual prognostic accuracy of imaging studies. Most studies examined the performance of a single variable for predicting prognosis, but clinical practice uses multiple modalities to assess an individual patient. More studies are needed on the accuracy and predictive value of prognostic tests when used in combination.

Similarly, studies to determine the incremental value of a given test, when other data about the patient are already known, would help clinicians design the most efficient evaluation rather than performing every test
on every patient.75 Many tests provide complex results, and the criterion for an abnormal or poor result varies widely between studies. For example, definitions of reactive and nonreactive electroencephalogram-based predictors are inconsistent among prognostication studies. Standardized reporting of electroencephalographic, magnetic resonance imaging, and computed tomography scan data would improve the ability to compare cohorts.16,77

PEDIATRIC LIFE SUPPORT

The global incidence of pediatric cardiac arrest is unknown; however, the premature death of a child leads to a greater proportion of life-years lost compared with the death of an adult. The World Health Organization’s Global Health Observatory data estimated that 5.9 million children <5 years of age died in calendar year 2015.78 Although primary heart disease is an uncommon cause of death in children, cardiac arrest represents the final common pathway for mortality from infection, trauma, and congenital anomalies.

Data from the Resuscitation Outcomes Consortium Epistry and the CARES registry estimate that 7000 children (age, 1–18 years) experience EMS-assessed nontraumatic OHCA per year in North America.15 Of the 78% who are treated by EMS, the survival to hospital discharge is 13.2% (Resuscitation Outcomes Consortium) to 11.4% (CARES).79 This translates to ≈6000 pediatric lives lost per year, with a high rate of neurological morbidity in survivors. Within North America, the outcomes from pediatric cardiac arrest are variable by region, with survival to hospital discharge ranging from 2.6% to 14.7%.80 The incidence of pediatric IHCA in the United States has been estimated to be ≈1 per 1000 hospital discharges from reports from administrative databases.81 Survival to discharge for pediatric IHCA has been increasing, with recent estimated rates of 43% to 45%.81,82 According to the US Centers for Disease Control’s 2014 estimate of ≈3 million overnight hospitalizations for patients <17 years of age, there are ≈2340 pediatric IHCA events annually; with a mortality rate of ≈55%, pediatric IHCA accounts for ≈1300 deaths per year in the United States.83

Goal-Directed Physiological Targets During CPR

CPR quality monitoring is recommended during adult and pediatric CPR.82 Real-time visual feedback improves compliance with recommended chest compression depth,93 which is associated with improved outcome from pediatric cardiac arrest.85 E\textsubscript{TCO\textsubscript{2}} and arterial blood pressure are 2 physiological parameters that can be used to guide chest compression performance, with pediatric animal studies showing that systemic perfusion pressure or diastolic blood pressure performs better than E\textsubscript{TCO\textsubscript{2}} in discriminating survivors from nonsurvivors.34,35 In particular, using hemodynamic-directed CPR improves short-term survival after cardiac arrest in a pediatric animal model.93 The 2015 CoSTR was unable to recommend targets for E\textsubscript{TCO\textsubscript{2}} or diastolic blood pressure because of a lack of evidence.84,85 Specific knowledge gaps include numeric physiological parameters for E\textsubscript{TCO\textsubscript{2}} and diastolic blood pressure associated with high-quality pediatric CPR, as well as with improved outcomes.

Vasopressors During Cardiac Arrest

The efficacy of vasopressor administration during adult OHCA has been questioned because of the results of several prospective randomized trials and associated meta-analyses.94,95 However, no human studies have compared epinephrine or combinations of vasopressors with controls for pediatric OHCA, although a small case series suggested that the use of epinephrine could be harmful in sudden, witnessed arrest.96 The 2015 CoSTR recommended standard doses of epinephrine for pedi-
atric cardiac arrest and noted a paucity of supporting evidence.84,85

For pediatric IHCA, the use of high-dose epinephrine has been shown to be harmful compared with standard-dose epinephrine,97 but there are no placebo-controlled studies. A recent retrospective registry study of time to epinephrine in pediatric IHCA for patients with nonshockable rhythms showed that delay to epinephrine administration was associated with reduced ROSC, survival, discharge, and favorable neurological outcome.98 Use of vasopressin as a rescue therapy for pediatric patients in the ICU who are refractory to epinephrine has been reported.99 Specific knowledge gaps include the question of harm versus benefit of vasopressors for pediatric cardiac arrest. In addition, for selected circumstances (eg, pulmonary hypertension, myocarditis), the role of vasopressors versus extracorporeal CPR rescue should be further investigated.

Defibrillation Energy Doses

The 2015 CoSTR recommended that the energy dose for defibrillation of pediatric ventricular fibrillation/ pulseless ventricular tachycardia should range from 2 to 4 J/kg, monophasic or biphasic, in the absence of strong evidence for any specific or subsequent doses.84,85 The available evidence is largely observational and influenced by confounders such as the duration of the arrhythmia, mixed analysis of primary and secondary ventricular fibrillation, and different energy waveforms being used for defibrillation.100,101 As with the sequence of actions for pediatric BLS, the resuscitation council–specific guidelines differ. The American Heart Association guidelines currently recommend an initial dose of 2 J/kg, followed by a second shock of 4 J/kg if needed.90 In contrast, the European Resuscitation Council guidelines recommend initial and subsequent doses of 4 J/kg.99 Specific knowledge gaps include the risk/benefits of specific or titrated energy doses in both primary and secondary shockable rhythms.

Postarrest TTM

Two RCTs on the use of TTM after pediatric cardiac arrest have now been published that compare therapeutic hypothermia with normothermia in OHCA and IHCA.102,103 The THAPCA trials (Therapeutic Hypothermia After Pediatric Cardiac Arrest) each included 2 cohorts: 1 group received 48 hours of therapeutic hypothermia at a target temperature of 33°C followed by 72 hours of normothermia, and the other group was managed with normothermia for 5 days at a target temperature of 36.8°C. The results of both trials showed no statistical difference in the prespecified primary outcome of survival with good functional status at 1 year. At the time of publication of the 2015 CoSTR, only the OHCA study results were available.84,85

Limitations of the out-of-hospital THAPCA trial included the fact that it was underpowered to detect clinically important differences in outcome. Time to initiation of therapy was 5.9 hours, and time to achieve target temperature was not reported. The in-hospital THAPCA study was terminated for futility before the predefined enrollment. Despite the rigorous trial design, differences of opinion persist about the implications of the results for clinical practice, indicating a need for additional studies.104,105 Specific knowledge gaps include the optimal target temperature and the duration of TTM after ROSC.

Education, Implementation, and Teams

The Utstein Formula for Survival emphasizes that cardiac arrest outcome is influenced by more than just our collective scientific understanding.106 The 3 multiplicands in the formula, science, education, and implementation interact to affect survival rates after cardiac arrest. It is recognized that considerable variability still exists in the survival of individuals with cardiac arrest in both the out-of-hospital and in-hospital settings, and a critical need remains to improve educational quality and efficiency and to address systems of care. Research into optimizing resuscitation training and addressing implementation-related issues will be essential to improve the outcomes of individuals after cardiac arrest.

Retraining Intervals for BLS and ALS

It is well documented that CPR skills can decay within weeks to months after traditional single-encounter courses and well before the usual retraining intervals of 1 to 2 years.107,108 The evidence related to optimal retraining intervals for resuscitation education is limited in both quantity and quality. Educational psychology literature has suggested a pedagogical benefit to the “spacing effect” on learning: Educational encounters spaced over time result in more efficient learning and improved learning retention.109 Future research should ensure that the outcome measures used have established validity for their use because it is difficult to make generalizable conclusions without that evidence. Specific knowledge gaps include the effectiveness and efficiency of more frequent refreshers and the optimal amount of time to achieve specific educational objectives. Other key aspects of refresher training include feasibility, learner preference, self-efficacy,110 and cost-effectiveness, especially the option of completing refresher training within the workflow of the clinical environment.
Leadership and Team Training

The 2015 CoSTR recommends team and leadership training as part of ALS training for healthcare providers despite low-quality evidence because of the potential benefit and lack of harm associated with the training and the high level of acceptability to learners and faculty.107,108 The Education, Implementation, and Teams Task Force viewed these important considerations as more significant than the potential increased costs associated with team and leadership training. Specific knowledge gaps include the impact of team and leadership training on patient outcomes, long-term retention, and application of knowledge and skills in the clinical and simulated-learning environments. Furthermore, it would be useful to conduct a formal cost analysis of the additional training required for adequate teamwork and leadership skills and to assess the optimal methods to teach them.

Social Media Strategies

The 2015 CoSTR considered the potential impact of the use of social media/digital technologies as a mechanism for mobilizing citizen bystanders as cardiac arrest first responders.107,108 A recent RCT conducted in Sweden showed improved bystander CPR rates by using a mobile phone positioning system for locating and recruiting CPR-trained lay responders, although survival was not increased, possibly because of the lack of statistical power.29 Because early bystander CPR has been shown to improve survival in OHCA, further research is required to better understand the role of social media in bystander recruitment (“crowdsourcing”).111 In addition, there is a need for further research into the potential for the audio, video, and motion-sensing capabilities of digital technologies to be exploited for real-time resuscitation events and education.112

As identified by the recent American Heart Association scientific statement, digital strategies such as the use of mobile devices, social media, and crowdsourcing are important to achieving the 2020 Impact Goals; however, “there is a need for rigorous research...to ensure safety and effectiveness.”30

Impact of Cardiac Arrest Centers on Outcomes

No RCTs have specifically tested the relationship between specialized cardiac arrest centers and patient outcomes. A growing body of evidence from observational studies shows a positive relationship between cardiac arrest case volume/hospital capabilities and survival outcomes.113-115 Consistent with other emergent conditions such as trauma116 and acute myocardial infarction,117 the concept of cardiac arrest centers that deliver evidence-based postresuscitation care is intuitively appealing. However, as identified in the 2010118 and 2015107,108 CoSTR, there are multiple specific knowledge gaps: the particular treatments to be provided by a cardiac arrest center, the safe patient transport interval (time taken to travel from scene to hospital), the optimal mode of transport (eg, ground ambulance, helicopter), the role of secondary transport (transfer from a receiving hospital to a cardiac arrest center), and the cost-effectiveness of cardiac arrest centers. It is uncertain whether sufficient clinical equipoise exists for an RCT to be conducted.

Implementation of Resuscitation Guidelines

The 2015 CoSTR recommended the implementation of resuscitation guidelines by organizations that provide care for patients after cardiac arrest despite the absence of any strong evidence.107,108 This so-called discordant recommendation was made in recognition of the likely benefits relative to harm of a consistent “evidence-based” response by rescuers to a life-threatening event. Despite the international effort that underpins the development of resuscitation guidelines, it has been shown that the uptake of resuscitation guidelines into practice at the local level can be delayed for a variety of reasons.119-122 Specific knowledge gaps include the most effective (and cost-effective) strategies for dissemination and implementation of resuscitation guidelines.

First Aid

First aid is defined as the helping behaviors and initial care provided for an acute illness or injury. The goals of first aid are to preserve life, to alleviate suffering, to prevent further illness or injury, and to promote recovery. First aid can be initiated by anyone in any situation and is the overarching title for all resuscitation and associated life-preserving procedures.123,124 First aid can therefore be considered the primary preventive precardiac arrest strategy to avert the need for resuscitation, as well as the postcardiac arrest management that prevents further harm or rearrest. As with other domains, there is a serious lack of evidence-based science to support or refute the current first aid recommendations.

Recovery Position

The 2015 CoSTR suggested the use of a lateral side-lying recovery position for individuals with medical conditions who are unresponsive but breathing normally.123,124 Specific knowledge gaps include the determination of the optimal recovery position for both adults and children. Most studies have used discomfort in healthy volunteers as the outcome measure; only a
single study has looked at aspiration in relation to position, and no studies have looked at mortality. Further complicating the topic are anecdotal reports of resuscitation being delayed while the victim is placed in the recovery position and mistaking agonal gasps for normal respiratory effort.

Specific knowledge gaps include situations in which the use of a recovery position may be beneficial. For example, placing a patient with a generalized seizure into a lateral recumbent recovery position may be associated with a lower incidence of sudden death in epilepsy. Another recent study showed a lower incidence of hospital admissions among children with loss of consciousness caused primarily by seizures and vasovagal syncope who were placed in a recovery position. The use of a recovery position for acute drug and alcohol ingestions also deserves future study.

Use of Oxygen for Conditions Other Than Chest Pain/Cardiac Arrest

The 2015 CoSTR focused on the use of oxygen for dyspnea and decompression injury. A single large observational study evaluated oxygen use in suspected decompression sickness, and smaller studies examined oxygen use in patients with advanced cancer and dyspnea combined with hypoxemia. Specific knowledge gaps include the use of oxygen by first aid providers for conditions such as suspected carbon monoxide poisoning, inhalation injury, seizures, or most other illnesses and injuries.

Control of Bleeding

The ability to control severe, life-threatening bleeding is considered a primary first aid intervention and one that was the focus of a recent public health initiative in the United States (Stop the Bleed campaign). The 2015 CoSTR suggested the use of tourniquets for severe external limb bleeding that could not be controlled by direct pressure. Research into the use of tourniquets comes primarily from the military setting in the form of case series or animal studies. Civilian sector studies are limited and consist chiefly of small observational studies.

There are no direct comparative studies looking at tourniquets versus hemostatic dressings for extremity wounds with massive bleeding or use of a second tourniquet when the initial tourniquet application fails. No studies have specifically compared improvised tourniquets that might be used by a first aid provider for outcomes of control of bleeding. Research looking at hemostatic dressings is almost exclusively from animal studies. Further research comparing different methods of hemorrhage control is needed because it would be unethical to perform studies by using a control group who did not receive treatment. Specific knowledge gaps include the optimal educational techniques for first aid providers and lay public members in the proper application of tourniquets, both commercial and improvised.

Treatment of Mild Hypoglycemia

The 2015 CoSTR suggested that first aid providers administer glucose tablets or other forms of dietary sugars for symptomatic patients suspected of being hypoglycemic. There are no studies looking at buccal or sublingual absorption of glucose gel or paste to determine a comparable dose equivalent to oral glucose tablet or liquid glucose administration. Studies that look at buccal or sublingual administration suggest that the dose was swallowed rather than absorbed through mucosa. Preliminary studies show comparable improvement in moderate to severe hypoglycemia in children with malaria when treated with repeat doses of sublingual glucose compared with intravenous glucose infusion. Specific knowledge gaps include the safety and efficacy of glucagon use by first aid responders for hypoglycemia, despite the existence in many states in the United States of protocols allowing the use of injectable glucagon by trained first aid providers or family members.

Cervical Spine Motion Restriction

Although it is recognized that spinal immobilization has not been shown to prevent neurological injury, there continue to be questions about the appropriate first aid response for patients at high risk for spinal injury. Few studies have evaluated the effectiveness of manual stabilization techniques such as head-squeeze or trap-squeeze. Specific knowledge gaps include interventions that may be of benefit when first aid is provided to a spine-injured patient or a patient at high risk of spinal injury such as verbal prompts or manual stabilization while awaiting arrival of advanced care providers.

SUMMARY

The 2015 CoSTR used a rigorous process to evaluate the available evidence. Despite tremendous progress in the field of resuscitation medicine, multiple knowledge gaps remain. This consensus statement has outlined the major topic areas and attempted to prioritize the gaps in knowledge on the basis of the potential impact on outcomes and feasibility to perform. The writing group recognizes that there are important limitations to the consensus methodology used. The specific gaps selected may not represent regional or local priorities for all resuscitation councils. Furthermore, we did not address gaps in research methods or provide detailed recommendations on potential study designs. We hope the resuscitation science community will agree that there
are innumerable opportunities to make progress toward our globally supported goal of saving more lives.

ARTICLE INFORMATION

The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.

This statement was approved by the American Heart Association Science Advisory and Coordinating Committee on November 9, 2017, and the American Heart Association Executive Committee on December 11, 2017.

This statement has been copublished in Resuscitation.

Copies: This document is available on the websites of the American Heart Association (professional.heart.org) and the European Resuscitation Council. A copy of the document is available at http://professional.heart.org/statements by using either “Search for Guidelines & Statements” or the “Browse by Topic” area. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://professional.heart.org/statements. Select the “Guidelines & Statements” drop-down menu, then click “Publication Development.”

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the “Copyright Permissions Request Form” appears on the right side of the page.

Acknowledgments

The writing group acknowledges the contribution of the ILCOR Task Force members who participated in the survey process, as well as the dedication and support of the AHA Emergency Cardiovascular Care staff, especially Eileen Censullo, MBA, RRT; Nabeel A. Arain, MD; MB; and all support staff at AHA.

Disclosures

Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monica E. Kleinman</td>
<td>Boston Children’s Hospital</td>
<td>None</td>
<td>None</td>
<td>2017/Defense/pediatric airway management*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Gavin D. Perkins</td>
<td>Warwick Medical School and Heart of England NHS Foundation Trust</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Farhan Bhanji</td>
<td>McGill University (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John E. Billi</td>
<td>University of Michigan Medical School</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Janet E. Bray</td>
<td>Monash University, Alfred Hospital & Curtin University (Australia)</td>
<td>Laerdal Australia (equipment provided for research)*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Clifton W. Callaway</td>
<td>University of Pittsburgh</td>
<td>NIH (grants to study emergency care)†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Allan de Caen</td>
<td>University of Alberta (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Judith C. Finn</td>
<td>Curtin University (Australia)</td>
<td>Australia National Health and Medical Research Council (national competitive funding scheme for investigator-initiated research)†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary Fran Hazinski</td>
<td>Vanderbilt University School of Nursing</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Consultant, Senior Science Editor, AHA Emergency Cardiovascular Care†</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swee Han Lim</td>
<td>General Hospital (Singapore)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ian Maconochie</td>
<td>St. Mary’s Hospital (United Kingdom)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Vinay Nadkarni</td>
<td>Children’s Hospital Philadelphia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peter Morley</td>
<td>University of Melbourne Clinical School, Royal Melbourne Hospital (Australia)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert W. Neumar</td>
<td>University of Michigan</td>
<td>NIH/NHLBI (R01 HL133129, R34 HL130738, K12 HL133304, R44 HL091606); PhysioControl (equipment support for laboratory and clinical research)*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Nikolaos Nikolaou</td>
<td>Konstantopouleio General Hospital (Greece)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jerry P. Nolan</td>
<td>School of Clinical Sciences, University of Bristol, Royal United Hospital (United Kingdom)</td>
<td>NIH research grants (coinvestigator for PARAMEDIC-2 study and AIRWAYS-2)*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Amelia Reis</td>
<td>Inter-American Heart Foundation (Brazil)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Alfredo F. Sierra</td>
<td>Inter-American Heart Foundation (Mexico)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eunice M. Singletary</td>
<td>University of Virginia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jasmeet Soar</td>
<td>Southmead Hospital (United Kingdom)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David Stanton</td>
<td>Resuscitation Council of Southern Africa (South Africa)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Andrew Travers</td>
<td>Emergency Health Services, Nova Scotia (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michelle Welsford</td>
<td>Centre for Paramedic Education and Research, Hamilton Health Sciences Centre (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David Zideman</td>
<td>Imperial College Healthcare NHS Trust (United Kingdom)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.
†Significant.
Reviewer Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Andrusiek</td>
<td>University of British Columbia (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert A. Berg</td>
<td>Children’s Hospital of Philadelphia</td>
<td>NICHID I have been awarded an NICHID R21 grant to evaluate pulmonary vasodilator therapy for hemodynamic-directed CPR; I am the CHOP site PI on the NICHID Collaborative Pediatric Critical Care Network that is analyzing data on appropriate BP targets during CPR; I am a coinvestigator on an NHLBI grant to study the effects of debriefing on outcomes from pediatric IHCA; my comments on reference problems and inaccurate pediatric IHCA incidence information are unrelated to my grant topics†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Steven M. Bradley</td>
<td>Minneapolis Heart Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Helmut U. Klein</td>
<td>University of Rochester Medical Center</td>
<td>ZOLL Inc, Pittsburgh, PA (Prospective Registry on the Wearable Defibrillator [WCD])*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James T. Niemann</td>
<td>Harbor-UCLA Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be "significant" if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest" if it is less than “significant" under the preceding definition.

†Significant.
*Modest.
15Significant.

REFERENCES

