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e-mail: maciej.dobrzynski@ucd.ie

Boris N. Kholodenko

e-mail: boris.kholodenko@ucd.ie
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsif.2014.0383 or

via http://rsif.royalsocietypublishing.org.
& 2014 The Author(s) Published by the Royal Society. All rights reserved.
Nonlinear signalling networks and cell-
to-cell variability transform external
signals into broadly distributed or
bimodal responses
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We show theoretically and experimentally a mechanism behind the emergence

of wide or bimodal protein distributions in biochemical networks with non-

linear input–output characteristics (the dose–response curve) and variability

in protein abundance. Large cell-to-cell variation in the nonlinear dose–

response characteristics can be beneficial to facilitate two distinct groups of

response levels as opposed to a graded response. Under the circumstances

that we quantify mathematically, the two distinct responses can coexist

within a cellular population, leading to the emergence of a bimodal protein dis-

tribution. Using flow cytometry, we demonstrate the appearance of wide

distributions in the hypoxia-inducible factor-mediated response network in

HCT116 cells. With help of our theoretical framework, we perform a novel cal-

culation of the magnitude of cell-to-cell heterogeneity in the dose–response

obtained experimentally.
1. Introduction
Thermal fluctuations inherently affect all biochemical reactions, and the variabil-

ity in molecular copy numbers owing to stochastic effects decreases, as the mean

number of molecules in the system rises. Gene expression is inevitably stochastic,

as usually there are not more than two gene copies in a cell. It is because of this

biochemical noise that cells within an isogenic population, be it a bacterial colony

or mammalian cells, at any given point in time exhibit a distribution of measur-

able properties rather than exhibit a precise value. Cells in genetically identical

populations vary in, for example, size, the concentrations of proteins and

mRNA, and the stage of progression along the cell cycle.

Quantification of biochemical noise requires single-cell techniques [1–5]

capable of reconstructing the whole histogram (a distribution) of molecule

counts over the entire cellular population. A bimodal (a double-peaked) distri-

bution is particularly interesting from the physiological point of view, as it

indicates existence of two subpopulations with (possibly) distinct phenotypic

features. For instance, a bimodal distribution of antibiotic-resistance protein,

ZeoR, was suggested to increase viability of the yeast population treated with

large doses of Zeocin [6]. In another study, heterogeneous response to treatment

with a chemotherapeutic drug, camptothecin, resulted in a bimodal distribution

of 24 protein accumulation slopes. Additionally, for the RNA helicase DDX5

and the replication factor RFC1, peaks of their bimodal distributions correlated

with different cell fates: fast protein accumulation was found in cells that
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Figure 1. Generic mechanisms that can give rise to bimodal steady-state protein distributions on the cell population level. (a) Spontaneous switching between
active and inactive state of the promotor [9]. (b) Network bistability is brought about by positive feedback [10 – 12]. (c) Oscillating protein abundances in the
presence of cell-to-cell variability in oscillations period and/or phase [13]. (d ) A network with nonlinear input – output characteristic subjected to intrinsic and/
or extrinsic noise [14 – 16]. (e) An example of a histogram of steady-state protein concentrations from individual cells as obtained with flow cytometry. Bimodality
can arise in the population of cells driven by any of the mechanisms shown in (a – d).
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survived the treatment, whereas slow accumulation existed in

cells undergoing changes associated with cell death [7,8].

In biological systems, bimodal distributions of protein con-

centrations at the population level can be generated by several

mechanisms (figure 1). A genetic switch is the simplest mech-

anism. For a large difference between the rate of gene on/off

switching and the turnover of the gene product, for example,

mRNA [9,17], two distinct peaks of product abundance arise

(figure 1a). Such infrequent gene expression bursts leading

to bimodality have been observed in Escherichia coli [18],

yeast [19] and mammalian cells [2].

In the context of signalling networks, bistability is a well-

known mechanism that can generate bimodal responses.

It usually requires positive feedback that may be hidden or

explicit (figure 1b) [10–12,20] or double negative feedback,

as in synthetic toggle switch [21]. While stochastic switching

requires non-deterministic analysis in order to show the

existence of two states, bistable systems can be analysed deter-

ministically with classical ODEs. Importantly, bistability in the

deterministic setting does not necessarily lead to bimodal dis-

tributions. Dynamic switching between two stable states has to

be promoted by fluctuating biochemical reactions or by exter-

nal noise [22], or by cell-to-cell variability in the thresholds for

switching between two steady states [14,23].

A much less appreciated mechanism capable of generating

population-level bimodality relies on independently oscillating

cells [13]. Cell-to-cell variability in protein abundances affects

the period and/or phase of cells’ oscillations which in turn

generates a bimodal protein distribution (figure 1c). The exist-

ence of this distribution depends on the extent to which phases

of oscillations vary between the cells ( phase mixing) as well as

the functional form of oscillations, for example, pure triangle

wave will fail to generate bimodality. Notably, if cells oscillate

with a slightly variable period, then the emergence of a

bimodal distribution is inevitable with time.

The nature of the mechanism leading to bimodality that we

discuss here differs from that of stochastic switching, bistability

or superposition of oscillations. Here, two distinctive peaks in

steady-state distributions of protein concentrations that arise on

the population level stem from the interplay of two factors:

(i) nonlinear input–output characteristic (the response) of the

biochemical network at the single-cell level [24,25], and (ii) cell-

to-cell variability in the abundance of network components
which translates to different input–output characteristics of

that network across the population (figure 1d).

In the following sections, we investigate analytically

and numerically how bimodal steady-state protein distribu-

tions can emerge in nonlinear biochemical networks.

We explore the effect of heterogeneity in the input signals

(extrinsic noise) and/or variability in the input–output relation-

ship owing to stochastically expressed network components

(intrinsic noise) on the population-level distributions of protein

concentrations. We apply our theoretical framework to infer

variability in dose–responses across the cellular population

from flow-cytometric measurements in the hypoxia response

signalling system. We use a mathematical model of this

system to demonstrate possible contributions to variability of

the dose–response.
2. Results
2.1. Variability of response thresholds
The dose–response characteristics is a relationship between

the magnitude of the input stimulus (e.g. growth factor

concentration) and the output target, which can be the

concentration of an active kinase (such as doubly phosphory-

lated MAPK) or a transcription factor. It is a function that

depends both on the concentration of network components

and kinetic parameters of biochemical reactions that involve

these components. This input–output relationship, R(x), is

commonly approximated by a Hill curve parametrized by

four coefficients (b, x50, Rmax and H ):

y ¼ R(x, x50, b, Rmax, H) ¼ bþ Rmax
xH

xH
50 þ xH

, (2:1)

where x is the input signal (e.g. concentration of a drug or a

toxin), b is basal response level, Rmax is the maximum output

level and H is the Hill coefficient that determines the steep-

ness of the response. The parameter x50 is the response

threshold, also known as the half maximal effective concen-

tration (EC50). It is the concentration of the stimulus (the

input x) for which the response assumes half of the maximum

output (minus basal level).

We assume that cells within a population experience the

same level of stimulation x. This condition holds, during
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Figure 2. Protein distributions arising from variability of different parameters in the Hill-type response of a nonlinear network. Solid lines in upper panels—response
function from equation (2.1) with b ¼ 0, x50¼ 1, Rmax¼ 1, H ¼ 1. Dashed lines indicate the middle 50% of dose – responses when the indicated parameter is randomly
sampled from a lognormal distribution with (a) median, mx50 ¼ 1 and shape parameter sx50 ¼ 2, (b) mRmax ¼ 1, sRmax ¼ 0:2, (c) mH ¼ 1, sH ¼ 2. Shown in bottom
panels are output distributions for a range of inputs. Red dashed—distribution for the input stimulus x ¼ 1, which is the midpoint of the averaged dose – response. (Online
version in colour.)
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our experiments, when cells are grown in a monolayer in a

tissue culture and are subjected to equal levels of treatment

(input). What sets cells apart is the threshold x50 of the

response function R. Such variability may stem from dif-

ferences in the molecule numbers of the same network

components and fluctuations in their activation levels. In

mathematical terms, we describe this variability by the prob-

ability density function (pdf) of thresholds, fx50 (x). The

resulting distribution of output y for a given input value x
in the presence of variable thresholds x50 of the response

function R is given by a general expression (electronic

supplementary material, equations (S1)–(S3)),

fout(y) ¼ � fx50 (rx50 (y)) � d

dy
rx50 (y), (2:2)

where rx50 (y) is the inverse of the response function calculated

with respect to threshold x50. Note the ‘minus’ sign, which

reflects the fact that the response function is monotonically

decreasing with x50.
2.2. Existence of bimodality
Intuitive conditions for the existence of bimodality can be

obtained for a model system with Hill-type response function

and lognormally distributed threshold x50 across the popu-

lation. It can be demonstrated numerically that such a

parameter distribution is indeed a reasonable approximation

for signalling cascades with concentrations of network

components lognormally distributed across the cellular

population (electronic supplementary material, figure S4).

The assumption behind the distribution of protein concen-

trations is justified in the light of experimental evidence.

Measurements have shown that protein distributions are log-

normal around the mean with additional power-law tails that

may arise from feedbacks in biochemical networks [26–28].

The first condition, necessary but not sufficient, relates the

steepness H of the dose–response with the shape parameter
sx50 of the lognormal distribution of x50 (electronic sup-

plementary material, equation (S5)),

H � sx50
.

ffiffiffi
2
p

, (2:3)

where sx50
is related to the squared coefficient of variation

of x50 distribution, CV2
x50

, through: sx50 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log (CV2

x50
þ 1)

q
.

Thus, steep (large H ) steady-state response function R
prompts a bimodal distribution even for very narrowly dis-

tributed thresholds (small sx50 ). And vice versa, bimodality

may result from very heterogeneous but graded (small H )

response function R.

Once H and sx50 satisfy equation (2.3), a bimodal output

distribution may arise but only when the input stimulus,

x, is within the steep region of the mean response curve.

Parameters H and sx50 determine the width of that range.

Bimodality will therefore ensue as long as the ratio of

the input to the median of the threshold distribution,

mx50 , satisfies

a�(H, sx50 ) , log
x

mx50

, aþ(H, sx50 ), (2:4)

where a+(H, sx50 ) depends only on H and sx50 (electronic

supplementary material, equation (S15)). The range of admis-

sible x=mx50 ratios widens for a steep dose–response and/

or large threshold variability (electronic supplementary

material, figure S2).

The Hill function is linearly dependent only on b and

Rmax, hence variability in neither of these parameters alone

can generate a bimodal output distribution (figure 2b). Varia-

bility in H can also introduce bimodality, however, for inputs

around the midpoint of the dose–response the distribution

reverts to unimodal (figure 2c). Because protein distributions

for a range of input stimuli that we observe experimentally

correspond to those shown in figure 2a, we assume that varia-

bility in response threshold x50 contributes the most to the

population-level protein variability.
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Variability in the input stimulus x is mathematically

equivalent to variability in x50; therefore, it is equally capable

of generating bimodal distributions as has been argued

previously in the context of transcriptional regulation

[15,29–31]. In those scenarios, variable input signal corre-

sponds to a noisy concentration of a regulatory protein, for

example, a transcription factor. By fixing threshold x50 in

equation (2.1) and by treating x as a variable subjected to

fluctuations described by a lognormal distribution, we

obtain conceptually similar results as previously. The first

condition is the same as previously stated in equation (2.3)

with the only difference that s relates to the variability of

the input stimulus rather than to the threshold. The interpret-

ation of the second condition changes accordingly. Function

a+(H, sx) bounds the ratio of the input distribution’s

median m and now fixed threshold level x50.

Equations (2.3) and (2.4) that warrant bimodal system

response are derived for a specific case of a lognormal

input or response threshold distribution and a Hill-type

dose–response. However, the interpretation of the two con-

ditions also holds for other types of distributions and

responses, for example, gamma distribution, sigmoidal and

logistic response characteristics. Equation (2.3) simply states

that in order to facilitate a bimodal distribution both the

steepness of the response and variability of thresholds must

be coupled; reduction of the former requires an increase in

the latter and vice versa. Equation (2.4) prescribes how far

the midpoint of the threshold distribution (its ‘centre of

mass’) can be from the midpoint of the response (the steepest

point) in order to maintain bimodality. These two conditions

hold for other cases as well, although their exact mathemat-

ical form is not as simple as for lognormal distribution and

Hill-type response. Notably, bimodality may arise only for

nonlinear response characteristics. A linear dose–response

would result in a trivial result where the output distribution

is simply a rescaled distribution of a given parameter in that

response function.
Additionally, in order to generate bimodality, the dose–

response cannot equal the cumulative distribution (CDF) of

the variable parameter or, equivalently, the distribution

cannot be a derivative of the response function [32]. If this

is the case, then the output distribution becomes uniform

on the interval between the lowest and highest response.

Consider a cell population with the response function

R(x; x50, H) ¼ xH=(xH
50 þ xH) and the threshold distribution

across the ensemble fx50 (x50; x, H) equal to the derivative of

R with respect to x50 (with a minus sign). Because fx50

depends also on the input stimulus x, the population-level

response to any input value is a uniform distribution between

0 and 1. It implies that any signal evokes the exact same

population-level response. However, from the biological per-

spective, the scenario in which the dose–response always

remains equal to the CDF of the threshold distribution is

intriguing, yet unlikely. It requires x50 distribution to

change with x, which in turn would affect the dose–response

curve. In a more plausible scenario, the system adapts its

dose–response to the distribution of inputs that it experi-

ences. It has been shown that a number of neural systems

use the strategy of matching the dose–response to CDF of

inputs in the environment [32,33] to fully use neuron’s lim-

ited response range and maximize the information transfer:

the most frequently perceived stimuli evoke outputs from

the steepest region of the dose–response. Arguably, cellular

signalling networks as discussed throughout this paper

undergo this type of adaptation.

According to equation (2.4), the range of input/median

ratios for which bimodality arises depends on the width

of the threshold distribution, sx50
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log (CV2

x50
þ 1)

q

(electronic supplementary material, figure S2). The larger

it is, the stronger the separation of the heterogeneous popu-

lation into two groups with distinct levels of protein

concentrations. Figure 3a–c depicts this intriguing pro-

perty that runs counter to the conventional assumption

that cellular variability destroys robust signalling. Here,
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we consider a system with a mildly ultrasensitive, H ¼ 3,

dose–response. Compare this with H � 5 reported for the

MAPK cascade [24], H ¼ 5 . . . 9 observed for Rap–GTP res-

ponding to cannabinoid-1 receptor signal [35], or H ¼ 1 . . . 4

measured for a synthetic system with multiple autoinhibi-

tory modules [36]. For CV2
x50

. 0:4, protein distributions

become significantly wider for input stimuli in the steepest

part of the dose–response. For CV2
x50
¼ 4, the responses

tend to concentrate around basal and saturation values,

and two peaks emerge for intermediate stimuli. Such

bimodality may facilitate further decision-making, which

is not entirely random but is performed based on two

well-defined options instead.

Uncertainty of a distribution is often quantified by Shan-

non entropy [37]. Its low value indicates that a small amount

of information is required to describe the varying quantity,

for example, protein concentration across the population.

Therefore, a peaked unimodal distribution requires a twice

shorter description than a bimodal distribution with two

narrow peaks. Any wide distribution in between requires

more information than either of the two, which is reflected

by the high value of entropy. Figure 3d quantifies distributions

induced by inputs equal to x50 of the dose–response (red dots

in figure 3a–c). The entropy peaks at CV2
x50
� 2 and decreases

owing to uncertainty introduced by threshold variability.

However, for biologically realistic values of CV2
x50

between

0.4 and 4, the distributions change their shape from wide to

bimodal, whereas their entropy changes only slightly. This

suggests that the quantification of uncertainty using entropy

may be misleading as even protein distributions with large

entropy may reveal a physiologically relevant widening of a

population into two groups. Even though this division is not

complete and a number of responses still appear between
the peaks, such distributions have been demonstrated to be

physiologically advantageous to the population [6].
2.3. Variability in the hypoxia response network
Here, we study experimentally the cellular hypoxia response

network, analyse the emergence of wide protein distributions

and estimate the response variability from experimental data.

When cellular oxygen demand exceeds supply, the cells enter

a phase of hypoxia. As a consequence, stabilization of the

hypoxia-inducible factor (HIF) ensues. Stabilized HIF mediates

transcription of genes to adapt to the hypoxic insult [38]. Cen-

tral to the response is the action of prolyl-hydroxylases

(PHD), enzymes that hydroxylate HIF at residues Pro-402 and

Pro-564 [39] and target it for ubiquitination–degradation via

the von Hippel–Landau protein (VHL) [40]. Figure 4 depicts

a simplified scheme of the network.

For our experimental set-up, we used a stable HCT116 cell

line expressing a fragment of the HIF protein containing resi-

dues 403–603, termed the oxygen-dependent degradation

(ODD) domain [41] tagged to GFP (cells courtesy of

Prof. E. Gottlieb [42]). The ODD–GFP is our readout of the

hypoxic response. We activate the system using the hydroxyl-

ase inhibitor dimethyloxalylglycine (DMOG), which mimics

the condition of low oxygen levels in the HIF system [43].

Cells in tissue culture were grown up to 70% confluency at

the end of the treatment, which minimized the effect of cell

contact and maintained cells in a monolayer such that all of

them were exposed to equal levels of DMOG. Hence, any

variability in the response can be attributed to intrinsic vari-

ations of network components in individual cells, which

facilitates our aim of measuring dose–response variability

while assuming a fixed input. The condition, however, may
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not hold in general, especially when cells are embedded in

tissue and/or subjected to different microenvironments.
2.4. Hypoxia-inducible factor responses to
dimethyloxalylglycine averaged over the
cell population

Using flow cytometry, we first identify a sigmoidal dose–

response. For each DMOG condition, we calculate the
median of the single-cell ODD–GFP fluorescence across a

population of a minimum of 10 000 cells. In doing so, we

derive the dose–response curve, i.e. the ODD–GFP response

to DMOG. We normalize the median to control, unstimulated

case. The median response averaged over a minimum of three

biological repeats at 4, 8 and 16 h following DMOG addition

is shown in figure 5a where we also fit the Hill model from

equation (2.1) (electronic supplementary material, table S1).

The increase with time of the steepness, H, and the maximum

response, Rmax, is consistent with earlier measurements using
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Western blots [44], which support the qualitative correspon-

dence between population-averaged flow-cytometric and

bulk measurements.
oyalsocietypublishing.org
J.R.Soc.Interface

11:20140383
2.5. Hypoxia-inducible factor response distributions
across the cell population

Distributions of ODD–GFP fluorescence intensity (figure 5b)

increase their width for DMOG ¼ 1 and 2 mM. At these

DMOG concentrations, the response curve is the steepest; it

is the most sensitive region of the cellular response. Widening

of the ODD–GFP distribution for DMOG concentrations that

induce the steepest region of the dose–response hints at the

existence of cell-to-cell variability in response thresholds

(cf. figure 2). If there were no threshold variability, then

cells treated with DMOG would exhibit a peak of ODD–

GFP distribution shifting towards higher values without

increase in its width as shown in figure 3a. This is not what

we observe experimentally. In the presence of threshold varia-

bility and steep nonlinear response, the distribution may

widen or even become ‘split’ between the low and high

response—the fact quantified by equations (2.3) and (2.4), and

illustrated by figure 3b,c. Consistently with our predictions,

the observed widening of the ODD–GFP distribution becomes

more pronounced the steeper the dose–response, and the

larger, the maximum response level. This is the case at 8 and

16 h post-treatment.

As a next step, we estimate distributions of parameters b,

Rmax and x50 in the Hill model, equation (2.1), from a single

experiment. Parameter H is assumed to be constant across

the population, and we calculate it by fitting the Hill curve

to population-averaged dose–responses (electronic supple-

mentary material, figure S5a and table S2). The distribution

of basal level b is obtained from the ODD–GFP distribu-

tion measured for the unstimulated case, DMOG ¼ 0 mM

(electronic supplementary material, figure S5b and table S3).

Based on our fits of the Hill function to the dose–response,

we recognize that even at DMOG ¼ 4 mM the curve does

not saturate. However, the ODD–GFP distribution at 8 and

16 h post-DMOG treatment becomes left-skewed, which indi-

cates that the system is not far from saturation. Because

higher DMOG levels would be toxic to cells, we decide to

use the response at DMOG¼ 4 mM as a proxy of Rmax varia-

bility. At that DMOG level, the response is also affected by an

independent contribution from variability in the basal level b.

We therefore subtract the mean and variance of b from

the distribution owing to DMOG ¼ 4 mM and use this new

distribution as an estimate of Rmax variability (electronic

supplementary material, figure S5c and table S4).

Finally, we estimate variability in threshold x50. At a given

time point, for every DMOG concentration, we record the

value of ODD–GFP distribution at a half-distance between

the mode (the peak) of the basal (DMOG ¼ 0 mM and the

maximum (DMOG ¼ 4 mM) distribution. Such a curve,

which is a function of DMOG level, is largely independent

of b, Rmax and H, and is determined only by parameters of

x50 distribution. The independence is exact when x50 is distrib-

uted lognormally (electronic supplementary material, equation

(S17)). After normalization to 1, the function has the inter-

pretation of the probability density, which can be used to

determine parameters of the x50 distribution (electronic

supplementary material, figures S3 and S5d and table S5).
For spread of parameters b and Rmax across the cell popu-

lation, we fit gamma, lognormal and Weibull distributions.

Based on Akaike information criterion [45], we conclude that

Weibull distribution is the best approximation of experimentally

measured variability in both parameters (electronic supplemen-

tary material, figure S5b,c and tables S3 and S4). By applying

these distributions to equation (2.1), we numerically calculate

ODD–GFP distributions shown in figure 5c. Figure 5d quan-

tifies the agreement between experimental and predicted

ODD–GFP distributions with a dimensionless robust coeffi-

cient of variation, rCV, expressed by equation (4.2) in Material

and methods.

According to our model, wide distributions that we

observe experimentally can arise only in the presence of

variability in the response threshold, x50 (figure 2). We find

that the dimensionless squared coefficient of variation

(CV2 ¼ variance over squared mean) of fitted x50 distribution

decreases from 2.72 at 4 h, through 1.38 at 8 h, down to 0.26 at

16 h post-treatment. The decrease in CV2
x50

over time is com-

pensated by increasing H, which promotes widening of the

ODD–GFP distribution at DMOG concentrations that

induce the steep part of the response. Substituting H and

CV2
x50

into equation (2.3) reveals that the system remains in

the same regime where only mild bimodality may arise (elec-

tronic supplementary material, table S6 and figure S6). The

distribution is further affected by variability in b and Rmax,

which results in widening instead of the emergence of two

clearly separated peaks. The widening is reflected by the

increase in rCV (figure 5d ). In the case of small x50 variability,

or lack thereof, an increasing stimulus would induce a pro-

portionally shifting peak of ODD–GFP distribution without

widening as illustrated in figure 3a and quantified by a

theoretical dotted line in figure 5d.

2.6. Response variability in a mathematical model
of the hypoxia-inducible factor system

We used a published mathematical model of the HIF system

[44] to search for possible molecular sources causing large

dose–response variability. First, we calculate numerically

the response of the system at 16 h to various oxygen tension

levels, which affects the HIF level in the opposite manner to

DMOG treatment. The untreated case corresponds to 21% of

oxygen, i.e. normoxia, whereas high DMOG treatment corre-

sponds to the hypoxic condition of a low oxygen level. The

Hill function is then fitted to the calculated dose–response.

In order to account for cell-to-cell heterogeneity, we repeat

this procedure 1000 times with total levels of all protein

species drawn from a lognormal distribution with CV2 ¼

0.5 and means fixed to the original ODE model (supplemen-

tary material of [44]). The chosen CV2 is at the upper limit of

measured protein variability in mammalian cells which

typically ranges between 0.1 and 0.5 [7,16,28,46,47].

The mean and variability of the dose–response obtained

from a population of deterministic models are shown in

figure 6a. By fitting the Hill function to each of the respon-

ses from the entire population, we obtain distributions of

parameters x50, b, Rmax and H at 16 h post-treatment

(figure 6c–f ). The distribution of H has the smallest CV2 of

all parameters, which justifies our choice of neglecting varia-

bility in H when estimating variability of Hill parameters

from experimental data in §2.5. The distribution of x50

is well approximated by a lognormal distribution, and
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CV2
x50
¼ 0:30 is comparable to 0.26 that we estimated from

experimental data in figure 5c. Additionally, we perform

local sensitivity analysis by randomly sampling total concen-

trations of individual protein species from a lognormal

distribution with the mean as in the ODE model and

CV2 ¼ 0.5 while keeping the remaining concentrations

fixed. Interestingly, the variability of the response threshold

in the HIF model is largely insensitive to variability of the

majority of network components (figure 6b). The variability

in only two protein concentrations, nuclear FIH and

HIF-1b, translates to large CV2 of response thresholds.
3. Discussion
Signalling networks can transform analogue, continuous input

signals into distinct low and high response states [48]. The

sigmoidal shape of that response is typically a result of layers

of phospho- and dephosphorylation cycles (e.g. MAPK cascade

[24]) or simply results from nonlinearity of enzymatic reac-

tions as in the case of the HIF network. The steep sigmoidal

response minimizes the region where stimuli could result in

ambiguous outputs, making such a response characteristic a

prevailing biological mechanism on which cellular decision-

making can rely. Because of the large number of molecules

that eukaryotic signalling networks typically consist of, at

the level of a single cell, these systems seem to be protected

from undesirable stochastic effects, which can occur at low mol-

ecule counts. Still, cells within a population differ in their

molecular make-up because of the biochemical noise that affects

total protein levels. This randomness affects the shape of the

dose–response and causes a similarly random response of a

cellular population.

Our theoretical results demonstrate that networks with

sigmoidal response characteristics possess yet another
fascinating feature, this time at the level of cellular ensemble.

In the presence of variability in nonlinear dose–response

across the population, two subpopulations can emerge with

distinct response levels. The condition being, dose–response

needs to be of sufficient steepness. Our analysis provides

intuitive mathematical insights into conditions under which

such a response in form of a bimodal protein distribution

may arise.

Cell-to-cell variability of the dose–response threshold,

x50, more commonly known as EC50, is essential for generat-

ing wide or bimodal distributions in response to a common

input signal. In the absence of such response variability,

protein distribution would not widen but shift proportionally

to the stimulus (figure 3a), which is not what we observed in

our experiments. Flow-cytometric analysis of the HIF system

demonstrated that the response, measured as ODD–GFP

distribution, indeed widens for inputs (DMOG treatment)

in the steepest region of the Hill-type dose–response. Our

theoretical framework provides a means of estimating EC50

variability from flow cytometry data and an explanation of

protein distribution widening.

Without EC50 variability, the ODD–GFP distribution

would not widen as is illustrated by the dotted line in

figure 5d. Even though the squared coefficient of variation

of the response threshold decreased 10 times between 4 and

16 h after DMOG treatment, the steepness H of the response

increased more than twice over the same period. Together,

these two parameters facilitate a necessary but not sufficient

condition for bimodality expressed by equation (2.3). After

substituting EC50 variability and H, we find that the system

remains approximately in the same regime where only very

mild bimodality may arise (electronic supplementary

material, table S6 and figure S6). Using our framework, we

hypothesize that the response steepness at 16 h post-

treatment is sufficient to bring about two distinct peaks in
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the response, provided that CV2 of EC50 remained at the

level of 2.72 (as estimated at 4 h) throughout the treatment

(electronic supplementary material, figure S6).

We have shown that owing to certain features of the non-

linear input–output characteristics commonly observed in

cellular signalling networks, random differences between

individual cells enable the separation of these cells into sub-

populations with distinct responses to the common signal.

The significance of our results extends beyond cascaded

signalling networks. Any network with nonlinear dose–

response characteristics may exhibit bimodal behaviour as

shown in our study. In particular, a simple enzymatic reac-

tion or a gene expression network also belong to that class.

For all of such nonlinear networks, variability of EC50

caused by cell-to-cell differences in protein concentrations is

an important factor to consider when designing a pertur-

bation, for example a drug treatment. According to our

theory, one of the strategies to avoid the emergence of two

subpopulations, low and high responders, is to smooth

the dose–response, i.e. decrease the coefficient H. This in

turn can be achieved by establishing a negative feedback

in the network [14]. Alternatively, the condition expressed

by equation (2.3) demonstrates that the output protein distri-

bution can be rid of bimodality by decreasing the variability

of dose–response threshold resulting from cell-to-cell varia-

bility of network components. With current advancements

in synthetic biology and ongoing progress in mathematical

modelling of biochemical networks, such interventions in

in vivo systems will likely become more routine. An intriguing

open question is to what extent bimodal population-wide

protein distributions brought about by the mechanism dis-

cussed here are used to perform physiologically relevant

decision-making.
4. Material and methods
4.1. Cell culture
Human colon carcinoma (HCT116) cells stably expressing

GFP–ODD were a generous gift from Prof. Gottlieb and were pre-

viously used in another study [42]. The cells were subsequently
subcloned as single-cell clones by growing cells in DMEM 10%

FCS supplemented with 800 mg ml21 G418. The clones were trea-

ted with 2 mM DMOG for 16 h. Two clones where eGFP–ODD

was induced were selected. Cells were then maintained in a

humidified 5% CO2 incubator at 378C and cultured in Dulbecco’s

modified Eagle’s medium supplemented with 10% FCS, 1%

L-glutamine and 50 mg ml21 G418.

4.2. Flow cytometry
HCT116 cells were treated with cell permeable pan-hydroxylase

inhibitor dimethyloxalylglycine (DMOG; Cayman Chemicals,

MI, USA) dissolved in DMSO (Sigma, Wicklow, Ireland) and

diluted with growth medium to appropriate concentration. The

cells were then lifted by trypsinization (0.05% trypsin–EDTA,

Gibco) and resuspended in 0.5 ml growth medium with DMOG

concentration corresponding to initial stimulation. Experiments

were replicated four times for each time point. The samples

were analysed with Accuri C6. Post-gating by forward and

side scatter was performed to remove events corresponding to

dead cells, debris and cell clusters (i.e. doublets). For each

sample, 10 000 events (cells) were collected in final gating.

Dose–response from flow cytometry experiments (figure 5)

was calculated using normalized median fluorescence intensity

(nMFI),

nMFI( stimulusi ) ¼ median fluorescence ( stimulusi )

median fluorescence (control)
: (4:1)

In order to quantify the width of protein distributions obtained

from flow cytometry and calculated numerically, we use robust

CV (from FlowJo flow cytometry analysis software) defined

as follows

rCV ¼ 100

2
� intensity[84:13%ile]� intensity[15:87%ile]

median intensity
: (4:2)

The rCV is not as sensitive to outliers and gives a better than CV

description of the distribution spread on logarithmic scales.
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