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Solutal-convection regimes in a two-dimensional
porous medium
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We numerically characterize the temporal regimes for solutal convection from almost
first contact to high dissolved solute concentration in a two-dimensional ideal porous
layer for Rayleigh numbers R between 100 and 5 × 104. The lower boundary
is impenetrable. The upper boundary is saturated with dissolved solute and either
impermeable or partially permeable to fluid flow. In the impermeable case, initially
there is pure diffusion of solute away from the upper boundary, followed by the birth
and growth of convective fingers. Eventually fingers interact and merge, generating
complex downwelling plumes. Once the inter-plume spacing is sufficient, small
protoplumes reinitiate on the boundary layer and are swept into the primary plumes.
The flow is now in a universal regime characterized by a constant (dimensionless)
dissolution flux F = 0.017 (the rate at which solute dissolves from the upper
boundary). The horizontally averaged concentration profile stretches as a simple
self-similar wedge beneath a diffusive horizontal boundary layer. Throughout, the
plume width broadens proportionally to

√
t, where t is (dimensionless) time. The

above behaviour is parameter independent; the Rayleigh number only controls when
transition occurs to a final R-dependent shut-down regime. For the constant-flux
and shut-down regimes, we rigourously derive upscaled equations connecting the
horizontally averaged concentration, vertical advective flux and plume widths. These
are partially complete; a universal expression for the plume width remains elusive. We
complement these governing equations with phenomenological boundary conditions
based on a marginally stable diffusive boundary layer at the top and zero advective
flux at the bottom. Making appropriate approximations in each regime, we find good
agreement between predictions from this model and simulated results for both solutal
and thermal convection. In the partially permeable upper boundary case, fluid from
the convecting layer can penetrate an overlying separate-phase-solute bearing layer
where it immediately saturates. The regime diagram remains almost the same as
for the impermeable case, but the dissolution flux is significantly augmented. Our
work is motivated by dissolution of carbon dioxide relevant to geological storage,
and we conclude with a simple flux parameterization for inclusion in gravity current
models and suggest that the upscaled equations could lay the foundation for accurate
inclusion of dissolution in reservoir simulators.
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1. Introduction
Convection in porous media is an important process in many geological and

industrial settings (Nield & Bejan 2006). It has recently received renewed attention
because of its potential role (Weir, White & Kissling 1996; Lindeberg & Wessel-Berg
1997) in geological carbon-dioxide (CO2) storage, a short-term implementable
technology for reducing anthropogenic CO2 emissions to the atmosphere (Metz et al.
2005). The idea is to sequester CO2 in porous, brine-filled formations at 1–3 km depth.
There the CO2 is positively buoyant and rises until it encounters a cap rock, beneath
which it spreads primarily horizontally. The separate-phase CO2 gradually dissolves
into the underlying brine. Initially this occurs by diffusion, however CO2-enriched
brine is denser than pure brine and the layer may eventually become gravitationally
unstable and experience convective overturning. Understanding the dissolution process
is of practical interest, because it improves storage security by changing the relative
buoyancy of the CO2.

Here we numerically study two-dimensional solutal convection from a noisy initial
condition in a simple, idealized geometry. This geometry consists of a horizontal
porous layer with an impenetrable lower boundary and a solute-saturated upper
boundary that is either impermeable or partially permeable to flow. The latter mimics
the scenario (relevant to CO2 storage) where solute only partially occupies the pore
space above the actively convecting layer. We present the full dynamical picture
from almost first contact between solute and solvent through to high dissolved solute
saturation for Rayleigh numbers R (the dimensionless layer thickness and the only
parameter) between 100 (just above the stability boundary) and 5× 104 (well into the
‘chaotic’ regime). Our objectives are:

(a) a further characterization of key dynamical regimes;
(b) a universal dissolution-flux parameterization; and
(c) universal and physically substantiated upscaled equations.

Solutal convection differs fundamentally from the thermal convection problem that
is more conventionally studied, in which impermeable boundaries have a prescribed
temperature, because the transient behaviour is of interest rather than the final,
statistically steady state. In the thermal case, regime changes occur with increasing
Rayleigh number (in this context usually interpreted as the ratio of diffusive to
convective time scales across the layer). For R < 4π2 there is pure conduction
(Horton & Rogers 1945; Lapwood 1948), while for 4π2 <R . 500 there are steady
rolls (Busse & Joseph 1972; Fowler 1997) and for 500.R .1300 there are perturbed
rolls (Graham & Steen 1994). Finally, for R & 1300 there is a chaotic regime with
vertical columnar exchange flow in the bulk and horizontal boundary layers at the
upper and lower surfaces on which ‘protoplumes’ form (Otero et al. 2004; Hewitt,
Neufeld & Lister 2012).

In solutal convection, regime changes occur in time rather than with Rayleigh
number (Slim et al. 2013). The dynamics are initially localized to the source of solute
at the upper boundary and the layer thickness does not play a role until plumes reach
the bottom boundary. Thus, most regimes are parameter independent and the Rayleigh
number only controls how many of these regimes are encountered before the bottom
influences the dynamics and the flow transitions to a final R-dependent regime. For a
flow-impermeable upper boundary, there are a number of studies based on simulations
(for example Riaz et al. 2006; Hassanzadeh, Pooladi-Darvish & Keith 2007; Rapaka
et al. 2008; Pau et al. 2010; Xie, Simmons & Werner 2011; Elenius & Johannsen
2012; Hidalgo et al. 2012; Hewitt, Neufeld & Lister 2013) and experiments (Elder
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Solutal convection in a two-dimensional porous medium 463

1968; Neufeld et al. 2010; Backhaus, Turitsyn & Ecke 2011; Kneafsey & Pruess
2011; Slim et al. 2013). We summarize the rich dynamics these studies unveil into
the regime decomposition proposed by Slim et al. (2013) for R . 2000 (note that
for the first three regimes Elder 1968, gave a more refined decomposition).

(a) Initially there is a diffusive regime in which perturbations decay and the solute
profile tends to the standard, purely diffusive error function. The dissolution flux
decays proportionally to t̂−1/2, where t̂ is time.

(b) Eventually, sufficient dense fluid accumulates beneath the upper boundary for
perturbations to amplify in a linear-growth regime. Various theoretical estimates
exist for when onset occurs (see, for example, Ennis-King, Preston & Paterson
2005; Riaz et al. 2006; Rees, Selim & Ennis-King 2008; Slim & Ramakrishnan
2010; Kim & Choi 2012). (See also Elder 1968; Riaz et al. 2006; Pau et al. 2010;
Elenius & Johannsen 2012; Slim et al. 2013.)

(c) Once convective fingers are macroscopic, they accelerate downwards with little
lateral motion, stripping dense fluid from the interface and sharpening the
concentration gradient at the upper boundary. This augments the dissolution
flux, causing it to deviate from t̂−1/2 decay and grow to a local maximum, in
a flux-growth regime. (See Elder 1968; Hassanzadeh et al. 2007; Rapaka et al.
2008; Pau et al. 2010; Kneafsey & Pruess 2011; Elenius & Johannsen 2012;
Slim et al. 2013.)

(d) Once fingers are sufficiently long, they begin interacting with their neighbours
in a merging regime. Pairs of fingers zip together from the root downwards and
stunted fingers retreat. Several generations of such coarsening occur to form
complex downwelling plumes. (See Riaz et al. 2006; Hassanzadeh et al. 2007;
Pau et al. 2010; Backhaus et al. 2011; Slim et al. 2013.)

(e) As a result of this coarsening, the upper horizontal boundary layer between the
remaining primary plumes becomes sufficiently thick to be unstable. New plumes
form, only to be swept back into and be subsumed by the primary plumes. (See
Riaz et al. 2006; Pau et al. 2010; Backhaus et al. 2011; Slim et al. 2013; Hewitt
et al. 2013.) In the Hele-Shaw cell experimental study of Slim et al. (2013), this
was hypothesized to be a separate reinitiation regime. During it, mergers had
ceased.

(f) Finally plumes impact the lower boundary and the entire layer progressively
saturates with dissolved solute in a R-dependent shut-down regime. The
horizontally averaged concentration field has a vertically well-mixed bulk with
a gradually expanding upper horizontal boundary layer. Exploiting this structure,
a box-model analysis based on a Howard-style (Howard 1964) phenomenology
provides a good description of the flux. (See Hewitt et al. 2013; Slim et al.
2013.)

A number of key questions remain. First, there is limited data for the merging
and reinitiation regimes, there are no clear transition times between them, and in
the Hele-Shaw experiments the reinitiation regime was not observed as being clearly
distinct from the shut-down regime. Secondly, the experiments may have suffered
from finite-size effects, especially for the later, post-coarsening regimes. More
intriguingly, for larger R, a statistically constant flux regime has been identified
in both experiments (Neufeld et al. 2010; Backhaus et al. 2011) and simulations (Pau
et al. 2010; Lindeberg & Wessel-Berg 2011; Hidalgo et al. 2012). How does this
regime fit into the above classification? Indeed, why does it exist (surprising given
that the system is progressively saturating)? There is also disagreement over the value
of the flux and whether it is layer-depth- (and thus R-)dependent.
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464 A. C. Slim

We use simulations to validate and expand on the regime picture portrayed above
and extend it to significantly higher Rayleigh numbers. In particular, we eliminate the
separate reinitiation regime postulated from the Hele-Shaw experiments: reinitiations
begin once the gap between plumes has grown to sufficient size through mergers, a
process that is markedly spatially heterogeneous. Once reinitiations occur everywhere,
the flux becomes constant and we find it more appropriate to introduce a constant-flux
regime after the merging regime. We observe a R-independent flux (in contradiction
to Neufeld et al. 2010; Backhaus et al. 2011), whose value is in excellent agreement
with the value obtained numerically by Pau et al. (2010). The flux is maintained
at this constant value after plumes hit the lower boundary and until information
about the finite vertical extent of the layer reaches the upper boundary. The flow
then transitions to a shut-down regime with similar properties to those described
above. We present a first characterization of the constant-flux regime, and give
a partial explanation for the behaviour. We also present new and more accurate
details of all the regimes, and show that there are clear, quantitative delineations
between them. Furthermore, we disentangle perturbation- and R-dependent effects
by presenting simulations for increasing R with identical noisy initial conditions
and thus showing R-independence until the plumes hit the lower boundary and
perturbation-independence after the merging regime.

Our most significant practical result is a system of upscaled equations and boundary
conditions governing the evolution in the constant-flux and shut-down regimes. These
link the horizontally averaged concentration, vertical advective flux and plume widths.
The equations are incomplete, missing an evolution equation for the plume widths
that describes the complex merging process. However, making certain empirical
assumptions, we find reasonably good quantitative agreement with simulated behaviour
for both solutal and thermal convection.

For the partially permeable upper boundary, significantly less is known. Because
fluid is exchanged with the overlying layer, there is an additional source of dense
fluid and convective modes are less restricted. Thus onset of instability occurs
substantially sooner (Slim & Ramakrishnan 2010), although the first mode that
can become unstable spans the layer thickness and is unlikely to be excited with
appreciable amplitude. In the extremal case of an infinitely permeable overlying layer,
simulations at R = 2000 show the flux to increase approximately fourfold over the
impermeable case (Elenius, Nordbotten & Kalisch 2012). We extend our regime
decomposition to the partially permeable case for select relative permeabilities in
the overlying layer. Intriguingly, we find that the boundary-layer structure changes
markedly from the impermeable case, but significant features of the bulk flow such
as the plume widths and flux in the shut-down regime remain almost identical.

The paper is organized as follows. In § 2, we describe the governing equations,
scalings and relevant global measures and discuss the initial noisy perturbation. In § 3,
we consider the impermeable upper boundary scenario, describing relevant dynamical
details and global measures of the flow in each regime. We also summarize transitions
between the regimes and when the Rayleigh number matters. In § 4, we derive the
upscaled equations and apply them to the constant-flux and shut-down regimes. In
appendix D, we apply them to the companion thermal problem. In § 5, we show how
the flow is modified with a partially permeable upper boundary and describe insights
that can be gained for the impermeable scenario. We summarize the principal new
results in § 6 and comment on their inclusion in geological CO2-storage simulators.
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Solutal convection in a two-dimensional porous medium 465

(b) partially permeable, saturated(a) impermeable, saturated

H

impermeable

ẑ

x̂

permeability K, porosity

fluid (solution) [density ), (viscosity ]

dissolved solute (concentration ĉ)

FIGURE 1. Configuration after solute is instantaneously introduced into the pore
space above ẑ = 0. The boundary between the convecting layer ẑ < 0 and the
separate-phase-solute bearing overlying layer ẑ > 0 is either (a) impermeable or (b)
partially permeable to fluid flow. In the latter case, the inset sketches a possible pore-level
configuration: black regions represent solid grains; grey regions represent separate-phase
solute; and white regions represent solute-saturated fluid.

2. Formulation
Here we briefly describe the governing equations, scalings and important global

measures. The impermeable upper boundary system is identical to that of previous
studies; further details and justifications of assumptions for application to CO2 storage
are given by, for example, Ennis-King & Paterson (2005) and Slim & Ramakrishnan
(2010). The permeable upper boundary scenario was previously formulated by Slim &
Ramakrishnan (2010).

Consider a horizontal, two-dimensional, ideal porous layer of permeability K,
porosity φ and thickness H as shown in figure 1. It is underlain by an impermeable
lower layer. It is overlain by a solute-bearing upper layer in which the solute is
instantaneously placed at time t̂ = 0 and which may be impermeable or partially
permeable to fluid flow. We study the convective dissolution process in isolation, thus
we assume there are no changes in the system’s geometry, temperature or pressure.
The layer is described by Cartesian coordinates (x̂, ẑ), with x̂ directed horizontally,
ẑ directed vertically upwards and ẑ = 0 coinciding with the boundary between the
solute-bearing and convecting layers.

We assume inertialess, Boussinesq, incompressible Darcy flow through the medium

û=−K
µ

(
∇̂p̂+ ρ(ĉ)gez

)
, ∇̂ · û= 0 in −H < ẑ< 0, (2.1)

where û = (û, ŵ) is the Darcy velocity, p̂ pressure, g gravity and µ fluid viscosity.
The density ρ is the only solute-dependent property. It depends linearly on the
concentration ĉ above the initial average

ρ = ρ0 +1ρ ĉ
csat
, (2.2)
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466 A. C. Slim

where csat is the excess concentration at saturation, ρ0 is the initial average density
and 1ρ is the maximum excess density.

Solute is redistributed by advection and diffusion

φ
∂ ĉ
∂ t̂
+ û · ∇̂ĉ= φD∇̂2ĉ in −H < ẑ< 0, (2.3)

where D is the effective diffusivity.
The lower boundary is impenetrable to fluid and solute

ŵ= 0,
∂ ĉ
∂ ẑ
= 0 on ẑ=−H. (2.4)

The upper boundary is saturated
ĉ= csat on ẑ= 0 (2.5)

and either impermeable or partially permeable to fluid flow. In the former case, we
have ŵ= 0 on ẑ= 0. (2.6)

In the latter case, the overlying layer is taken to be infinitely thick and to have relative
permeability K > 0. We assume that fluid in the overlying layer is instantaneously
saturated ĉ= csat, thus the equations governing flow are

û=−K K
µ

(
∇̂p̂+ (ρ0 +1ρ)gez

)
, ∇̂ · û= 0 in ẑ> 0, (2.7)

with interfacial conditions [
ŵ
]= 0,

[
p̂
]= 0 on ẑ= 0, (2.8)

where [·] indicates a jump in the bracketed quantity.
We take the system to be periodic in x̂ with period Ŵ.

2.1. Scalings
A natural velocity scale for the flow is the speed with which a fully saturated fluid
parcel falls, U =K1ρg/µ. Natural length scales are the length over which advection
and diffusion balance L = φD/U and the layer thickness H. We choose to rescale
by L , because then the role of R becomes clear. We set

û=U u, p̂+ ρ0gẑ= µU L

K
p, ĉ= csatc, x̂=L x and t̂= φL

U
t (2.9)

to generate the parameter-free governing equations

u=−∇p− cez, ∇ · u= 0 and
∂c
∂t
+ u · ∇c=∇2c. (2.10)

Lower boundary conditions are

w= 0,
∂c
∂z
= 0 on z=−R. (2.11)

Thus, the Rayleigh number

R = HKg1ρ
µφD

(2.12)
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Solutal convection in a two-dimensional porous medium 467

only appears as the location of the lower boundary and is interpreted as the
dimensionless layer thickness. The impermeable upper boundary conditions are

w= 0, c= 1 on z= 0. (2.13)

In the permeable upper boundary scenario, the rescaled equations in the overlying
layer become

u=−K (∇p+ ez) , ∇ · u= 0, (2.14)

with interfacial conditions

[w]= 0,
[
p
]= 0, c= 1 on z= 0. (2.15)

We impose periodic boundary conditions on x= 0 and x= Ŵ/L =W.
We solve this system numerically using a spectral method for the impermeable

case and a compact finite-difference method for the permeable one as described in
appendix A. We set the domain width W = 105 independent of Rayleigh number. This
gives an aspect ratio of two at the highest R considered.

2.2. Initial condition
We initiate instability by adding noise to the diffusive concentration field

cdiff = 1+ erf(z/2
√

t) for z< 0, (2.16)

at time t = 1. To identify precisely when R effects influence the solution, we
must be able to distinguish them from perturbation effects. Thus, we create a
random-but-reproducible initial condition across different R as follows. We initialize
the perturbation on a coarse mesh (1x = 20, 1z = 10) from a uniform distribution
(−1, 1) with a repeatable seed. We then modulate the thus-generated field by
ε
√

0.002z exp(0.5 − 0.001z2) to localize the perturbation to the interface, where
the prescribed value ε is the largest possible amplitude and we arbitrarily choose a
localization parameter 0.001. Finally, we use cubic splines to interpolate the field
onto the computational, physical collocation mesh. Note that, although generally we
may expect the perturbation to be restricted to the upper regions, we do not expect it
to be constrained to the diffusive boundary layer, which is arbitrarily thin for t→ 0.

2.3. Global measures
A number of global measures are useful for quantifying the flow. The most important
is the dissolution flux, the rate at which solute dissolves from the upper boundary at
z= 0. Dimensionally, it is given by

F̂(t̂)= φD

Ŵ

∫ Ŵ

0

∂ ĉ
∂ ẑ

∣∣∣∣
ẑ=0

dx̂. (2.17)

Setting F̂=U csatF, this rescales to

F(t)= 1
W

∫ W

0

∂c
∂z

∣∣∣∣
z=0

dx. (2.18)

Note that a constant value of F thus implies a dimensional flux that is independent
of the diffusivity.
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0 0.5 1.0

z

–500

0

500 1000
x

00510

(a () f )

(g)

(h)

(b)

(c)

(d)

(e)

FIGURE 2. (Colour online) Simulated concentration profiles at early times for Rayleigh
numbers R & 500 and initial perturbation amplitude ε = 0.01 (specifically R = 5 × 104,
with the same initial condition as later figures): (a) t = 500 (lg); (b) t = 1000 (lg); (c)
t= 1500 (fg); (d) t= 2000 (fg); (e) t= 2500 (m); (f ) t= 3000 (m); (g) t= 3500 (m); (h)
t= 4000 (m). The dots in (h) show the location of fingertips. Note that the scale is the
same in all plots and that only a small portion of the domain is shown (the bottom of
the layer is far below and does not yet influence dynamics).

At early times, it is useful to consider the amplitude of the perturbation away from
pure diffusion. We measure this using the mean square deviation

A(t)= 1
W

∫ 0

−R

∫ W

0
(c− cdiff )

2 dx dz. (2.19)

The full diffusive solution is given by, for example, Ennis-King & Paterson (2005).
The error function profile (2.16) is an excellent approximation for cdiff provided t .
R2/36.

We also report fingertip and plumetip locations and define these as minima of the
c= 0.05 contour (examples are shown in figures 2h and 3d).

Horizontally averaged quantities are useful for characterizing the later regimes.
These are defined by

〈a〉(z, t)= 1
W

∫ W

0
a(x, z, t) dx (2.20)

for some variable a. We particularly focus on 〈c〉, the horizontally averaged
concentration, and 〈c′2〉, the mean square of the fluctuations c′ = c − 〈c〉. The latter
can be thought of as the ‘strength’ of plumes.

A final useful measure is the average width of fingers and plumes ω=π/k, where
we define

k=
√
〈(∂c′/∂x)2〉/〈c′2〉, (2.21)
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FIGURE 3. (Colour online) Simulated concentration profiles at intermediate times for R=
5 × 104 and ε = 0.01: (a) t = 6500 (m); (b) t = 8500 (m); (c) t = 14 500 (m); (d) t =
50 500 (cf). Panels on the right give the horizontally averaged concentration profile. In
(d), the insets show a close-up of reinitiations at times t= 44 500, 46 500 and 48 500 (top
to bottom) in the boxed region. In (d), the dots show the location of fingertips. Note that
the spatial scale is the same in all plots and that only a portion of the domain is shown
(the bottom boundary is at z/1000=−50).

essentially the root mean square of the wavenumbers in a Fourier decomposition. (See
also appendix B.)

3. The impermeable upper boundary
We begin with the more commonly studied scenario of a flow-impermeable upper

boundary. Snapshots for an exemplar simulation with R = 5 × 104 are shown
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470 A. C. Slim

in figures 2–4 and in supplementary movies available online at http://dx.doi.org/
10.1017/jfm.2013.673. Figure 2 shows concentration profiles at early times for a
small region near the upper boundary. Figure 3 shows profiles at intermediate times
for a broader region. Figure 4 shows profiles at later times for the full domain. These
illustrate the regime progression described in the introduction: initially there is the
diffusive regime (similar to figure 2a). In the linear-growth regime (labelled ‘lg’),
faint perturbations appear on the diffusive boundary layer beneath z= 0 (figure 2a,b).
During the flux-growth regime (labelled ‘fg’), macroscopic fingers are apparent
that propagate primarily vertically (figure 2c,d). In the merging regime (labelled
‘m’), fingers begin lateral migration and merge to form complex downwelling plumes
(figures 2e–h and 3a–c). In the constant-flux regime (labelled ‘cf’), small protoplumes
are reinitiated on the diffusive boundary layer below z = 0 and are swept into
primary plumes (figure 3d and insets). The primary plumes propagate downwards,
impact the lower boundary and spread laterally as gravity currents (figure 4a). These
progressively thicken. Once the information about the finite extent of the layer reaches
the top, the entire layer progressively saturates in the shut-down regime (labelled ‘sd’
and represented by figure 4b).

In the following subsections, we give further physical descriptions and interpretation
of the different regimes, together with quantitative details. One of our aims is to show
that a clear quantitative delineation exists between most of the regimes. To show this
distinctly, we plot some of the global measures described in § 2.3 concurrently in
figures 5 and 6 for early and late times, respectively.

3.1. The diffusive regime (d)
Initially, the flow appears purely diffusive. Although denser fluid is progressively
building up over lighter by diffusion of solute across the upper boundary, not enough
has accumulated to overcome the smoothing effect of diffusion within the layer and
sustain a growing convection cell. Perturbations away from the pure one-dimensional
diffusion profile decay. This is quantified by the amplitude of the perturbations A(t)
decaying (figure 5a). The flux decays diffusively (figure 5b) as

F(t)= 1/
√

πt. (3.1)

3.2. The linear-growth regime (lg)
The second regime is linear growth. Eventually, enough dense material accumulates
beneath z = 0 for convection to commence. Faint perturbations become apparent on
the diffusive boundary layer (figure 2a,b).

We define the linear-onset time as the time when the perturbation amplitude A(t)
first starts to grow, t = 116 for the exemplar simulation (figure 5a). This appears
rather late compared with the earliest unstable mode prediction. However, it is a
global measure of onset and growth of select modes can be masked by decay of
many. Figure 7 shows onset time decomposed by wavenumber. Short waves are
suppressed by lateral diffusion, while long waves require more dense fluid to grow
than has accumulated: intermediate wavelengths between 80 and 140 are the first to
become unstable, and do so at t ≈ 55. This is in reasonable agreement with earliest
unstable mode theory (t = 47.9; Slim & Ramakrishnan 2010). After onset, the same
intermediate wavelengths remain dominant and amplify quasi-exponentially as

A(t)∝ ε2 exp(σ t), (3.2)
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FIGURE 4. (Colour online) Simulated concentration profiles at late times for R= 5× 104:
(a) t= 8R= 4× 105 (cf); (b) t= 20R= 106 (sd). Beneath each snapshot, the concentration
fluctuation profile (bold, dashed dark/blue curves) and vertical velocity profile (solid
pale/green curves) are shown on slices at z = −15 000 and z = −35 000. Figures on the
right give the horizontally averaged concentration profile. Note that the spatial scale is the
same in all plots. The full domain is shown. In (a) the solid white disc near the lower
boundary is the bottom of a shrinking pool of c< 0.05 fluid (see figure 6b).
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FIGURE 5. (Colour online) Global measures at early times. (a) Amplitude as defined
by (2.19). The curve for initial amplitude ε = 0.01 is bold and various additional initial
amplitudes from ε = 0.0001 to 0.2 are also plotted. The dashed curve is the theoretical
prediction for the maximum possible amplification of infinitesimal disturbances across all
wavenumbers, following the approach of Rapaka et al. (2008). An initial amplitude of
10−9 is plotted. (b) Dissolution flux of solute into solution, with the curve for ε = 0.01
in bold and the same selection of additional initial amplitudes. The dashed curve is the
purely diffusive behaviour given by (3.1). (c) Fingertip locations for ε = 0.01 defined as
minima of the c= 0.05 contour for the tips shown in figure 2 (points) together with the
maximum extent of all fingertips (solid curve). The short-dashed curve is the location
of the c = 0.05 contour for pure diffusion given by z(c = 0.05) = −2.78

√
t and the

long-dashed line is −0.13(t − 500). (d) Concentration profile on z = −20 for ε = 0.01
to illustrate root movement. Darker/bluer regions correspond to low concentrations and
paler/greener to high concentrations.
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FIGURE 6. (Colour online) Intermediate and long time global measures for R = 5× 104

and initial amplitude ε = 0.01: (a) dissolution flux of solute into solution; (b) a selection
of tip locations; and (c) the concentration profile on z=−20 to illustrate root motion and
merging. In (a), the dashed line is the value F = 0.017 from (3.3). In (b), the dashed
line is z=−w0t as implied by the self-similar wedge approximation (3.4). The upwardly
propagating ‘plumetips’ are the bottoms of shrinking pools of c< 0.05 fluid; an example
is shown by a disc in figure 4(a). The solid curve is the envelope over all plumes. In
(c), darker/bluer regions correspond to anomalously low concentrations and paler/greener
to anomalously high concentrations.

with σ ≈ 0.007. This growth rate is in reasonable agreement with maximum
amplification theory (Rapaka et al. 2008), as shown in figure 5(a).
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FIGURE 7. Onset time for amplitude growth decomposed by Fourier wavenumber m for
R= 1000 and initial amplitude ε= 0.01 (although the plot is indistinguishable for ε. 0.1).
The dotted curve is the quasi-steady state approximation and the dashed curve is the lower
bound prediction (Slim & Ramakrishnan 2010). The box-and-whisker plot on the right
gives the range of onset times, the quartiles and the median for intermediate wavenumbers
k ∈ (0.05, 0.07).

The details of this regime are sensitive to the structure of the initial perturbation
(although independent of the amplitude, provided ε . 0.1). Contributions of
wavelengths around 80 to 140 are key: if they are negligible then onset is delayed
and the emerging fingers are coarser grained. Elenius & Johannsen (2012) give an
extensive discussion of sensitivity to initial conditions.

Until the end of this regime, convective fingers are almost imperceptible and mass
transport is dominated by diffusion, with the flux still well-approximated by (3.1)
(figure 5b).

3.3. The flux-growth regime (fg)
The third regime is flux growth. Fingers are now apparent and begin to influence
mass transport: they efficiently strip dense material from the interface that accumulated
diffusively during linear growth. This sharpens the diffusive boundary layer beneath
z= 0 (see figure 2b–d) and thus increases the dissolution flux.

Flux growth is arguably the most practical measure of convective onset and is
equivalent to the Schmidt–Milverton principal for thermal convection (Chandrasekhar
1961). For the exemplar simulation, it occurs at t = 1200 (figure 5b). The flux
then increases until t = 2200. Both the minimum and maximum flux and times at
which they are achieved depend sensitively on the initial perturbation amplitude (see
figure 5(b) and Elenius & Johannsen 2012). They also depend on the perturbation
structure. For example, shorter wavelength perturbations begin growing sooner.
Therefore, such perturbations have less excess material and generate less intense
convection. As a result, they do not over-thin the boundary layer significantly and a
smaller flux maximum is achieved.

Throughout, fingers strengthen and elongate. At the beginning of the regime,
vertical segregation of the fingertips begins (figure 5c), with the pioneers accelerating
and achieving a speed of approximately 0.1 as mass transport becomes dominated by
advection. A key characteristic is that fingers have limited lateral motion, as indicated
by the essentially immobile roots (figure 5d).
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3.4. The merging regime (m)
The fourth regime is merging. Individual fingers generate a global velocity field and
thus influence one another’s motion. Coinciding with the time of maximum flux, this
becomes a significant effect and fingers begin to interact. Where a finger lags behind,
it can be forced to retreat by the upward return flow generated by its faster neighbours.
Where fingers are comparable in length, pairs that are slightly closer together than
their outer neighbours get pushed closer by the upwelling flow exterior to both
impinging on the upper boundary and spreading laterally. The two fingers migrate
towards one another and ultimately zip together. This is seen in the concentration
snapshots in figure 2(e–h) and the evolution of finger roots shown in figure 5(d).
The zipping occurs from the root downwards. Once the fingers partially zip together,
one effectively channels all the flow and solute while the other diffusively withers.
Multiple generations of this coarsening process occur, although becoming rarer as the
finger spacing increases and roots must traverse a greater distance before colliding
and combining. Progressively the flow transitions to a system of downwelling dense
plumes interwoven with broader regions of upwelling fresh fluid (figure 3a–c).

As the plume spacing increases, the diffusive boundary layer below z= 0 thickens
slightly. This results in a decreased concentration gradient in the boundary layer and
thus progressively reduces the dissolution flux.

This regime can be thought of as a reorganizational one. It marks the end of
the strongly initial-condition-dependent phase and commencement of an effectively
universal one in which variations due to any differences in the initial conditions
are less than chaotic fluctuations: the empirical fits that we present for subsequent
regimes were identical across multiple realizations.

3.5. The constant-flux regime (cf)
The fifth regime is constant flux. Once the plumes are sufficiently widely spaced
through mergers, the diffusive boundary layer below z = 0 between them becomes
sufficiently thick to be unstable. A new regime begins whose prominent feature is
reinitiation of small ‘protoplumes’ on this boundary layer (using the nomenclature of
Hewitt et al. 2012, 2013). These are rapidly swept into and merge with the existing
primary plumes by the upwelling flow between them (insets to figure 3(d); see also
Hewitt et al. 2012). Reinitiations are generated in pulses, with the first protoplume
forming close to a primary plume and subsequent protoplumes generated outside
their predecessors (figure 6c). This continues until a protoplume is generated almost
at the stagnation point of the upflow between two bounding primary plumes. This
protoplume persists for longer. It is usually swept into an existing primary plume
eventually, resetting the cascade. Very rarely it survives to form a new primary plume.

These protoplume pulses can be interpreted as the diffusive boundary layer below
z= 0 becoming marginally stable (Howard 1964; Doering & Constantin 1998): if the
boundary layer is too thin, then it thickens by diffusion, while if it is too thick, a
protoplume pulse strips the excess dense material. Note that the timing for reaching
this state is spatially heterogeneous and thus the transition time between the merging
and constant-flux regimes is murky. For the exemplar simulation it occurs between
16 000 and 40 000.

Mergers between primary plumes continue in this regime. However, they become
increasingly rare. A new mechanism for mergers, and increasingly the dominant one,
is slip-streaming: lagging plumes are drawn into their further-advanced neighbours.
This cuts off the supply of upwelling fresh fluid between them and they progressively
zip together from the tip upwards.
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A key observation about the primary plumes is that they are long and thin.
Structurally they appear complex: episodic mergers of protoplumes into them generate
negatively buoyant blobs that descend and diffuse on a background downwelling. In
addition, during mergers of primary plumes, there can be multiple maxima on
horizontal slices within a given plume. In the upper portions of the domain, plumes
exist everywhere with regions of upwelling fresher fluid having a width comparable
to the plumes (figure 4a). In the lower portions of the affected domain, the fluid
is mostly fresh, with a few isolated pioneer plumes. These decelerate in time,
eventually nearly stagnating or even retreating before an injection of dense fluid
from a trailing plume merging into it causes it to advance again (this process results
in the ‘bouncing’ of plume tips in figure 6b). After these pioneer plumes impact the
bottom boundary, they spread locally as dense gravity currents (figure 4a). These
progressively pervade the entire layer in a manner similar to a filling-box mechanism
(Turner 1973) (illustrated, for example, by the shrinking pools of c < 0.05 fluid
beneath the interface in figure 6b). Once the information about the finite thickness of
the layer has reached the top boundary, the constant-flux regime ends and the flow
transitions to a final, shut-down regime.

3.5.1. The flux and other horizontally averaged quantities
Turning to a more quantitative description of this regime, the key characteristic is

that the flux is statistically constant throughout (figure 6a)

F= 0.017, (3.3)

(an empirical fit). This value is in excellent agreement with that obtained in two-
dimensional simulations by Pau et al. (2010). A constant flux is remarkable, given
that the layer beneath is progressively saturating and suggests that the plumes adapt
efficiently to remove and redistribute the incoming dense fluid. We provide a partial
mathematical justification below.

Although the plumes appear dynamically complex, they have a surprisingly simple
horizontally averaged behaviour. The ‘bouncing’ plumetips in the pioneer region
propagate downwards at an approximately constant speed on average, w0 ≈ 0.13 (an
empirical fit; see figure 6b). Above them, the horizontally averaged concentration
profile stretches almost as the self-similar wedge

〈c〉 = c0[1+ z/(w0t)] for −w0 < z/t< 0, (3.4)

where c0 ≈ 0.27 (an empirical fit; see figure 8a). Note that there is a slight break-in-
slope at z/t≈−0.08 corresponding to the top of the pioneer plume region.

The average plume width increases proportionally to
√

t. The prefactor has vertical
structure in z/t: because merging occurs at plume tips, it decreases from approximately
π for the pioneers in z/t .−0.08 to π/

√
2 at the roots (figure 8c).

After impact, the filling-box mechanism is manifested by an upwardly propagating
wedge overriding the downwardly propagating wedge (3.4), leaving the latter
unaffected (figure 8a). The plume width appears to continue to scale as

√
t (figure 8c),

although the post-impact subregime is too short to say so definitively. At z = −R,
the gravity currents nearly homogenize the fluid and the inferred ‘plume widths’ are
nearly infinite (figure 8c).

Motivated by the simplicity of the horizontally averaged quantities and exploiting
the slenderness of the plumes, we shall develop horizontally averaged equations
governing the dynamics in § 4.
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FIGURE 8. (Colour online) Solutions in the constant-flux regime for R = 5 × 104:
horizontally averaged (a) concentration, (b) mean-square fluctuations and (c) wavenumber
for times between t = 105 (darker/bluer curves) and 8 × 105 (paler/greener curves). Left
figures (i) are versus the vertical coordinate z and right figures (ii) are versus the
similarity variable z/t. The long-dashed (red online) line in (aii) is the self-similar wedge
approximation (3.4). The long-dashed bold black curves in (aii) and (bii) are the similarity
solution of the upscaled equations of § 4, with the approximation used for k2t shown in
(cii).

3.5.2. Scalings revisited
We can give some justification for a similarity solution for horizontally averaged

quantities by considering the length scales relevant during plume evolution. In the
present regime, the plumes are very long and so vertical diffusion becomes negligible.
Therefore, the advection–diffusion length L used to rescale the governing equations
in § 2.1 is no longer directly relevant. The layer thickness H is not yet relevant. Thus,
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FIGURE 9. (Colour online) The dissolution flux versus time for Rayleigh numbers
R = 100, 200, 500, 1000, 2000, 5000, 104, 2 × 104 and 5 × 104. The first five
dynamical regimes (diffusion through constant flux) are delineated. Transition to the
shut-down regime for each R is indicated by the black curve becoming paler/greener.
The long-dashed curve is the purely diffusive flux (3.1). The short-dashed line is the
constant-flux regime value F = 0.017 from (3.3). The inset shows the time of peel-off
tpeel to the shut-down regime as a function of R with the approximation tpeel = 16R.

there is no apparent vertical length scale, and we may expect (Barenblatt 1996) a
similarity solution in ẑ/(U t̂) = z/t. This argument is only valid if there is also no
horizontal length scale. The horizontal wavenumber is set by a complex interplay
between the induced horizontal velocity field and horizontal diffusion that controls
merging and thus a length scale might be expected. Surprisingly, the observed scaling
is the purely diffusive (Dt̂)1/2, implying there is no length scale and so a similarity
solution is possible. How this scaling arises is unclear (see also Hewitt et al. 2012).
Note that a similarity solution of this form implies a constant flux.

3.6. When and how do H and R matter?
Before plumes impact the base, the flow is parameter-independent: the only role of
R is to determine how many of the R-independent regimes described above are
encountered. After impact, the top portion of the solution is still universal, until
information about the bottom boundary has propagated to the top. This universality is
perhaps most apparent in the flux (figure 9): for a repeatable noisy initial condition,
the curves for different R all overlap until one by one they peel off and commence
decay as the layer saturates and convection shuts down. (At longer times, the overlap
is statistical rather than exact because tiny feedback from the large-scale flow results
in chaotic variations.) Similarly, the evolution of the concentration profile on a slice
just beneath the upper boundary (figure 10) is identical.

After plumes impact the bottom boundary, the layer thickness H becomes a relevant
length scale. Similarly to the argument for the existence of a similarity solution above,
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FIGURE 10. (Colour online) Evolution in time of the concentration profile on z = −20
for various Rayleigh numbers:(a) R = 100; (b) R = 200; (c) R = 500; (d) R = 1000; (e)
R= 2000; (f ) R= 5000; (g) R= 5× 104. The dashed lines indicate the time of transition
to the shut-down regime.

we might now expect results to be universal if the governing equations (2.1)–(2.6)
are rescaled by H rather than L . This is equivalent to considering independent
variables x/R, z/R and t/R. This indeed yields universal results for the time that
plumes impact the base, t ≈ 8R, and the end of the constant-flux regime, t ≈ 16R
(figure 9 inset). It also provides an excellent collapse for the flux in the shut-down
regime (figure 11d) and a good collapse of the horizontally averaged concentration
(not shown). However, for this argument to be entirely valid, no horizontal length
scale should be apparent. Some of the implications of this assumption are found to
be incorrect, for example the wavenumber in thermal convection should then scale as
R−1/2, whereas the exponent is actually observed to be closer to −3/5 (Hewitt et al.
2012).

3.7. The shut-down regime (sd)
The dynamical nature of the sixth and final, shut-down regime remains that of the
regime before transition (illustrated in the root behaviour shown in figure 10). For
R = 100, there are enduring fingers having no lateral motion. For R = 200, fingers
are merging, while for R = 500 and 1000, there are mergers and spatially localized
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FIGURE 11. (Colour online) Solutions in the shut-down regime for R = 5 × 104:
horizontally averaged (a) concentration, (b) mean-square fluctuations and (c) wavenumber
for times between t = 8 × 105 (darker/bluer curves) and 5 × 106 (paler/greener curves).
(d) The dissolution flux for the same Rayleigh numbers of figure 9 against time rescaled
by R. The short-dashed line is the constant-flux regime value (3.3). The long-dashed
curve is the phenomenological prediction for the shut-down regime (4.15). The curves for
R = 100 to R = 1000 are pale/green to indicate that these do not reach the constant-flux
regime and thus the latter prediction may not apply (although it is seen to be a reasonable
approximation).

initiations of protoplumes. Both mergers and reinitiations become less frequent as the
layer saturates.

For R & 2000, when the regime before transition was constant flux, reinitiations
of protoplumes on the diffusive boundary layer below z = 0 remain the prominent
dynamical feature. However, their frequency is reduced (figures 6c and 10e,f ) as
the driving density difference reduces. Mergers and coarsening continue, although
the plume width grows more gradually than the

√
t behaviour earlier (our simulation

length was insufficient to determine a new scaling; further details are given by Hewitt
et al. (2013)). Structurally, the downwelling primary plumes transition to a vertical
columnar exchange flow (figure 4b) reminiscent of the equivalent thermal problem
(Hewitt et al. 2012, 2013), although it is not simply a quasi-statically adjusting form
of the latter as the layer saturates. (The sinusoidal component of the profile clearly
depends on z/R as seen in figure 4b.)

During this regime, the horizontally averaged concentration profile consists of a
progressively expanding upper diffusive boundary layer with an almost vertically well-
mixed bulk beneath (figure 11a). Exploiting this observation, the gradually decaying
flux can be well described by a simple box-model (Hewitt et al. 2013; Slim et al.
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2013). We briefly revisit the analysis in § 4, to put it in the context of the upscaled
equations and to modify the initial condition to coincide with the end of the constant-
flux regime.

4. A partial derivation of upscaled equations
A key aim of our study is to derive upscaled equations that capture the fine-scale

physics on a scale achievable in reservoir simulations. As described in §§ 3.5 and 3.7,
the horizontally averaged concentration profile has simple, elegant forms in the
constant-flux and shut-down regimes, thus we look for governing equations for
horizontally averaged quantities.

4.1. Moment equations
First we consider the dynamics in the bulk, below the diffusive boundary layer beneath
z= 0. We reduce the flow equation (2.8a,b) using ∂x[∇×(2.8a)] − ∂z(2.8b) to

∂2w
∂x2
+ ∂

2w
∂z2
=−∂

2c
∂x2

. (4.1)

The plumes are slender, so we neglect vertical derivatives over horizontal. Integrating
in x, we obtain

w=−c′, (4.2)

where we have invoked periodicity and taken 〈w〉 = 0 by incompressibility. Physically,
this states that the vertical velocity is directly set by the local concentration anomaly.
The approximation is good (figure 4) except where there is an upwelling of pure fluid
between pioneer plumes. This result also allows us to set the downward advective flux
of solute as

f (z, t)=−〈wc〉 = 〈c′2〉, (4.3)

which is the only form of vertical solute transport under the slenderness approximation.
Horizontally averaging the advection–diffusion equation for solute transport (2.8c),

ignoring vertical diffusion over horizontal and using (4.3), we obtain

∂ 〈c〉
∂t
= ∂ 〈c

′2〉
∂z

. (4.4)

Physically, this is simply a conservation law for solute. Note that applying (4.2) is
adequate everywhere because where the approximation is poor c= 0.

A closure expression for 〈c′2〉 is not apparent, so we turn to the next moment.
Multiplying (2.8c) by c and proceeding as above, we obtain

∂ 〈c′2〉
∂t
− 2〈c′2〉∂ 〈c〉

∂z
− ∂ 〈c

′3〉
∂z
=−2〈(∂c′/∂x)2〉 =−2k2〈c′2〉. (4.5)

This introduces two new moments, 〈c′3〉 and 〈(∂c′/∂x)2〉. The third moment 〈c′3〉 is
generally small because upwellings and downwellings are nearly symmetric. It can be
ignored except when pioneer plumes first enter a region. In this case, approximating
individual plumes as portions of sinusoids (see appendix C), gives

〈c′3〉 = 1
9 〈c〉3 − 7

9 〈c〉〈c′2〉 + 10
9 〈c′2〉2/〈c〉 for 〈c′2〉> 〈c〉2/2 (4.6)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

30
 Ja

n 
20

19
 a

t 0
1:

46
:0

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

67
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.673


482 A. C. Slim

with good accuracy. The 〈(∂c′/∂x)2〉 term can be interpreted as the local scalar
dissipation rate of turbulence (for example, Hanjalic 2002; see also Hidalgo et al.
2012). However, we find it more meaningful to interpret it as indicative of the plume
width ω through ω=π/k with k the wavenumber as defined in (2.21) and as indicated
in (4.5).

An interpretation of (4.5) is possible through the representation (4.3): the downward
advective flux f is eroded through conversion to a horizontal diffusive flux (the
right-hand side of the equation) and augmented by the introduction of denser material
from above and lighter from below intensifying the plumes (the term proportional to
∂〈c〉/∂z).

Obviously the behaviour of the plume width must be understood before this model
can be predictive. This will likely take the form of a phenomenological description of
the merging process and the complex interplay between upwellings and downwelling
plumes. I have been unable to find a satisfactory universal expression or governing
equation and leave this for future work. In §§ 4.3 and 4.4, we find solutions for
the constant-flux and shut-down regimes making certain empirical assumptions. In
appendix D, we also show that the model can predict the flux in the companion
thermal problem given the R-dependence of k.

These equations were also presented by Wooding (1969) for miscible Rayleigh–
Taylor flow in a porous medium, with assumptions that 〈c′3〉 = 0 everywhere and k2t
is a constant.

4.2. Boundary conditions
Before we turn to solutions of these governing equations, we still require boundary
conditions. The intention is to shrink the diffusive boundary layer beneath z = 0
to zero thickness and impose an effective boundary condition that describes the
conversion of vertical diffusive transport into the system into vertical advective
transport into the bulk.

At the top of the bulk, z= 0−, we have

F= f = 〈c′2〉 at z= 0−. (4.7)

We now look for a phenomenological description of the dissolution flux F, linking
it to the horizontally averaged concentration 〈c〉|z=0− just below the boundary layer.
From Fick’s law, we have

F(t)= 1− 〈c〉|z=0−

δ
, (4.8)

where δ is an effective boundary-layer thickness. We now assume that the boundary
layer is marginally stable (Howard 1964)

(1− 〈c〉|z=0−) δ =Rc, (4.9)

where the left-hand side is an effective Rayleigh number for the boundary layer and
Rc is a critical Rayleigh number, assumed constant. Combining these, we have

F= 〈c′2〉 = (1− 〈c〉)
2

Rc
at z= 0−. (4.10)

A reasonable approximation for Rc is

Rc ≈ 31.5, (4.11)

based on the values of F and c0 in the constant-flux regime.
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At the bottom of the layer, we assume the advective flux is zero and so

f = 〈c′2〉 = 0 at z=−R. (4.12)

This is a reasonable approximation (figures 8bi and 11b), except immediately after
plumes reach the bottom. At this time, the spreading gravity currents violate the
slenderness approximation and (4.2) fails.

4.3. The constant-flux regime: a similarity solution
We first look for a similarity solution for the constant flux regime. We set ζ = z/t and
κ2 = k2t in (4.4)–(4.12), with κ2(ζ ) taking the functional form shown in figure 8(cii).
Solving the resulting ordinary differential equation in ζ numerically using a shooting
method, we obtain the solutions shown in figure 8(aii,bii), in reasonable agreement
with the simulation data.

4.4. The shut-down regime: rederiving the box model
For the shut-down regime, we assume that 〈c〉 is uniform in z at leading order. Then
integrating (4.5) from z=−R to z= 0−, we obtain

R
d〈c〉
dt
= (1− 〈c〉)

2

Rc
, (4.13)

with solution

〈c〉 = (1− c0)t′ + c0Rc

(1− c0)t′ +Rc
, (4.14)

where t′ = t/R − 16 and we have taken the initial condition 〈c〉 = c0 at t′ = 0. This
implies

F= Rc(1− c0)
2[

(1− c0)t′ +Rc
]2 . (4.15)

This solution is a good fit across all R (figure 11d), albeit with a noticeable
overestimate soon after transition to the shut-down regime when the bulk is not
fully well-mixed.

5. The partially permeable upper boundary

We now turn to the partially permeable upper boundary scenario, where fluid from
the convecting layer can be exchanged with saturated fluid in an overlying layer. We
examine relative permeabilities in the upper layer K = 0.2 and 0.6. In addition to
being of practical interest in CO2 storage, this case also provides some insight into
the mechanism controlling plume width.

The qualitative behaviour is very similar to the impermeable case, with almost
identical regimes and characteristics. The key difference is that convection is
more intense, with higher fluxes and greater concentrations in fingers and plumes.
Transitions also occur sooner. Plots of the temporal evolution on a slice just beneath
the upper boundary are shown in figure 12 and the dissolution flux, horizontally
averaged profiles and wavenumbers are shown in figure 13. We focus on times
starting with the transition to the constant-flux regime.
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FIGURE 12. (Colour online) Partially permeable upper boundary scenario: evolution of the
concentration profile on z=−20 in time for R = 5× 104 and (a) K = 0 (impermeable),
(b) K = 0.2 and (c) K = 0.6.

Once the primary plumes are sufficiently widely spaced in the merging regime,
reinitiation of protoplumes again begins. Now significant differences appear from the
impermeable case. Specifically, the nature of the boundary layer below z= 0 and the
reinitiations differ substantially, and increasingly so as K increases (figure 12). First,
the downwelling primary plumes are much broader and higher concentration, and
appreciably fresher fluid exists close to the boundary. This sharpens the concentration
gradient and ultimately leads to higher fluxes. Second, the protoplume pulses change
markedly. For K = 0.2, protoplumes are reinitiated near the primary plume for
considerable time before the pulse expands towards the stagnation point and resets the
cascade (figure 12b). For K = 0.6, protoplumes are only reinitiated near the primary
plume and do not expand to form a pulse (figure 12c). Thus, it is no longer entirely
clear that the Howard (1964) paradigm of marginal stability of the diffusive boundary
layer beneath z= 0 applies. Beneath the boundary layer, the bulk flow is qualitatively
identical. Plumes are longer and higher concentration, but evolve similarly.

Unlike the impermeable case, the flux is not immediately constant once reinitiations
occur everywhere. Instead, there is a prelude of a second flux-growth regime whose
origin is unclear.

In the constant-flux regime, fluxes are significantly higher: F= 0.025 for K = 0.2
and F=0.044 for K =0.6 (empirical values). However, we see remarkable agreement
between the wavenumbers in the bulk (figure 13c). This suggests that the plume
width is primarily bulk-controlled rather than boundary-layer-controlled, consistent
with merging occurring via slip-streaming and commencing near the tips.

As in the impermeable case, once information about the finite thickness of the layer
has reached the upper boundary, the flow transitions to a shut-down regime that retains
the dynamics of the previous regime. If this last regime was constant flux, then the
horizontally averaged concentration profile is again a diffusive boundary layer with
an essentially uniform concentration beneath, although concentrations are higher than
in the impermeable case. Surprisingly, the flux overlaps to within stochastic noise
(figure 13d). This result is particularly intriguing because the flux depends on both
the boundary-layer and bulk structures.
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FIGURE 13. (Colour online) Partially permeable upper boundary scenario for R= 5× 104

and K = 0 (black curves), K = 0.2 (dark/blue curves) and K = 0.6 (pale/green curves).
Horizontally averaged (a) concentration, (b) fluctuations and (c) wavenumbers for the pre-
impact constant-flux regime in the similarity variable z/t. (d) The dissolution flux. Dashed
lines at F= 0.017, 0.025 and 0.044 approximate the fluxes in the constant-flux regimes.

6. Summary

We have presented a simulation study of dissolution-driven convection in a
two-dimensional porous medium from first contact through to high concentration for
R from 100 to 5× 104. We have expanded on the temporal regime diagram proposed
experimentally for an impermeable upper boundary, confirming and augmenting
details of the early, R-independent regimes: pure diffusion, linear growth where
fingers initiate and grow quasi-exponentially, flux growth where macroscopic fingers
strip excess interfacial material and the flux increases, and merging where fingers
interact and zip together over several generations to form downwelling plumes.
Transition times between these depend sensitively on the initial perturbation; the
structural details and evolution generally less so. Once the gap between plumes
is sufficient, protoplumes are reinitiated on the horizontal boundary layer and are
swept into the main plumes. The start of this process is spatially heterogeneous, but
once it occurs everywhere, the universal (independent of both the initial perturbation
and R) constant-flux regime begins. We have thus shown how observations at very
high R (Neufeld et al. 2010; Pau et al. 2010; Backhaus et al. 2011; Lindeberg &
Wessel-Berg 2011; Hidalgo et al. 2012) fit into the regime delineation. In agreement
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with the previous numerical work, but in contradiction with the conclusions based
on experiments, we find that the flux value is independent of the Rayleigh number.
This regime has a surprisingly simple solution structure: the horizontally averaged
concentration evolves as a self-similar wedge and the plume width increases as√

t. Information that the bottom boundary has been reached takes time to propagate
upwards, and does so as an upwardly propagating wedge that overrides the self-similar
wedge. Once this hits the upper boundary, the regime ends and the layer begins to
saturate.

We have also studied a partially permeable upper boundary. This has use as its
own problem, but also gives insight into the dominant physics because the horizontal
boundary-layer structure is significantly altered from the impermeable case, but key
quantities of the bulk are unchanged. Specifically, in the constant-flux regime, plume
widths are quantitatively very similar, suggesting that they are bulk-controlled. In the
shut-down regime, the agreement between the dissolution fluxes is remarkable. This is
intriguing because the value depends on the horizontal boundary-layer structure, and
suggests that understanding its origin may provide important information on physical
mechanisms.

We have derived a partially complete system of upscaled equations describing
horizontally averaged quantities in the constant-flux and shut-down regimes. An
evolution equation for the plume widths is missing. Any such description must:

(a) presumably capture the merging process;
(b) capture a diffusive scaling in time in the constant-flux regime, with broadening

from the roots to the tips;
(c) capture a subdiffusive scaling in time in the shut-down regime;
(d) be primarily bulk-controlled; and
(e) predict k≈ 0.48/R−3/5 for steady-state thermal boundary conditions in the long-

time limit (see appendix D).

We have been unable to find a reasonable approximation, and leave this for future
work. In lieu of a universal description, we have used appropriate assumptions in each
regime and obtained reasonably good agreement between the simulated results and
predictions from the equations.

6.1. Implications for CO2 storage in saline formations
Finally, we return to the motivation of describing CO2 dissolution during storage in
saline formations. With present reservoir simulators, it is prohibitively expensive to
use the fine grid scales required to capture the dissolution flux accurately across an
entire reservoir (Lindeberg & Bergmo 2003; Riaz et al. 2006; Lindeberg & Wessel-
Berg 2011).

For gravity-current models of evolution, a dissolution flux rate has been imposed
as a boundary condition on the base of the gravity current (Gasda, Nordbotten
& Celia 2011; Lindeberg & Wessel-Berg 2011; MacMinn, Szulczewski & Juanes
2011; MacMinn et al. 2012). From our study, we suggest that an appropriate
parameterization is

F=


1/
√

πt 0< t< 1100,
0.017 1100< t< 16R,

16.8[
0.73(t/R − 16)+ 31.5

]2 t> 16R,
(6.1)
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rescaled according to (2.9), for a homogeneous, isotropic reservoir. Here we have
approximated the perturbation-dependent regimes by the first two expressions. It
is of course still necessary to understand the robustness of the estimates in three
dimensions and with heterogeneities and anisotropies. The latter are known to alter
the flux significantly (Cheng, Bestehorn & Firoozabadi 2012).

A flux parameterization does not readily extend to more complex scenarios with
effects such as an evolving but laterally finite source or a variable background flow.
In commercial simulators, a more useful alternative may be to model the evolution
of aqueous CO2 beneath the separate-phase region. This would then allow automatic
capture of the evolving flux. The upscaled equations (4.4)–(4.12) are a first step
towards such a model.

Supplementary movies
Supplementary movies are available at http://dx.doi.org/10.1017/jfm.2013.673.

Appendix A. Numerical scheme
We solve the governing equations numerically, introducing a streamfunction ψ such

that (u,w)= (−∂ψ/∂z, ∂ψ/∂x). Then (2.8a) is satisfied automatically while ∇× (2.8b)
reduces to

∇2ψ =−∂c
∂x
. (A 1)

A.1. Spectral scheme
For the impermeable case, we use a spectral method in space, decomposing as Fourier
modes in x and Chebyshev in z (Canuto, Hussaini & Quarteroni 2007). We work
with spectral coefficients for all linear terms and physical collocation point values
for the nonlinear advection term (converting via the discrete Fourier and cosine
transforms provided by the FFTW package). We integrate (2.8c) in time using a
third-order Runge–Kutta scheme for the advection term and Crank–Nicolson for the
diffusion term (Canuto et al. 2007, §D.4). To ensure that the matrix equations arising
from Poisson’s equation (A 1) and the Crank–Nicolson implementation for (2.8c) are
well-conditioned and can be solved efficiently, we use a recursion relation for second
derivatives (Canuto et al. 2007, §4.1.2).

A.2. Compact finite-difference scheme
For K = 0.6, the vertical resolution and small time steps needed for accurate
results are prohibitively expensive in the spectral scheme. Instead, we use a Fourier
decomposition in x and a compact finite-difference scheme in z for the partially
permeable scenario.

First, we reduce the interfacial conditions and the governing equations in the
overlying layer to a boundary condition. The governing equations in the upper
layer also reduce to (A 1) on introducing a streamfunction, with the right-hand side
becoming zero. Fourier decomposing in x and imposing decay as z→∞, the solution
is found to be

ψ =ψ(z= 0, t)e−|m|z+imx in z> 0 (A 2)
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for wavenumber m. Continuity of pressure across the boundary then implies

∂ψ

∂z

∣∣∣∣
z=0−
= 1

K

∂ψ

∂z

∣∣∣∣
z=0+

(A 3)

and, hence,

|m|ψ +K
∂ψ

∂z
= 0 on z= 0, (A 4)

for Fourier mode m 6= 0. For m= 0, ψ = 0 on z= 0.
In the convecting layer, we use a stretched coordinate system in z that focuses

grid points near the upper boundary. To approximate (A 1) and calculate the
horizontal velocity u, we use a compact fourth-order Padé scheme together with
consistent third-order boundary conditions (Carpenter, Gottlieb & Abarbanel 1993).
To approximate the spatial derivatives in the concentration (2.8c), we use an
explicit sixth-order scheme (Fornberg 1988) for the diffusive terms and the compact
fourth-order scheme for vertical advection. We evolve in time using third-order
Adams–Bashforth for the advective terms and Crank–Nicolson for the diffusive (see,
for example, Boyd 2001, p. 229).

A.3. Resolution
The numerical scheme must resolve all potentially unstable waves in x. Stability
analysis implies a shortest wavelength of ∼60 (Slim & Ramakrishnan 2010). Thus,
we take 8192 = 213 Fourier modes to yield a grid spacing of approximately 12 in
x. In z, we must resolve the dynamics in the horizontal boundary layer adjacent
to the upper boundary. This layer is thinnest at initiation when t = 1 (see below),
thus we need at least 1.5

√
R Chebyshev modes (Boyd 2001, p. 59). We take 33

polynomials in z for R = 100; 65 for R = 200 and 500; 129 for R = 1000 and 2000;
257 for R = 5000 and 10 000; and 513 for R = 20 000 and 50 000. Results were also
verified by convergence tests. For the permeable upper boundary, we take resolutions
stretching from 0.2 near z= 0 to 20 near z=−R.

For the impermeable upper boundary, we take a time step 1t = 1 for times up
to 1000 and 1t = 10 thereafter, ensuring the CFL condition is always satisfied.
For the partially permeable upper boundary, we need smaller values because higher
flow speeds are attained. In either case, we find that the spatial resolution is the
accuracy-limiting component (decreasing 1t does not further reduce the error whereas
increasing the number of Fourier modes and Chebyshev modes/vertical grid points
does).

Appendix B. Plume widths and wavenumbers
Why does (2.21) give the plume width rather than the inter-plume spacing? Consider

two related, simple functions

c= A sin kx (B 1)

and

c=
{

A sin kx for 2πMj/k 6 x 6 2πMj/k+π/k,
0 otherwise, (B 2)
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for j any integer and M a given positive integer. In the first, the wavelength is 2π/k
and the plume width is π/k. In the second, the wavelength is 2πM/k while the width
is π/k. Expression (2.21) is consistent with the widths.

Appendix C. Approximating the third moment 〈c′3〉
The pioneer plumes can be reasonably approximated by portions of sinusoids.

Setting

c=
{

1
2 A(1+ cos kx) for 2πMj/k−π/k 6 x 6 2πMj/k+π/k,

0 otherwise,
(C 1)

and calculating the first three moments, we find that 〈c3〉 = (10/9)〈c2〉2/〈c〉. This
approximation is permissible for 〈c′2〉> 〈c〉2/2. Thus, we obtain the expression (4.6).

Note that ignoring the 〈c′3〉 term entirely results in a need for shocks. For example,
in pioneer plume territory, solutions are found to curl over unphysically, which
would suggest replacing the entire region with a shock (the equations are hyperbolic,
provided k2 does not introduce a first-order term). This is a substantial approximation
and, more significantly, it is not clear how to correctly introduce the shock because
the ‘true’ conservation form of (4.5) is unknown (see, for example, LeVeque 2002).

Appendix D. Upscaled model predictions for thermal convection
Further verification of the model (4.4)–(4.12) is possible by comparison with the

steady-state thermal problem. In steady state, equation (4.4) implies 〈c′2〉 is constant
and (4.5) implies ∂〈c〉/∂z = k2. Taking k2 constant and replacing (4.12) with F =
〈c′2〉 = 〈c〉2/Rc on z=−R, we obtain

F= (1− k2R)2/(4Rc). (D 1)

We obtain a flux approximation within 10 % of the simulated data of Hewitt et al.
(2012), using their observed value for the wavenumber k(R)≈ 0.48/R−3/5.
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