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Abstract
Belief updating—the process by which an agent alters an internal model of its environment—is a core function of
the CNS. Recent theory has proposed broad principles by which belief updating might operate, but more precise
details of its implementation in the human brain remain unclear. In order to address this question, we studied how
two components of the human event-related potential encoded different aspects of belief updating. Participants
completed a novel perceptual learning task while electroencephalography was recorded. Participants learned the
mapping between the contrast of a dynamic visual stimulus and a monetary reward and updated their beliefs
about a target contrast on each trial. A Bayesian computational model was formulated to estimate belief states
at each trial and was used to quantify the following two variables: belief update size and belief uncertainty. Robust
single-trial regression was used to assess how these model-derived variables were related to the amplitudes of
the P3 and the stimulus-preceding negativity (SPN), respectively. Results showed a positive relationship between
belief update size and P3 amplitude at one fronto-central electrode, and a negative relationship between SPN
amplitude and belief uncertainty at a left central and a right parietal electrode. These results provide evidence that
belief update size and belief uncertainty have distinct neural signatures that can be tracked in single trials in
specific ERP components. This, in turn, provides evidence that the cognitive mechanisms underlying belief
updating in humans can be described well within a Bayesian framework.
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Introduction
In an uncertain and dynamically changing world, sur-

vival depends upon having accurate beliefs about the

environment. The more accurately an agent’s beliefs pre-
dict environmental contingencies such as threats from
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Significance Statement

Recent theories propose that a central function of the brain is belief updating, the process by which internal
models of the environment are revised. However, despite strong implications for cognition, the neural
correlates of belief updating remain poorly understood. This study combined computational modeling with
analysis of the event-related potential (ERP) to investigate neural signals, which systematically reflect belief
updating in each trial. We found that two ERP components, P3 and stimulus-preceding negativity,
respectively encoded belief update size and belief uncertainty. Our results shed light on the implementation
of belief updating in the brain, and further demonstrate that computational modeling of cognition in ERP
research can account for variability in neural signals, which has often been dismissed as noise.
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predators or the availability of food, the more effectively
the agent can plan its actions (Gläscher et al., 2010;
Wunderlich et al., 2012). In particular, where environmen-
tal contingencies are unknown or nonstationary, an agent
should constantly update beliefs in order to produce
adaptive behavior (Behrens et al., 2007). Belief updating
has generally been studied within a Bayesian framework
(Nassar et al., 2010; Stern et al., 2010), wherein beliefs are
described by probability distributions over possible states
of the world. Bayesian belief updating is captured by the
transformation of prior beliefs into posterior beliefs after
new information is observed (Knill and Pouget, 2004;
Courville et al., 2006).

Recent theories propose that belief updating may be a
general principle underlying neural functioning, not merely
an adaptive feature of cognition (Fiorillo, 2008, 2012;
Friston, 2010). This hypothesis has strong implications for
the understanding of human cognition (Bubic et al., 2010;
Schwartenbeck et al., 2013). However, while general
computational principles of belief updating are well un-
derstood, details of the mechanisms by which belief up-
dating is performed in the human brain remain unclear. In
addition, some recent research has suggested that the
ability of decision makers to update beliefs in a Bayes-
optimal fashion may depend on the complexity of the
decision situation and on the availability of heuristic alter-
natives to Bayesian updating (Achtziger et al., 2014,
2015). The present study addressed these questions by
comparing Bayesian and heuristic accounts of belief up-
dating, and by assessing how Bayesian belief updating
was associated with two event-related potential (ERP)
components typically linked with prediction and learning:
the P3 and the stimulus-preceding negativity (SPN).

These components are implicated in belief updating by
their association with learning and prediction. The P3 is a
positive ERP component, the amplitude of which indexes
the information content or surprise of an eliciting stimulus
(Sutton et al., 1967; Mars et al., 2008). Under the context-
updating hypothesis, P3 amplitude is thought to reflect
the updating of internal schemata representing stimulus
context (Donchin and Coles, 1988). These functions are
broadly compatible with belief updating in the Bayesian
sense of the term (Kopp, 2008). Furthermore, Mars et al.
(2008) hypothesized that a fronto-central subcomponent
of the P3 (the P3a; Polich, 2007) encodes belief update
size. The present study explicitly tested this hypothesis.

The SPN is a negative-going slow wave elicited by
stimulus anticipation (Brunia, 1988). SPN amplitude in-

creases prior to stimuli delivering response reinforcement,
both for reward (Masaki et al., 2010) and for instructive
feedback (Morís et al., 2013), and covaries with the pre-
dictability and expected information of feedback (Kotani
et al., 2003; Catena et al., 2012). The present study inves-
tigated whether SPN amplitude was related to belief un-
certainty prior to updating.

We recorded the electroencephalogram (EEG) from par-
ticipants performing a perceptual learning task with mon-
etary feedback and used a Bayesian framework to
estimate participants’ beliefs at each trial. Model-derived
variables related to belief updating were then used to
regress single-trial variations in ERP components (Bénar
et al., 2007; Mars et al., 2008; van Maanen et al., 2011;
Ostwald et al., 2012; Lieder et al., 2013; Kolossa et al.,
2015).

Materials and Methods
Participants

Participants were 18 right-handed individuals with nor-
mal or corrected-to-normal visual acuity. Human subjects
were recruited from among the staff and students of The
University of Melbourne. The exclusion criterion was a
medical history of any neurological disorder, including
migraine and epilepsy. Informed consent was acquired
from all participants in accordance with the Declaration of
Helsinki, and approval was obtained from The University
of Melbourne Human Research Ethics Committee.

One participant was excluded from analysis because of
poor EEG signal quality. A second participant was ex-
cluded from analysis after a postexperiment debriefing
revealed inadequate task understanding. For two other
participants, computer error resulted in incomplete acqui-
sition of EEG data. For these participants, behavioral
analyses are reported only for task blocks in which com-
plete EEG data were available (8 and 7 of 15 blocks,
respectively). Final analyses were performed on data ac-
quired from 16 participants (mean age, 22.63 years; age
range, 18-29 years; 6 females).

In order to incentivize task performance, participants
received monetary compensation for participation that
was proportional to task winnings. Actual remuneration
values were within the range of AUD $20-30 (mean remu-
neration, AUD $25.89; SD, AUD $4.36).

Behavioral paradigm
Participants performed a novel perceptual learning task

while EEG data were recorded. The task required partic-
ipants to learn an arbitrary mapping between the contrast
of a stimulus and monetary reward. This mapping was
constant within each block, but differed between blocks.
During each block, participants performed a number of
consecutive trials in which they aimed to choose the
contrast associated with the maximum reward (target
contrast). The stimulus was a grayscale checkerboard
stimulus (Fig. 1A), which was presented on each trial for a
duration of up to 30 s. During this time, the contrast of the
checkerboard changed linearly (Fig. 1B), and the partici-
pant could at any time choose the contrast displayed on
screen by pressing a button with the right index finger.
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After choosing a contrast, participants received the re-
ward associated with the chosen contrast. Crucially, the
amount of reward that participants received for a given
contrast was determined by the proximity of the chosen
contrast to the maximally rewarding target contrast. Con-
cretely, reward was assigned as a function of the differ-
ence between the chosen and target contrasts, and
reward per trial was in the range 0–25 cents (rounded to
the nearest integer value). The mapping (Fig. 1C) was a
symmetrical triangular function with a center of 0% con-
trast difference, a half-width of 15% contrast difference,
and a height of 25 cents. As such, the received reward

was maximal when the participant responded at the target
contrast, and decreased monotonically with increasing
difference of chosen contrast from the target. The reward
was 0 for responses at �15% distance. This relationship
is formally expressed in Equation (1):

R�rt, xt� � �25 �
�5�� rt � xt���

3
, �rt � xt� � 15

0, �rt � xt� � 15
(1)

where t is the trial number, rt is the target contrast on trial
t, and xt is the participant’s chosen contrast on trial t.

Figure 1. A, Following a self-paced button press, a checkerboard stimulus was presented whose contrast changed linearly. The participant could
at any time select the contrast displayed on screen by pressing a button with the right index finger. The trial continued until a button was pressed
or until stimulus duration exceeded 30 s. Following the participant’s choice, the selected contrast remained on screen for 2 s, after which time the
monetary reward associated with the chosen contrast was displayed for 2.5 s. In the event that no button was pressed within 30 s, feedback was
a message reminding the participant of the task instructions. B, Two demonstrative examples of stimulus contrast as a function of elapsed time.
Example trial 1 (blue) has an initial contrast of 63%, is initially increasing, and has a half-cycle period of 9 s. Example trial 2 (red) has an initial
contrast of 39%, is initially decreasing, and has a half-cycle period of 6 s. The checkerboard stimulus phase reversed at a rate of 12 Hz. C,
Functional mapping between the contrast difference from target and monetary reward. The mapping was a symmetrical triangular function with
a center of 0% contrast difference, a half-width of 15% contrast difference, and a height of 25 cents. As such, the received reward was maximal
when the participant responded at the target contrast and decreased linearly with increasing difference of chosen contrast from the target. The
reward was 0 for responses at �15% distance. Feedback received was rounded to the nearest whole-cent value.
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By choosing different contrasts and obtaining associ-
ated rewards over a number of trials, participants were
able learn the target contrast and thereby maximize their
winnings. One important feature of the task was that
participants were never informed of the exact contrast
value they had chosen. As a result, there remained at all
times a degree of uncertainty concerning contrast to
which the observed feedback pertained.

The initial contrast and initial direction of contrast
change were randomly determined on each trial using a
Matlab random number generator with unique seeds for
each participant. The half-cycle period, defined as the
time required for the contrast of the checkerboard to
change from one extreme to the other, was likewise ran-
domly selected as 6, 7, 8, or 9 s on each trial in order to
nullify the potential confound of learning based on tem-
poral cues. The checkerboard phase reversed at a rate of
12 Hz, giving it a flickering appearance.

Prior to testing, participants received training to instruct
them in the shape of the reward function and were in-
formed that each block would have a different target in the
range of 10-100%. Participants then completed 15 blocks
of the task, each with a different target contrast, over
approximately 60 min. Each block continued until the
cumulative checkerboard presentation duration for the
block exceeded 3 min, or until 25 trials were completed,
whichever occurred sooner. As a result, the number of
trials per block varied (mean, 18.46 trials; SD, 3.68 trials).
This ensured that participants could not rush through the
task, and that it was not possible to trade off experiment
duration against monetary winnings. Finally, target con-
trasts were assigned subject to the constraint that the
reward available for lowest and highest contrasts must be
0. In practice, because of the width of the reward distri-
bution (Fig. 1), this meant that target contrasts were as-
signed on the interval [25, 85] rather than the interval [10,
100]. This ensured that the total reward available in each
block was equivalent, and that feedback was always
equally interpretable. Participants were not informed of
this manipulation.

Stimuli were presented using a Sony Trinitron G420
CRT monitor at a framerate of 120 Hz. During task per-
formance, participants were seated comfortably in a dark-
ened room, using a chin rest at a distance of 77 cm from
the screen. Checkerboard stimuli were 560 � 560 pixels
in size, measuring 19.5 � 19.5 cm on the screen and
subtending a visual angle of 14.43° by 14.43°. Responses
were recorded using a five-button Cedrus Response Box.

EEG data acquisition
The electroencephalogram was recorded from 64 Ag/
AgCl active scalp electrodes located according to the
International 10-20 system. Electrodes interfaced with a
BioSemi ActiveTwo system running ActiView acquisition
software, and used an implicit reference during recording.
Data were linearly detrended and re-referenced off-line to
an average of mastoid electrodes. The vertical and hori-
zontal EOGs were recorded from infraorbital electrodes
that were horizontally adjacent to the left eye. The EEG
was recorded at a sampling rate of 512 Hz. Using a linear

finite impulse response filter, data were high-pass filtered
at 0.1 Hz, low-pass filtered at 70 Hz, and notch filtered at
50 Hz to remove background electrical noise. Data were
analyzed in epochs consisting of data from 1500 ms
before to 1500 ms after the presentation of monetary
feedback.

During preprocessing, data were first manually
screened to exclude epochs contaminated by skin poten-
tial or muscle artifacts. Poor-quality data channels were
then identified visually and corrected using the spline
interpolation routine as implemented by the EEGLAB
processing toolbox (Delorme and Makeig, 2004). An
independent-components analysis, as implemented in the
EEGLAB toolbox, was performed on the resulting dataset
to identify and remove components related to eye move-
ments and eye-blink artifacts. A final impartial artifact
screening procedure was performed to exclude from
analysis all epochs in which maximum/minimum ampli-
tudes exceeded �500 �V. Finally, a standard current
source density (CSD) analysis was conducted on ep-
oched EEG data for each of the 64 electrode sites using
the CSD toolbox (version 1.1; Kayser and Tenke, 2006).
This analysis calculates the spatial second derivative of
voltage distribution over the scalp, and is a commonly
applied procedure in the P3 and SPN literature (Gaeta
et al., 2003; Catena et al., 2012). Spatial filters, such as
CSD, are recommended for single-trial EEG analysis be-
cause of their ability to extract estimates of activity that
are unique to each electrode, which increases the signal-
to-noise ratio of individual trial CSD-ERPs, thereby aug-
menting the statistical power of analysis (Blankertz et al.,
2008).

Single-trial CSD-ERP calculation
Single-trial P3 amplitudes were calculated at the following
four electrodes typically investigated in condition-based
P3 ERP research: FCz, Cz, CPz, and Pz (Mecklinger and
Ullsperger, 1993; Troche et al., 2009). These electrodes
were chosen to allow investigation of the effects of belief
update on the topographically distinct P3a (fronto-central)
and P3b (parietal) subcomponents of the P3 (for review of
P3 subcomponents, see Polich, 2007).

For each electrode, P3 amplitude was calculated as the
maximum voltage in the window from 300 to 450 ms after
feedback presentation. This window was chosen accord-
ing to a consensus estimate of latency of the peak of the
P3 (Polich, 2007) and accounted for trial-to-trial variability
in P3 peak latency. Voltages at each electrode were base-
line corrected to the mean voltage within the period from
0 to 200 ms prefeedback.

Single-trial SPN amplitudes were calculated at 10 elec-
trodes typically investigated in condition-based SPN ERP
studies: F3, F4, C3, C4, T7, T8, P3, P4, O1, and O2 (Kotani
et al., 2003). This allowed the investigation of the relation-
ship between belief uncertainty and SPN amplitude at
bilateral frontal, central, temporal, parietal, and occipital
electrodes. For each electrode, SPN amplitude was cal-
culated as the mean voltage in the window from 0 to 500
ms prior to the presentation of feedback. This window
was longer than that used in some previous studies (Ko-
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tani et al., 2003; Masaki et al., 2010; Catena et al., 2012),
but this was considered necessary to stabilize the mea-
surement volatility associated with the calculation of SPN
amplitudes in single trials rather than from averaged
waveforms. Voltages were baseline corrected at each
electrode to the mean voltage within the period from 1300
to 1500 ms prefeedback.

Overview of behavioral models
We estimated two competing behavioral models: an unbiased
updating model and a win-stay lose-shift (WSLS) heuristic
model. The updating model assumed that participants main-
tained a belief distribution over the entire range of possible
contrasts and updated this distribution as feedback provided
new information on each trial. By contrast, the WSLS model
assumed that, rather than maintaining a full belief distribution
across contrasts, choices exhibited a one-trial memory such
that participants tried to repeat the choice of the previous trial if
it had resulted in any reward, and shifted randomly to a new
contrast otherwise. Both models are formally specified below.

Parameters were estimated for each participant with
maximum likelihood estimation using the interior point
algorithm as implemented in MATLAB (MathWorks). Stan-
dard statistical model comparison tools were used to
identify which model provided the best account of ob-
served choices. The best-fitting model from this compar-
ison was used in subsequent analyses of ERP results.

Unbiased updating model
For the unbiased updating model, a variant of a Bayesian
grid estimator (Moravec, 1988) was used to obtain esti-
mates of participants’ belief uncertainty and belief update
size on each trial. In general terms, the model made a
probabilistic estimate on each trial of participants’ beliefs
regarding the level of the target contrast. These estimates
could then be used to quantify (1) the degree of belief
uncertainty in any given trial and (2) how beliefs changed
from trial to trial as new feedback information was re-
ceived.

Structurally, the model describes participants’ prior be-
liefs at each trial t by a probability mass function (PMF) �t

over a contrast space divided into J discrete bins 1, 2, 3,
. . . J, such that the value of the PMF at each bin j, �t(j),
represented the subjective probability that the target con-
trast rt fell within bin j on trial t. Bins had a width of 0.61%
contrast, which was chosen as the largest value sufficient
to resolve different monetary feedback values. As a result,
the belief distribution contained J � 148 contrast bins on
the interval [10, 100]. At the beginning of each block, this
distribution was initialized according to a discrete uniform
distribution, reflecting participants’ a priori uncertainty
regarding the target contrast. Use of an uninformative
starting prior is consistent with the modeling protocols of
similar studies (Mars et al., 2008; Ostwald et al., 2012).
Except for transitions between one block and the next,
beliefs were considered to be updated sequentially, such
that the posterior distribution of trial t was the prior dis-
tribution for trial t � 1.

For each trial t, participants observed the feedback ft
after the choice of contrast bin xt, which was determined
according to the feedback mapping function R specified

by Equation (1). Upon receipt of monetary feedback, the
prior �t was updated for each contrast bin j according to
Bayes’ rule, as follows:

�t	1(j) �
�t(j)Pr �ft, xt�rt � j)

Pr (ft, xt)
(2)

The left-hand side of Equation (2) is the value of the
posterior belief distribution for bin j, calculated by multi-
plying the participant’s prior belief that the target contrast
fell within bin j, �t(j) by the likelihood of observing the
choice/feedback pair if the target were in bin j, Pr(ft, xt|r �
j), and dividing by the marginal likelihood of the update
Pr(ft, xt).

Importantly, in the task used in the present study, par-
ticipants did not possess perfect knowledge of which
contrast they had chosen (e.g., if the true value of a
participant’s chosen contrast was 50%, the participant
might know only that he or she had chosen some contrast
between 40% and 60%). To account for this response
uncertainty, the likelihood Pr(ft, xt|r � j) in Equation (2) was
expressed as a probability-weighted sum over all con-
trasts the participant might have believed he or she had
chosen. As such, the likelihood was considered not at a
single contrast value but over the set of all candidate
contrast bins J�, J� � J, as follows:

Pr �ft, xt�rt � j) � �J � �Pr �rt � j�ft, xj*�Pr �xt � xj*�� (3)

For each candidate contrast j� in the set J�, the prob-
ability Pr(r�j|ft, xj�) was equal to 1 if it was logically pos-
sible under the task feedback mapping for the target
contrast r to belong to bin j if feedback ft was observed
after a choice of contrast xj�, and was 0 otherwise. That is:

Pr �r � j�ft, xj*� � �1, R(rt, xj*) � ft

0, R(rt, xj*) 
 ft
(4)

Each candidate contrast likelihood was then weighted
by the subjective probability Pr(xt � xj�) that the chosen
contrast xt was equal to the candidate contrast xj�. This
subjective probability reflects participants’ response un-
certainty and was calculated as the function G0, a 0 mean
Gaussian function of the contrast difference between the
true chosen contrast xt and the candidate contrast xj�, as
follows:

Pr �xt � xj*� � G0�xt, xj*, �� � 1

�	2�
e�

(xt � xj*)
2

2�
2 (5)

The SD � of the distribution function reflects the degree
of response uncertainty, such that greater values of �
result in more weight being given to candidate contrasts
at a greater distance from the true chosen contrast. In the
case of 0 response uncertainty, Equation (5) reduces to a
Dirac  function. Given Equations (3) and (5), Equation (2)
can be rewritten:
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�t	1(j) �

�t(j) � J*
Pr �rt � j�ft, xj*�
1

�	2�
e�

(xt � xj*)
2

2�
2 �

Pr (ft, xt)
(6)

For an intuitive understanding of this model parameter-
ization, consider the case of a participant who has perfect
knowledge of exactly which contrast he or she has cho-
sen. In this case, � � 0 and Pr(xt � xj�) is equal to 1 where
xj� � xt, and 0 elsewhere. In this case, the likelihood in
Equation (3) is calculated exclusively on the basis of the
true chosen contrast, and the participant is able to make
very precise inferences from the observed feedback. In
the present study, it was considered highly unlikely that
participants had perfect knowledge of their chosen con-
trast. By allowing � to vary, the model allows that partic-
ipants consider a range of alternative hypotheses
concerning the chosen contrast when updating their be-
liefs. The parameter � was permitted to vary between
participants when fitting the unbiased updating model.

To implement this model, we made the further assump-
tion that participants’ choices were determined by beliefs,
such that contrast bins with a higher probability of con-
taining the target contrast had a higher probability of
being chosen, subject to the response uncertainty during
choice. Formally, the PMF for contrast choices over the
set of contrast bins J was determined by convolving the
prior belief distribution �t by the response uncertainty
function G0 over the set of contrast bins J, as follows:

Pr �xt� �
(�t*G0)[J]

k
(7)

where k is a normalization constant ensuring that
�Pr(xt) � 1.

As an illustration of how this model operates, we can
assess the effects on belief of receiving feedback of f1 �
20 cents after a choice of x1 � 50% contrast on trial 1
(t � 1). For the sake of simplicity, rather than enumerating
effects across the entire belief distribution, we consider
the effects of observing this feedback on one contrast bin
of the belief distribution centered around 60.2% contrast
(j � 83). Since we are considering the first trial of a block,
prior belief probability for this contrast �1 (83) � 1 / J �
0.007. If we assume that the perceptual uncertainty pa-
rameter � is equal to 15, then, by Equation (3), the likeli-
hood Pr(20c, 50%|r � 60.2%) is equal to 0.026. In order to
calculate the posterior probability, we multiply the likeli-
hood 0.026 by the prior belief probability 0.007 and divide
by the marginal likelihood to normalize, giving �2 (83) �
0.013. By calculating the ratio of posterior and prior, we
observe that the participant’s subjective belief that the
target contrast falls within this bin has nearly doubled in
strength as a result of the information provided by feed-
back: �2�j� / �1�j� � 0.013 / 0.007 � 1.86.

Win-stay lose-switch heuristic model
Unlike the unbiased updating model, the WSLS model
does not assume that participants maintain a belief dis-
tribution over the entire range of contrasts. Instead, this
model predicted that participants’ behavior on a given

trial was a function of whether or not they had received
reinforcement on the preceding trial (Robbins, 1952). Spe-
cifically, the model assumed that participants attempted
to repeat the contrast choice of the previous trial if they
had received any monetary reward on the previous trial
(win), subject to response uncertainty, or shifted randomly
to a new contrast if they had not received monetary
reward (loss) or at the start of a new block. This gives the
following choice probability function:

Pr �xt � j� � � ((j � xt�1)*G0)[J]
k

, ft�1 � 0

1
J

, otherwise
(8)

where k is a normalization constant. Equation (8) imple-
ments the win case with the convolution of the 0 mean
Gaussian response uncertainty function given in Equation
(5) with the Dirac delta function , which is equal to 1 at
the contrast bin chosen in the previous trial contrast and
0 elsewhere. This allows for the WSLS model to account
for response uncertainty in a fashion similar to that of the
unbiased updating model, thereby ensuring that pre-
dicted choice probabilities are comparable across the two
models.

Calculation of belief updating variables
For the unbiased updating model, which assumed that
participants updated a belief distribution across all con-
trasts, estimations of subjective belief distributions could
be used to calculate the following three variables of inter-
est on each trial: belief uncertainty prior to the receipt of
feedback; postfeedback belief update size; and postfeed-
back surprise (Mars et al., 2008).

Belief uncertainty was calculated as Shannon entropy
(Shannon, 1948) over contrast bins of the prior distribu-
tion, as follows:

H��t� � � �
J

�t(j)log 2�t(j) (9)

Shannon entropy was used as an uncertainty metric
because the entropy H of a probability distribution repre-
sents the degree of uncertainty coded by that set of
probabilities. The entropy of a distribution is equal to 0
only in the case of complete certainty, when all probabil-
ities but one are 0. Conversely, the entropy of a distribu-
tion is maximal when all probabilities have an equal value,
as in a uniform distribution. In the present study, there-
fore, higher entropy values of the belief distribution re-
flected greater levels of belief uncertainty.

Belief update size was calculated as the mutual infor-
mation of prior and feedback. This quantity represents the
degree to which uncertainty is resolved in the transforma-
tion from prior to posterior probabilities, and corresponds
to the information content (I) of feedback: the more infor-
mative feedback is, the greater the reduction in uncer-
tainty from prior to posterior beliefs. Accordingly, belief
update size was calculated as the difference in entropy
between prior and posterior beliefs, as follows:
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I��t ;xt, ft� � H��t� � H��t�xt, ft) � H��t� � H(�t	1) (10)

This value was calculated for each trial and provided a
model-based estimate of the degree to which feedback
was used by participants to update their beliefs regarding
the location of the target contrast in contrast space.
Larger values of I indicate greater resolution of uncer-
tainty, and therefore larger belief updates.

In addition, we note that in the literature, belief update
size is sometimes also measured by a metric termed
Bayesian surprise (Baldi and Itti, 2010; Ostwald et al.,
2012), which can be calculated as the Kullback–Leibler
divergence of prior and posterior. In order to allow com-
parison between the present study and previous research,
Bayesian surprise, denoted IKL (Kullback–Leibler diver-
gence), was also calculated as an alternative measure of
belief update size, as follows:

IKL��t, �t	1� � �
J


�t�j�ln � �t�j�

�t	1�j�
� (11)

Finally, we calculated feedback surprise S, a measure
of the improbability of observing a particular feedback
value given a certain contrast choice under certain beliefs
(Shannon, 1948). Formally, this was computed as the
negative logarithm of the probability of observing a certain
feedback value ft given the prefeedback belief distribution
�t, and the chosen contrast value xt:

S��t, ft, xt� � � log 2Pr (ft|xt, �t) (12)

It has previously been shown that surprise was en-
coded in the amplitude of the P3 at parietal electrodes in
a serial reaction time task (Mars et al., 2008), and this
quantity was therefore calculated in order to allow us to
dissociate any observed effects of belief updating from
effects of surprise. Importantly, while there is a superficial
conceptual resemblance between belief update size and
surprise, the two quantities are mathematically distinct
(Baldi and Itti, 2010). Feedback surprise relates to the

probability of occurrence of a particular feedback value; it
is calculated as a function of the prior predictive distribu-
tion over possible observations. By contrast, belief updat-
ing relates to the degree to which feedback causes beliefs
to be modified, and is calculated as a function of the prior
and posterior distributions over parameters. Moreover, it
has been shown that the two quantities have distinct
neural substrates, with belief updating encoded in anterior
cingulate cortex (ACC) and surprise encoded in posterior
parietal cortex (O’Reilly et al., 2013). Furthermore, from a
statistical perspective, an important difference between
surprise and belief updating is that belief updating is
calculated as the distance measure between prior and
posterior belief distributions, whereas surprise is calcu-
lated only at a single point in the prior distribution.

Single-trial regression analysis of belief updating
Robust single-trial multiple regression analyses were
used to investigate (1) the effect of feedback reward,
feedback surprise, and belief update size on the ampli-
tude of the post-feedback P3 component; and (2) the
effect of belief uncertainty on the amplitude of the pre-
feedback SPN. To account for individual variability in the
amplitude of ERP components, both P3 and SPN ampli-
tudes were normalized on an individual-participant level
prior to regression analysis. To account for heteroscedas-
ticity in the relationship between model-derived belief
variables and single-trial ERP amplitude estimates, robust
(weighted least squares) linear regression analyses were
used. For all ERP analyses, regressions were run sepa-
rately for each participant at each electrode, and resulting
� coefficients were subjected to Bonferroni-corrected
single-sample t tests in order to determine whether the
effect of each predictor significantly different from 0
across participants.

Results
Behavioral task
Table 1 presents an overview of all statistical analyses
reported. Across participants, responses became more

Table 1. Summary of statistical analyses

Data structure Type of test Observed power
a Normally distributed Single-sample t test 1.0
b Model likelihoods BIC Not applicable
c Normally distributed Single-sample t test 1.0
d Normally distributed Single-sample t test 0.54
e Normally distributed Single-sample t test 0.65
f Normally distributed Single-sample t test 0.06
g Normally distributed Single-sample t test 1.0
h Normally distributed Pearson correlation 0.99
i Normally distributed Single-sample t test 0.95
j Normally distributed Single-sample t test 1.0
k Normally distributed Repeated-measures ANOVA 0.77
l Normally distributed Repeated-measures ANOVA 0.08
m Normally distributed Repeated-measures ANOVA 0.13
n Normally distributed Single-sample t test 0.31
o Normally distributed Single-sample t test 0.97
p Normally distributed Single-sample t test 0.98
q Normally distributed Single-sample t test 1.0
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precise with increasing within-block trial number (mean
� � �0.65, t(15) � �9.66, p � 0.00000008a), indicating
acceptable task performance (Fig. 2). The mean absolute
difference between the chosen contrast and the target
contrast in the final trial of blocks was 9.24% (SD, 8.48%).
This demonstrates that, while participants achieved pro-
ficiency on the task, their performance did not reach an
absolute ceiling before block termination.

Model comparison
We used standard model comparison techniques in order
to determine which of the two computational models
described above provided the best account of partici-
pants’ choices. Table 2 presents Bayesian information
criterion (BIC) values for the unbiased updating and WSLS
models. Use of BIC allows us to identify models that
account for data in a parsimonious way by balancing
measures of parsimony (number of parameters) against
measures of goodness-of-fit (log likelihood).

It can be seen that the unbiased updating model pro-
vided the best overall account of participants’ choicesb.
This model assumed that participants maintained a com-
plete belief distribution over the contrast space and that
belief updates were unbiased by the direction of contrast
movement at the time of choice. Furthermore, examina-
tion of model fits for individual participants using
participant-specific BIC values revealed that the unbiased
updating model provided the best account of choices for
a clear majority of participants (Table 2, N best fit column).

As a result, all ERP analyses made use of belief variables
calculated from the unbiased updating model.

Computational model
Across participants, pretrial belief uncertainty, as quanti-
fied by the unbiased updating model, was found to sig-
nificantly predict choice accuracy on the upcoming trial
(mean � � 5.71, t(15) � 11.74, p � 0.000000006c. More-
over, model-estimated belief uncertainty predicted choice
accuracy even after accounting for the effects of the
following three linear and nonlinear trial number regres-
sors: a linear term, a quadratic term, and a cubic term. In
this analysis, we found significant effects for the quadratic
trial number term (mean � � 0.12, t(15) � 2.15, p � 0.048d)
and the cubic trial number term (mean � � �0.004, t(15) �
�2.44, p � 0.03e), but not for the linear effect of trial
number (mean � � �0.28, t(15) � �0.42, p � 0.68f).
However, even when accounting for these effects of trial
number, the linear relationship between model-estimated
belief uncertainty and choice accuracy was still strong
(mean � � 9.75, t(15) � 6.68, p � 0.0000007g). This result
indicates that belief uncertainty was predictive of choice
accuracy even when linear and nonlinear trial-by-trial
learning effects were accounted for, suggesting that the
task model fit the data well and validating the use of
variables derived from this model in single-trial regression
analyses. Figure 3 presents descriptive statistics for each
of the calculated belief variables as a function of trial
number.

In the task model, participants’ response uncertainty
was captured by the parameter �, the SD of the Gaussian
noise affecting the marginal likelihood of belief updates.
Across participants, estimates of � had a mean value of
12.99 (SD, 4.42), and fit values of � were positively cor-
related with participants’ overall task performance, as
measured by the average deviance between chosen and
target contrasts (r(16) � 0.86, p � 0.00002h). Individual
differences in � were therefore behaviorally relevant, such
that individuals with less response uncertainty tended to
respond closer to the target contrast on average. This
further validates our use of the Bayesian grid estimator to
represent participants’ beliefs.

Single-trial regression analysis
P3
Single-trial regression analysis found a positive effect of
belief update size (formally, the feedback-related reduc-
tion in entropy of the belief distribution approximated by a
Bayesian grid estimator) on P3 amplitude at electrode FCz
(mean � � 0.27, t(15) � 3.33, p � 0.005i, Bonferroni
corrected; Fig. 4). There was no effect of belief update
size on P3 amplitude at electrodes Cz, CPz, or Pz, and no
significant effect of reward magnitude or feedback sur-
prise on P3 amplitude at any electrode. This indicates that

Figure 2. Mean accuracy as a function of within-block trial
number across participants. Accuracy is presented as the abso-
lute difference of chosen and target contrasts, where lower
differences indicate better task performance. Error bars repre-
sent the SEM. Note that the number of trials per block varied
across blocks and participants, and as a result some participants
did not complete �19 trials in any block. This confound limited
the interpretability of accuracy data for trial numbers �20, and
the final data point of the series therefore represents mean
accuracy across trials 19–25 for each participant.

Table 2. Summary of behavioral model fits for 4417 choices by 16 participants

Model Parameters per participant Parameters Belief distribution Log-likelihood BIC N best fit
Unbiased updating 1 � Yes �20190 40515 11
Win-stay/lose-shift 1 � No �20350 40834 5
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single-trial amplitudes of the fronto-central P3a directly
indexed model-derived measures of belief update size.
Figure 4B displays the average voltage scalp distribution,
and Figure 4C illustrates the difference map for large and
small belief updates during the P3 time window. Table 3
displays a correlation matrix of the predictor variables
included in the P3 regression analysis. Note that P3 re-
gression analyses included either I or IKL as measures of
belief update size, but never both.

As illustrated by Figure 3C, there was a significant
tendency for belief update size I to reduce as the trial
number increased (mean Spearman correlation across
participants � �0.67, t(15) � �17.91, p � 2 � 10�11j). As
a result, we considered the possibility that the single-trial
relationship between P3 amplitude and belief update size
might have been confounded by an incidental effect of
trial number on P3 amplitude. In order to address this
possibility, we ran a control analysis in which trials were
partitioned according to both trial number and belief up-
date size. In this analysis, each trial was designated as an
“early-,” “middle-,” or “late stage” trial, corresponding
respectively to trial numbers 1–5, 6–10, and 11–15. Trials
were also designated as either “small” or “large” belief
updates according to a median split separately for each
participant. We then used 3 � 2 repeated-measures
ANOVA to assess separately the effects of trial number
(early, middle, late) and belief update size (small, large) on
mean P3 amplitudes at electrode FCz. Consistent with the
single-trial regression results presented above, ANOVA
results indicated a significant main effect of update
size, F(1,15) � 8.40, p � 0.01k, with large belief updates

(mean � 0.053 �V/cm2, SD � 0.017 �V/cm2) associated
with significantly larger P3 amplitudes than small belief
updates (mean � 0.049 �V/cm2, SD � 0.016 �V/cm2).
There was no main effect of trial number on P3 amplitude
(F(2,14) � 0.25, p � 0.78l), and no interaction between
belief update size and trial number (F(2,14) � 0.63, p �
0.55m). These results support the contention that fronto-
central P3 amplitude indexed belief update size, and sug-
gest that this effect was not confounded by any incidental
effects of trial number.

Interestingly, there was no relationship between belief
update size and P3 amplitude at any electrode when
belief update size was calculated as Bayesian surprise IKL

rather than mutual information I (mean � � 0.20, t(15) �
1.54, p � 0.14n). This appears to suggest that the ob-
served effects are specific to the mutual information for-
mulation of belief update size. Note that regression
analyses were each run with either I or IKL as measures of
belief update size, never both.

Across participants, the mean P3 peak latency at elec-
trode FCz was 338.43 ms (SD � 5.29 ms). There were no
effects of reward, belief update size, or surprise on P3
peak latency at any electrode assessed.

SPN
Single-trial regression analysis found a small but signifi-
cant negative effect of belief uncertainty (formally, the
entropy of the belief distribution approximated by a
Bayesian grid estimator) on SPN amplitude at electrodes
C3 (mean � � �0.06, t(15) � 3.56, p � 0.003°, Bonferroni
corrected; illustrated in Fig. 5) and P4 (mean � � �0.05,

Figure 3. Computational belief variables as a function of trial number. A, Belief entropy. B, Feedback surprise. C, Belief update size
measured as mutual information (see Eq. 14). D, Belief update size measured as Bayesian surprise (see Eq. 15). Note that the number
of trials per block varied across blocks and participants, and, as a result, some participants did not complete �19 trials in any block.
This confound limited the interpretability of computational belief variables for trial numbers �20, and the final data point of the each
series therefore represents a mean across trials 19–25 for each participant. Error bars represent the SEM.
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t(15) � 3.77, p � 0.002p, Bonferroni corrected). Note that
SPN regression analyses were run including belief uncer-
tainty as the sole predictor variable.

This result indicates that higher levels of belief uncer-
tainty were associated with smaller SPN components.
That is, the more certain participants were regarding the
location of the target contrast in contrast space, the
greater the amplitude of the SPN evoked in anticipation of
feedback stimuli. Figure 5B displays the average voltage
scalp distribution, and Figure 5C illustrates the difference
map for high and low uncertainty during the SPN time
window. There was no significant effect of belief uncer-
tainty on single-trial SPN amplitude at any other elec-

trode. However, as with belief update size, there was a
strong negative correlation between belief uncertainty and
trial number (mean Spearman correlation � �0.94, t(15) �
�115.20, p � 2 � 10�23q; Fig. 3A), as would be expected
in a task in which participants learned incrementally from
each trial. The strength of this relationship precluded a
factorial control analysis to dissociate the effects of belief
uncertainty and trial number on SPN amplitudes.

Discussion
This study combined single-trial analysis of ERPs with
computational modeling of belief. Our results showed that
two mathematically distinct belief variables—update size

Figure 4. P3 analysis. A, Median split waveforms for 200–1000 ms following visual presentation of feedback. The P3 regression
analysis window is indicated by the gray bar. ERP waveforms were low-pass filtered at 30 Hz for display purposes only. B, Mean
voltage topography during the P3 analysis window from 300 to 450 ms following visual presentation of feedback (time � 0). C,
Topography of the mean voltage difference between large and small belief update trials across participants during P3 analysis
window. A median split was used to divide trials into two bins for each participant, corresponding to large and small belief updates
according to model-derived estimates. This median split was for display purposes only and was not used in the main regression
analysis, which was based on single-trial amplitudes.

Table 3. Correlation matrix for predictors in P3 regression analysis

Reward Belief update size (I) Belief update size (IKL)
Reward 1
Belief update size (I) 0.22 (0.19) 1
Belief update size (IKL) �0.24 (0.12) 0.64 (0.16) 1
Surprise 0.45 (0.21) 0.22 (0.12) 0.05 (.14)

Data are presented as mean Spearman coefficient across participants (SD).
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and uncertainty—were encoded in distinct ERP compo-
nents in a perceptual learning task. The combination of
methods that we used linked the fine-grained information
contained in single-trial EEG data with model-based es-
timates of participants’ latent beliefs, which would have
been inaccessible to explicit testing. Our results suggest
that trial-by-trial variations in the P3 and SPN reflect
fundamental and distinct neural processes by which be-
liefs regarding the structure of the environment change
over time.

Participants performed a simple perceptual learning
task in which they learned a functional mapping between
stimulus contrast and monetary reward. The task was
both naturalistic and challenging: even with extensive
practice, participants’ performances did not reach a ceil-
ing, suggesting that participants continued to update be-
liefs throughout the experiment. We used a probabilistic
model, termed the unbiased updating model, to infer
participants’ beliefs at each trial from their choice history
and found that model-based estimates of belief uncer-
tainty predicted future choices well. The unbiased updat-
ing model gave better predictions of behavior than a

competing model assuming a win-stay/lose-switch
choice process in which participants chose on the basis
of reward received on the previous trial rather than updat-
ing a full belief distribution.

We used the unbiased updating model to quantify the
following three latent belief variables: belief uncertainty,
belief update size, and surprise (Mars et al., 2008; Baldi
and Itti, 2010; O’Reilly et al., 2013). We then investigated
how the estimates of belief of the model update size and
belief uncertainty were encoded in the P3 and SPN com-
ponents of the ERP, respectively.

At the fronto-central midline electrode FCz, we found a
significant positive relationship between postfeedback
belief update size and single-trial P3 amplitude. This in-
dicates that larger P3 amplitudes were observed in trials
where feedback caused larger belief updates. Variability
in single-trial P3 amplitude was best explained by regres-
sion using a model-derived estimate of belief update size
and could not be accounted for by alternative regressors
such as reward amount or feedback surprise. This is
consistent with the hypothesis that P3 amplitude reflects
a Bayesian belief-updating mechanism (Kopp, 2008; Mars

Figure 5. Stimulus-preceding negativity analysis. A, Median split waveforms for 0–1500 ms prior to the visual presentation of
feedback. The SPN regression analysis window from 0 to 500 ms preceding feedback is indicated by the gray bar. ERP waveforms
were low-pass filtered at 30 Hz for display purposes only. B, Mean voltage topography during SPN analysis window from 0 to 500
ms prior to visual presentation of feedback (time � 0). C, Topography of the mean voltage difference between high and low
uncertainty trials across participants during the SPN analysis window. A median split was used to divide trials into two bins for each
participant, corresponding to high and low belief uncertainty according to model-derived estimates. This median split was for display
purposes only and was not used in the main regression analysis, which was based on single-trial amplitudes.
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et al., 2008). This theory attributes variability in P3 ampli-
tude to the engagement of cognitive processes for revis-
ing internal models of the environment and predicts that
larger updates to beliefs will be associated with larger P3
amplitude. Our study, using a single-trial regression ap-
proach, allowed for a direct test of this hypothesis, and
our results provide broad support for the theory. In addi-
tion, we note that the observed association between be-
lief update size and P3 amplitude disappeared when
Bayesian surprise, rather than mutual information, was
used as a measure of belief update size. The reason for
this discrepancy is unclear, but may be related to differ-
ences in statistical power associated with the different
temporal dynamics of the two measures (Table 1, Fig. 3).
Other metrics, including a free-energy theoretical quantity
termed model adjustment, have also been used in the
ERP literature (Lieder et al., 2013). Future research should
seek to provide a unifying account of belief updating by
investigating circumstances under which these different
metrics make differing cognitive and behavioral predic-
tions.

The significant single-trial relationship between belief
update size and P3 amplitude was restricted to a fronto-
central midline electrode, with no evidence for a compa-
rable effect at centro-parietal midline electrodes. This
partition corresponds to a distinction drawn between the
following two subcomponents of the P3: the fronto-
central P3a and the centro-parietal P3b (Polich, 2007). In
the present study, the P3a, but not the P3b, was an index
of belief update size. In this regard, it is of particular
interest that a previous study by Mars et al. (2008) found
that feedback surprise, but not belief update size, was
encoded in the P3b subcomponent, leading the authors
to speculate that the P3a component may encode update
size but not surprise. This proposal received empirical
support from our findings. The observed results are
broadly consistent with recent research investigating
Bayesian single-trial properties of the P3 in a prediction
task without reinforcement (Kolossa et al., 2015). Further-
more, the dissociation between frontal encoding of belief
update size and parietal encoding of surprise is consistent
with evidence from functional magnetic resonance imag-
ing research. O’Reilly et al. (2013) measured brain activity
during a saccadic eye movement task, and found that,
whereas belief update size was encoded in ACC, surprise
was encoded in posterior parietal cortex. Convergent
methodologies, therefore, have shown that belief update
size is encoded in both ACC and in the fronto-central P3a
component of the ERP. Since the ACC has been pro-
posed as a possible source of the P3a (Volpe et al., 2007),
these results may be manifestations of the same under-
lying process. However, we note that since we did not use
a standard P3a paradigm with novel nontarget distrac-
tors, it is possible that the P3a component encoding belief
update size in the present study might also simply be
labeled an anterior P3. To date, this nomenclature re-
mains ambiguous (Luck, 2005; Polich, 2007).

A link between the P3 and belief updating has the
potential to unify a number of disparate experimental
findings. Larger P3 potentials are elicited by infrequent

stimuli (Sutton et al., 1965), novel stimuli (Friedman et al.,
2001), and stimuli imparting information (Sutton et al.,
1967). Since these manipulations each vary the extent to
which participants must revise an internal model of the
environment, belief updating might be considered a gen-
eral principle linking each of these observations. More-
over, the Bayesian perspective is broadly compatible with
context-updating theory, which proposes that P3 ampli-
tude reflects the revision of schemata concerning stimu-
lus context (Donchin and Coles, 1988). Prior beliefs in the
Bayesian sense are conceptual cognates of context sche-
mata, and belief updating equivalent to schema revision.
Of course, a Bayesian framework cannot account for all
manipulations that affect P3 amplitude (Kopp, 2008).
Other important manipulations include effects of stimulus
value (Begleiter et al., 1983; Sato et al., 2005) emotional
salience (Johnston et al., 1986), and target/nontarget sta-
tus (for review, see Squires et al., 1975). The triarchic
model of Johnson (1986) suggests that both the transmis-
sion of information (analogous to the effect of a Bayesian
belief update) and stimulus meaning contribute to the
amplitude of the P3. Since stimulus meaning was not
manipulated in the present study, we are unable to assess
how its effects might have interacted with observed ef-
fects of belief updating. Integrating these manipulations is
a task for future research.

The present study also observed a significant negative
relationship between belief uncertainty and prefeedback
SPN amplitude. At electrodes C3 and P4, larger SPN
components were observed in trials in which participants’
beliefs were more certain. The SPN has previously been
linked to the anticipation of feedback that provides re-
sponse reinforcement (Damen and Brunia, 1994). The left
central electrode C3 was situated over primary motor
cortical areas responsible for the right index finger button
press that indicated participants’ choices. The observed
association between uncertainty and SPN amplitude at
C3 may therefore reflect motor learning, since preparatory
neural activity in motor cortex is known to be associated
with rapid visuomotor learning (Muellbacher et al., 2001;
Paz et al., 2003). Likewise, encoding of belief uncertainty
at electrode P4 may reflect anticipatory prefeedback pro-
cessing, which is consistent with previous studies show-
ing involvement of parietal SPN in reward processing
(Kotani et al., 2003). However, we note that, whereas the
present study found a negative association between SPN
amplitude and uncertainty, one recent study (Catena
et al., 2012) found a positive effect at frontal electrodes.
Of course, it is problematic to compare frontal with central
and parietal SPN, since different regions are likely to be
recruited in different cognitive processes. Nevertheless,
an important difference between the present study and
that of Catena et al. (2012) pertains to the operationaliza-
tion of uncertainty. We used a task in which uncertainty
was reducible: with practice, participants could become
more certain about the contrast–reward mapping. By con-
trast, Catena et al. (2012) tested irreducible uncertainty by
varying cue–outcome association strength. The resultant
use of different cognitive processes may explain the dis-
crepancy between electrophysiological findings. Further-
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more, we note that the SPN is generally elicited only
during the period prior to the occurrence of a stimulus. As
such, our finding that SPN amplitude indexes uncertainty
is specific to the case of temporal anticipation and does
not necessarily fully define a general principle of the neu-
ral encoding of uncertainty. Future research should seek
to determine how belief uncertainty is encoded when
there is not a well defined future time at which uncertainty
will be resolved.

In the P3 analysis, an additional factorial control analy-
sis demonstrated that single-trial regression results were
unlikely to have been affected by the possible confound of
trial number. In the SPN analysis, by contrast, since a
relationship between trial number and belief uncertainty
was an inherent feature of the learning task used in the
present study, it was not possible to rule out a possible
mediating effect of trial number on the relationship be-
tween SPN amplitude and belief uncertainty. Further re-
search is required to determine whether the relationship
between SPN amplitude and belief uncertainty holds even
when uncertainty is not monotonically decreasing as a
function of trial number.

In the present study, our intention was not to give a
complete overview of the ERP correlates of feedback
processing, but rather to investigate the role in belief
updating of two particular ERP components (the P3 and
SPN) that have been implicated in belief updating by past
research. Indeed, the general neural response to feed-
back is likely to recruit many processes other than just
those associated with the P3 and SPN, and research
using different experimental tasks from the present study
has identified other ERP components involved in learning
from feedback. In particular, a large body of research
suggests the importance of the feedback-related negativ-
ity (FRN; Miltner et al., 1997). This component has been
strongly linked to the evaluation of feedback outcomes
(Yeung and Sanfey, 2004; Achtziger et al., 2015) and has
been theorized to index the magnitude of a reward pre-
diction error associated with reinforcement learning (Hol-
royd and Coles, 2002). Given this theory, in the present
study we would have expected the FRN to encode not the
size of a belief update, or the uncertainty of beliefs per se,
but the valence of feedback outcomes relative to partici-
pants’ expectations. This is conceptually a separate as-
pect of learning from the model-based definition of belief
updating used in the present study. Furthermore, a recent
review (Luft, 2014) noted that it is problematic to investi-
gate the FRN in tasks such as that used in the present
study, in which reward and performance feedback are
delivered concurrently. Since the task used in the present
study was not optimized for the investigation of the FRN
component, we chose to exclude the FRN from our
model-based single-trial regression analysis. Future re-
search should investigate the interaction of the FRN with
the ERP components identified in the present study by
making use of a belief-updating task in which reward and
performance feedback are orthogonal.

Finally, we note that while we assessed belief updating
within a Bayesian framework, there is evidence that hu-
mans also perform non-Bayesian belief updating in some

circumstances (Hogarth and Einhorn, 1992; Stern et al.,
2010). We do not make the strong claim that all neural
computations underlying perceptual learning take place
according to Bayesian principles; instead, it is likely that
the ability of decision makers to make use of Bayesian
updating is constrained by the complexity of the decision
situation and by the availability of heuristic alternatives to
Bayesian updating (Achtziger et al., 2014, 2015). How-
ever, the results of the present study show that a Bayes-
ian updating model outperformed a non-Bayesian
heuristic model for a relatively simple perceptual learning
task. Non-Bayesian belief updating may have distinct ERP
correlates in more complex environments, as suggested
by Achtziger et al. (2014, 2015), and further research is
required to reconcile these perspectives.

In summary, the present study provides evidence that
single-trial EEG data can be used to track the evolution of
latent states of belief in humans. Our results build an
empirical bridge between general theories of belief updat-
ing in cognition and a long tradition of research into the
functional significance of ERPs. More broadly, our find-
ings are a novel demonstration of the value and viability of
computational cognitive modeling in EEG research.
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