Low temperature texture development in Nd$_2$Fe$_{14}$B/α-Fe nanocomposite magnets via equal channel angular pressing

L. Besley, J. S. Garitaonandia, A. Molotnikov, H. Kishimoto, A. Kato, C. Davies, and K. Suzuki

Department of Materials Science and Engineering, Monash University, 3800 Melbourne, Australia
Department of Applied Physics II Faculty of Science and Technology University of the Basque Country UPV/EHU, Sarriena, 48940 Leioa, Bilbao, Basque Country (Spain)
Toyota Motor Corporation, Mishuku, Susono, Shizuoka 410-1193, Japan
Department of Mechanical and Aerospace Engineering, Monash University, 3800 Melbourne, Australia

(Received 25 September 2017; accepted 16 November 2017; published online 5 January 2018)

While suitable texture has been developed in Nd$_2$Fe$_{14}$B/α-Fe nanocomposites via thermomechanical processing methods such as die upsetting by incorporating low melting point eutectic Nd-Cu additives, significant grain coarsening occurs during this process due to the high temperature and long timescales involved, resulting in a loss of exchange coupling. Equal channel angular pressing (ECAP) is a severe plastic deformation technique which has been successfully used to produce a suitable texture in single-phase Nd$_2$Fe$_{14}$B at temperatures on the order of 500°C while preserving grain sizes on the order of 20-30nm. We investigate the development of texture in a commercial Nd$_2$Fe$_{14}$B/α-Fe nanocomposite alloy with added Nd$_{90}$Cu$_{10}$ produced via ECAP and then characterise it using texture x-ray diffraction and magnetic measurements. It is found that initial texture can be developed in this nanocomposite system at T = 520°C via ECAP. The average grain size of Nd$_2$Fe$_{14}$B as measured via X-ray diffraction after ECAP remains below 50nm with a developed texture. The effect of varying the amount of Nd$_{90}$Cu$_{10}$ additive is also investigated. It is found that with decreasing Nd$_{90}$Cu$_{10}$, the degree of texture is reduced while the volume fraction of α-Fe increases. This work demonstrates the development of texture in nanocomposite Nd$_2$Fe$_{14}$B/α-Fe with Nd-Cu additives whilst maintaining a grain size of approximately 50nm. © 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5006359

I. INTRODUCTION

Nd$_2$Fe$_{14}$B/α-Fe nanocomposite magnets promise excellent performance with high theoretical maximum energy products due to the effects of exchange coupling. In order to realise the full potential of nanocomposites, texture must be developed without losing exchange coupling. While texture can be developed in nanocomposites via thermomechanical processing such as die upsetting and the incorporation of low melting point eutectic Nd-rich additives (such as Nd-Cu and Nd-Ga) that help improve the workability and facilitate texture development in these materials, the temperature and timescale required for such processing causes grain coarsening, resulting in a final microstructure with grain sizes on the order of 200-1000nm, well above the predicted exchange length for Nd$_2$Fe$_{14}$B. Other works show that exchange coupling may be observed experimentally at grain sizes slightly above this limit, but still on the order of 30-50nm. In order to maintain

Electronic mail: Luke.Besley@monash.edu
exchange coupling in larger scale nanocomposites, bulk processing routes which do not incur grain growth must be investigated. Equal Channel Angular Pressing (ECAP) has been used successfully to develop texture in Nd$_2$Fe$_{14}$B-based materials without appreciable grain growth. In this work, Nd$_2$Fe$_{14}$B/α-Fe nanocomposite materials are combined with Nd-Cu additives to develop suitable texture via ECAP while maintaining a grain size of approximately 50nm.

II. METHODS

Elements with $>99.99\%$ purity were arc melted with composition Nd$_{90}$Cu$_{10}$. Ingots were then melt spun with a wheel speed of 40 m/s and pulverised into particles of $<250\,\mu m$ under Ar. The Nd$_{90}$Cu$_{10}$ was then added to a commercial hypo-stoichiometric Nd$_{7.91}$Pr$_{2.68}$Fe$_{84}$B$_{5.41}$ alloy13 (herein referred to as MQP15-7), at a ratio of $x_{[\text{NdCu}]}=4, 7, \text{ and } 10\,\text{wt\%}$, and the two powders were subsequently mixed under Ar. Mixed powders were then pre-compacted under Ar at $T=550^\circ\text{C}$ under a pressure of $\sigma \approx 125\,\text{MPa}$ and then annealed at $T=550^\circ\text{C}$ under a vacuum of $10^{-3}\,\text{Pa}$ over a range of times (t). After annealing, the samples were then processed via ECAP at $T=520^\circ\text{C}$ (unless otherwise stated). Further details of the ECAP process and subsequent sample characterisation are described in previous work.12 Scanning Electron Microscopy images were taken with a JEOL 7001-F. Estimations of grain size were calculated from X-ray diffraction patterns using the integral breadth method.1457Fe Mössbauer spectra were acquired at room temperature using a constant acceleration transmission spectrometer with a 57CoRh source.

III. RESULTS AND DISCUSSION

A. The effect of annealing treatment

Fig. 1 shows the change in M-H curves with varying annealing time, while Table I shows changes in $|BH|_{\text{Max}}$, ΔM, and grain size. Initially, without pre-annealing (i.e. $t=0\,\text{h}$), ΔM, and $|BH|_{\text{Max}}$ are quite low. With the a pre-annealing treatment, $|BH|_{\text{Max}}$ and M_r increase. As t further increases, H_c begins to significantly improve as well. However, beyond $t=25\,\text{h}$, H_c, $|BH|_{\text{Max}}$, and M_r begin to I also shows the change in grain size with varying annealing time. Even at the longest annealing time, the grain size tends to remain well below 100nm. Fig. 2 shows pole figures characterising the distribution of (001) planes after ECAP throughout the plane normal to the exit channel with varying annealing times (PD = pressing direction, TD = transverse direction). As t increases, the maximum m.r.d.15 observed increases to a maximum at $t=25\,\text{h}$. The most prominent texture is observable in c), where the (001) basal plane aligns parallel to the shear direction produced in ECAP, distributed approximately 40$^\circ$ away from the exit direction, normal to the easy axis (c-axis). This behaviour of (001) planes in Nd$_2$Fe$_{14}$B aligning parallel to the planes of shear in plastic deformation is consistent with previous studies involving ECAP of Nd$_2$Fe$_{14}$B11 and die upsetting.16 Consistent with the trends observed in Fig. 1 and Table I, the maximum m.r.d. increases as t increases until $t=25\,\text{h}$ where the strongest texture is observed and decreases afterwards.

![FIG. 1. Demagnetisation curves of parallel direction field-aligned powders of 15-7+10wt% after ECAP where $t =$ annealing time for a) $t=5\,\text{h}$, b) $t=10\,\text{h}$, c) $t=25\,\text{h}$, d) $t=72\,\text{h}$.](image-url)
TABLE I. Changes in grain size of Nd$_2$Fe$_{14}$B+10 wt% Nd$_{90}$Cu$_{10}$ after ECAP.a

<table>
<thead>
<tr>
<th>$\text{t}_{\text{Annealing}}$ (h)</th>
<th>ΔM_r b</th>
<th>IBH_{Max}c</th>
<th>Grains Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.5 (0.2)</td>
<td>57 (4)</td>
<td>24(2)</td>
</tr>
<tr>
<td>5</td>
<td>14.3 (0.6)</td>
<td>73 (4)</td>
<td>39(2)</td>
</tr>
<tr>
<td>10</td>
<td>16.1 (0.6)</td>
<td>93 (6)</td>
<td>41(2)</td>
</tr>
<tr>
<td>25</td>
<td>21.8 (0.8)</td>
<td>108 (6)</td>
<td>52(2)</td>
</tr>
<tr>
<td>72</td>
<td>13.4 (0.6)</td>
<td>75 (4)</td>
<td>54(4)</td>
</tr>
</tbody>
</table>

aNumbers in parentheses reflect absolute error.
b(Am2/kg).
c(kJ/m3).

Fig. 2. Pole Figures showing the distribution of the (001) plane taken from the cross section normal to the exit direction in ECAP for a) $t=5$ h, b) $t=10$ h, c) $t=25$ h, and d) $t=72$ h. ↓-pressing direction (PD), ↔-transverse direction (TD).

Fig. 3 shows the fracture surface observed via SEM after ECAP of a sample that had been annealed for $t=25$ h with $x_{\text{NdCu}}=7$ wt%. Although a range of larger (i.e. >100nm) grains can be observed, many smaller grains are clearly visible, consistent with the mean grain size estimated by XRD in Table I. The variation in Table I suggests that at first, the texture is quite weak after ECAP until a sufficient pre-annealing treatment is introduced, after which texture strength increases appreciably. In previous trials involving the processing of hyper-stoichiometric Nd$_2$Fe$_{14}$B with a well-dispersed rare earth-rich grain boundary phase, the timescale of processing via ECAP is adequate to develop a strong texture.11,12 However, since ECAP generally occurs on a much shorter

Fig. 3. Fracture surface of 15-7+7wt%Nd$_{90}$Cu$_{10}$ after ECAP obtained by scanning electron microscopy.
timescale and lower temperature than die-upsetting (on the order of ~100s), the processing of hypo-stoichiometric Nd$_{2}$Fe$_{14}$B/α-Fe with rare earth-rich additives must then require additional mechanisms such as annealing to aid the diffusion of the Nd-rich phase into the grain boundary. Without such additional mechanisms, the degree of Nd$_{90}$Cu$_{10}$ diffusion after ECAP is severely reduced compared to that of die upsetting. Based on the diffusion coefficients17 of 147Nd, $t=25$h corresponds to a diffusion length of approximately 300μm, which just exceeds the average size of precursor powders (<250μm) in these experiments. After $t=25$h, further increases in pre-annealing time result in a decrease in texture strength and $|BH|_{\text{Max}}$, supporting the notion that $t=25$h is sufficient for adequate Nd$_{90}$Cu$_{10}$ diffusion.

B. The effect of varying Nd$_{90}$Cu$_{10}$ content

Given the optimal properties at $t=25$h, compositions with $x_{[\text{NdCu}]}=4$, 7, and 10wt% additions were investigated with this fixed annealing time.

Fig. 4 shows XRD patterns for each composition after ECAP. When $x_{[\text{NdCu}]}=4$wt%, both the (110) and (211) peaks belonging to the α-Fe phase become very large. When $x_{[\text{NdCu}]}=7$wt%, the (110) and (211) peaks decrease significantly, but still are quite prominent. At $x_{[\text{NdCu}]}=10$wt%, the (110) and (211) α-Fe peaks have almost disappeared.

Fig. 5 shows demagnetisation curves of field-aligned powders measured both parallel (solid curves) and perpendicular (dotted curves) to the applied field for $x_{[\text{NdCu}]}=4$wt%, 7wt%, 7wt% with $T_{\text{ECAP}}=550^\circ$C and 10wt%. At $x_{[\text{NdCu}]}=4$wt%, H_{c}, M_{s} and $|BH|_{\text{Max}}$ have decreased significantly. Nonetheless, an appreciable ΔM_{s} still remains. As $x_{[\text{NdCu}]}$ increases, M_{s} systematically decreases and appreciable M_{s} and $|BH|_{\text{Max}}$ are observed. The shape of the demagnetisation curve remains relatively smooth, suggesting a reasonable preservation of exchange coupling for samples c) and d).18

Fig. 6 shows (001) pole figures for these same compositions and processing conditions. The observable
FIG. 6. (001) pole figures from the plane normal to the exit direction (PD=Pressing Direction, TD=Transverse direction) for
\(x_{\text{NdCu}}\) = a) 4wt%, b) 7wt%, c) 7wt% with \(T_{\text{ECAP}} = 550^\circ\text{C}\) and d) 10wt%.

The trend is similar to Fig. 5. The texture is strongest when \(x_{\text{NdCu}}=10\)wt% and decreases with decreasing
\(x_{\text{NdCu}}\) as the (001) plane alignment becomes increasingly isotropic. For \(x_{\text{NdCu}}=7\)wt%, the effect
of increasing temperature during ECAP was also investigated, and can be observed in Fig. 5, as well as the difference between b) and c) in Fig. 6. There is a slight improvement in \(H_c\), \(|BH|_{\text{Max}}\), and \(M_r\),
while \(M_s\) shows a slight decrease. These trends are similar to the trend between \(x_{\text{NdCu}}=7\) and 10wt%,
the latter of which displays the strongest texture and least \(\alpha\)-Fe. This suggests that further increasing
\(T_{\text{ECAP}}\) could further enhance texture and \(|BH|_{\text{Max}}\).

Table II shows the change in composition of \(W_{\alpha\text{-Fe}}\) after ECAP with varying \(x_{\text{NdCu}}\), as
calculated by peak-fitting of Mössbauer spectra. An example of one of the Mössbauer spectra used
for calculation is shown in Fig 7. When \(x_{\text{NdCu}}=4\)wt%, \(W_{\alpha\text{-Fe}}\) is as large as \(~24\)wt%, and then
reduces to 0 as \(x_{\text{NdCu}}\) is increased. These results are consistent with the trend observable in Fig. 4.
At \(x_{\text{NdCu}}=4\)wt%, peaks belonging to the \(\alpha\)-Fe phase are quite prominent, and gradually reduce, to
the point of almost entirely disappearing as \(x_{\text{NdCu}}\) is increased.

While an appreciable \(\Delta M_r\) is kept even at \(x_{\text{NdCu}}=4\)wt%, \(H_c\) and \(|BH|_{\text{Max}}\) have significantly
decreased, and the texture has appreciably diminished. Given the presence of a rare earth-rich eutectic
grain boundary phase is generally required for the formation of texture in \(\text{Nd}_2\text{Fe}_{14}\)B,4,8 such a
decrease in strength of texture is expected when the amount of grain boundary phase is reduced.
Nonetheless, a slight texture still remains at \(x_{\text{NdCu}}=4\)wt%, even when a significant amount of \(\alpha\)-Fe
is present. It is also observable in Fig. 5 that as \(W_{\alpha\text{-Fe}}\) increases, \(M_r\) also increases. The shape of the
demagnetisation curve remains relatively smooth in the second quadrant, which may indicate a preservation
of exchange coupling, however when \(x_{\text{NdCu}}=10\) wt%, \(W_{\alpha\text{-Fe}}\) is very low and this shape
may be explainable by a single hard phase \(\text{Nd}_2\text{Fe}_{14}\)B composition rather than exchange coupling
between hard and soft phases. Additionally, at \(x_{\text{NdCu}}=4\)wt% a very significant loss of coercivity

<table>
<thead>
<tr>
<th>wt% (\text{Nd}{90}\text{Cu}{10})</th>
<th>wt% (\alpha)-Fe (Mössbauer)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>24(2)</td>
</tr>
<tr>
<td>7</td>
<td>15(2)</td>
</tr>
<tr>
<td>10</td>
<td>0(2)</td>
</tr>
</tbody>
</table>

a numbers in parentheses reflect absolute error.
FIG. 7. Mössbauer spectra for $x_{[\text{NdCu}]}=7\text{wt}\%$ after ECAP.

is observed. Ideally, a well exchange-coupled nanocomposite should allow for much larger amounts2,19 of soft phase before significant losses in coercivity are observed, but even at $W_{[\alpha-\text{Fe}]} \approx 24\text{wt}\%$, significant coercivity loss is observed in these experiments, suggesting that some exchange coupling may have been lost.

IV. CONCLUSION

Initial texture can be produced in hypo-stoichiometric Nd$_2$Fe$_{14}$B/α-Fe nanocomposites with Nd-Cu based additives at a suitably low temperature with both a grain size below 100nm and a significant amount of α-Fe remaining after thermomechanical processing. Given the short timescale of ECAP, a pre-annealing treatment aids diffusion of the Nd-Cu grain-boundary phase, further enhancing the texture. The degree of texture increases as the amount of Nd$_{90}$Cu$_{10}$ added increases, however the amount of residual α-Fe also decreases to almost zero as more Nd$_{90}$Cu$_{10}$ is added. Future work would involve further in-depth analysis of the nanostructure and further optimisation of Nd$_{90}$Cu$_{10}$ diffusion to further enhance texture and increase $|BH|_{\text{Max}}$ while retaining α-Fe. Nonetheless, slight texture can be developed still with an appreciable amount of α-Fe remaining without incurring significant grain growth, all important necessary preconditions that must be maintained in view of the development of bulk-scale anisotropic exchange coupled Nd$_2$Fe$_{14}$B/α-Fe nanocomposites.

ACKNOWLEDGMENTS

The authors acknowledge use of facilities within the Monash Center for Electron Microscopy. This paper is based on results obtained from the future pioneering program “development of magnetic material technology for high-efficiency motors”, commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

13. A commercially available alloy from Magnequench.
15 M.r.d.=Multiple of Random Distribution.