Further Analysis of ADVANCE

Acute Increases in Serum Creatinine After Starting Angiotensin-Converting Enzyme Inhibitor-Based Therapy and Effects of its Continuation on Major Clinical Outcomes in Type 2 Diabetes Mellitus

The ADVANCE Trial

Toshiaki Ohkuma,* Min Jun,* Anthony Rodgers, Mark E. Cooper, Paul Glasziou, Pavel Hamet, Stephen Harrap, Giuseppe Mancia, Michel Marre, Bruce Neal, Vlado Perkovic, Neil Poulter, Bryan Williams, Sophia Zoungas, John Chalmers,† Mark Woodward††; on behalf of the ADVANCE Collaborative Group

Abstract—Discontinuation of angiotensin-converting enzyme (ACE) inhibitor is recommended if patients experience ≥30% acute increase in serum creatinine after starting this therapy. However, the long-term effects of its continuation or discontinuation on major clinical outcomes after increases in serum creatinine are unclear. In the ADVANCE trial (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation), 11 140 diabetes mellitus patients were randomly assigned to perindopril-indapamide or placebo after a 6-week active run-in period. The current study included 11 066 participants with 2 serum creatinine measurements recorded before and during the active run-in period (3 weeks apart). Acute increase in creatinine was determined using these 2 measurements and classified into 4 groups: increases in serum creatinine of <10%, 10% to 19%, 20% to 29%, and ≥30%. The primary study outcome was the composite of major macrovascular events, new or worsening nephropathy, and all-cause mortality. An acute increase in serum creatinine was associated with an elevated risk of the primary outcome (P for trend <0.001). The hazard ratios were 1.11 (95% CI, 0.97–1.28) for those with an increase of 10% to 19%, 1.34 (1.07–1.66) for 20% to 29%, and 1.44 (1.15–1.81) for ≥30%, compared with <10%. However, there was no evidence of heterogeneity in the benefit of randomized treatment effects on the outcome across subgroups defined by acute serum creatinine increase (P for heterogeneity=0.94). Acute increases in serum creatinine after starting perindopril-indapamide were associated with greater risks of subsequent major clinical outcomes. However, the continuation of angiotensin-converting enzyme inhibitor-based therapy reduced the long-term risk of major clinical outcomes, irrespective of acute increase in creatinine. Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00145925. (Hypertension. 2019;73:84-91. DOI: 10.1161/HYPERTENSIONAHA.118.12060.) Online Data Supplement

Key Words: angiotensin-converting enzyme inhibitors ▪ cardiovascular diseases ▪ diabetes mellitus ▪ kidney diseases ▪ renin-angiotensin system

Inhibition of the renin-angiotensin system (RAS) confers significant cardiorenal protective benefits and is considered an important component of treatment in people at high risk of developing adverse cardiovascular and renal outcomes, including those with type 2 diabetes mellitus. However, treatment with RAS inhibitors is also associated with acute
increases in serum creatinine or a sudden decline in glomerular filtration rate, largely attributed to a RAS inhibition-induced decline in intraglomerular pressure.1,4–6 Thus discontinuation is recommended if patients experience ≥30% increase in serum creatinine.7 Cessation of RAS inhibitors in response to such elevations may have important consequences for subsequent cardiovascular and renal risk with any potential cardioenal protective effects from RAS inhibitors nullified.

There have been few studies assessing the relationship between RAS inhibition-induced acute changes in serum creatinine and longer-term clinical outcomes, and overall conclusions reached by prior studies have been conflicting. In addition, many of the prior studies were conducted in specific populations (eg, patients with left ventricular systolic dysfunction and heart failure),8–12 with limited generalizability to the broader population. Studies (n=406 to 143513) supporting these associations. Conversely, more recent studies have reported increased adverse cardiovascular and renal events associated with initial changes in serum creatinine or estimated glomerular filtration rate (eGFR).14,15 However, the long-term effects of continuation or discontinuation of that therapy on major cardiovascular and renal outcomes after increases in serum creatinine are unclear.

We evaluated the associations of acute increases in serum creatinine after starting an angiotensin-converting enzyme (ACE) inhibitor-based therapy, and the subsequent effects of its continuation or discontinuation, with major clinical outcomes using data from the ADVANCE trial (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation).

Methods
The authors declare that all supporting data are available within the article and its online-only Data Supplement.

Study Design and Population
ADVANCE was a 2x2 factorial randomized controlled trial evaluating the effects of blood pressure lowering and intensive blood glucose-lowering treatment on vascular outcomes in patients with type 2 diabetes mellitus. Detailed descriptions of the design have been published previously.6–10 In brief, 12877 potentially eligible participants entered a 6-week prerandomization active run-in period during which all patients received a fixed-dose combination of the ACE inhibitor perindopril (2 mg) and the diuretic indapamide (0.625 mg). In participants previously taking ACE inhibitors, ACE inhibitors other than perindopril were ceased and open-label perindopril (2 or 4 mg per day) was offered instead. All other treatments including other RAS inhibitor, Ang II (angiotensin II) receptor blockers, were continued at the discretion of the treating physician. Overall, a total of 11440 individuals with type 2 diabetes mellitus aged ≥55 years at risk of cardiovascular events (recruited from 215 centers in 20 countries) who adhered to, and tolerated, the 6-week perindopril-indapamide run-in therapy were randomized to a fixed-dose combination of perindopril (2 mg) and indapamide (0.625 mg) or matching placebo, and also to either a glarglide (modified release)-based intensive glucose control regimen aiming to achieve a hemoglobin A1c ≤6.5 %, or standard glucose control based on local guidelines. The dose of randomized perindopril and indapamide treatment was doubled to 4 and 1.25 mg, respectively, 3 months after randomization. Ethics approval was obtained from the institutional review board of each center, and all participants provided written informed consent.

Serum creatinine was measured (in μmol/L) before and during the active run-in period (3 weeks apart), 4 and 12 months after randomization, subsequent annual intervals and at the end of trial follow-up. Acute increases in serum creatinine were defined as the difference between the first 2 measurements, classified into 4 groups: <10%, 10% to 19%, 20% to 29%, and ≥30%. Only participants with these 2 measurements were included in these secondary analyses.

Study Outcomes and Follow-Up
The primary study outcome of interest was the composite of major macrovascular events (defined as the composite of nonfatal and fatal myocardial infarction, nonfatal and fatal stroke, or cardiovascular death), new or worsening nephropathy (defined as the development of macroalbuminuria, doubling of serum creatinine to a level of ≥200 μmol/L, requirement for renal-replacement therapy, or renal death) and all-cause mortality. Secondary outcomes included the individual components of the primary outcome: (1) major macrovascular events, (2) new or worsening nephropathy, and (3) all-cause mortality. Participants were followed from their visit at trial randomization until the earliest of the first study event, death or the end of follow-up (Figure 1). Study events recorded during the randomized treatment phase were reviewed and validated by an independent end point adjudication committee.

Statistical Analysis
Continuous variables are reported as means with SD for variables with approximately symmetrical distributions. Results for variables with skewed distributions are presented as median and interquartile interval and were transformed into natural logarithms before analysis. Linear trends across categories were tested by linear regression analysis and logistic regression analysis, as appropriate. Patient characteristics associated with acute elevations of serum creatinine over 3 weeks before randomization were assessed using multivariable linear regression models.

We described the time course of mean creatinine values graphically according to levels of acute increase in creatinine. Because some study participants had used ACE inhibitors before registering with ADVANCE, we also plotted this time course separately for those with and without prior ACE inhibitor use, as well as by randomized treatment.

Cox regression models were used to estimate hazard ratios and their corresponding 95% CIs relating the level of acute creatinine increase to outcomes. Models were adjusted for age, sex, and region of residence (Asia or other), duration of diabetes mellitus, history of macrovascular disease, current smoking, current alcohol consumption, body mass index, hemoglobin A1c, total cholesterol, triglyceride, eGFR (calculated using the CKD-EPI [Chronic Kidney Disease Epidemiology Collaboration] creatinine equation16), systolic blood pressure, urine albumin-to-creatinine ratio at registration, randomized blood pressure–lowering intervention, and randomized glucose control intervention. We also assessed continuous change in serum creatinine increase using restricted cubic spline regression models with knots placed at ~10%, 0%, 10%, 20%, 30%, and 40% increase. Unadjusted and multiple-adjusted linear regression models were used to explore the factors associated with an acute creatinine increase.

The effects of randomized treatment on outcomes were assessed by unadjusted Cox regression models according to subgroups defined by acute increases in serum creatinine, based on the intention-to-treat principle. Heterogeneity in the treatment effects between subgroups was tested by adding interaction terms to the relevant Cox models. We explored potential modification of the association between acute serum creatinine increases (≥30% versus <30%) and randomized treatment effects according to subsets of participants categorized by baseline eGFR (≥90, 60–89, and <60 mL/min per 1.73 m2) and prior ACE inhibitor use at registration.

Statistical analyses were performed with SAS 7.11 (SAS Institute, Cary NC) and Stata software (release 13, StataCorp, College Station, TX). A 2-sided P value <0.05 was considered statistically significant.
Results

Patient Characteristics

Of the 11,140 participants in the ADVANCE trial, 11,066 participants (99.3%) were eligible for inclusion in the present analysis. The mean age of the cohort was 66 years (SD=6), 42.5% were female and 32.1% had a history of macrovascular disease at registration (Table). The mean value of eGFR and the median value of urine albumin-to-creatinine ratio at registration were 75 mL/min per 1.73 m² (SD=18) and 15.0 µg/mg (interquartile range, 7.1–39.8), respectively, and the proportion of patients with eGFR <60 mL/min per 1.73 m² was 21.7%.

Changes in Serum Creatinine

Of the 11,066 participants included in the analysis, 530 (5%) experienced an increase in serum creatinine ≥30% over 3 weeks postregistration; increases of 20% to 29%, 10% to 19%, and <10% were observed in 5%, 16%, and 75% of the study cohort, respectively, and the mean increase was 2.4 μmol/L (SD=25.8). Participants with greater increases of serum creatinine were more often women (P for trend <0.001; Table), had higher levels of hemoglobin A1c (P for trend=0.003) and eGFR (P for trend <0.001) and had an increased heart rate (P for trend <0.001).

Follow-up creatinine levels did not show substantial differences, irrespective of the levels of acute increase in serum creatinine (Figures S1 and S2 in the online-only Data Supplement).

Those already using ACE inhibitors had higher values of creatinine at registration (Figure S3A). Among participants subsequently randomized to the perindopril-indapamide treatment group, serum creatinine levels throughout the trial follow-up remained higher, compared with those subsequently randomized to placebo, regardless of ACE inhibitor use at registration. Although serum creatinine levels increased rapidly during the first 3 weeks after starting perindopril-indapamide, the change plateaued within a year in both randomized groups (Figure S3B).

Older age, longer duration of diabetes mellitus, the presence of macrovascular disease, and higher levels of eGFR and urine albumin-to-creatinine ratio (P values for all variables <0.001) were predictive of acute serum creatinine increase (Table S1).

Association Between Acute Increase in Serum Creatinine and Clinical Outcomes

Over a median follow-up of 4.4 years, 1669 patients (15.1%) developed the primary outcome. There were 991 (8.9%) major macrovascular events, 396 (3.6%) new or worsening nephropathy events, and 869 (7.7%) deaths.

Acute increase in serum creatinine was subsequently associated with an elevated risk of the primary outcome (P for trend <0.001; Figure 2). The hazard ratios were 1.11 (95% CI, 0.97–1.28) for those with an increase of 10% to 19%, 1.34 (1.07–1.66) for those with 20% to 29% increase, and 1.44 (1.15–1.81) for those with ≥30% increase, compared with those with <10% increase. Additional adjustment for change in systolic blood pressure during active run-in period did not materially change the association. Similar associations were observed for major macrovascular events alone, new or worsening nephropathy events, and all-cause mortality alone. Overall results were similar when analyses were repeated using continuous assessments of acute serum creatinine increase (Figure 3).

Randomized Treatment Effect of Perindopril-Indapamide According to Acute Increase in Serum Creatinine Over 3 Weeks Before Randomization

Overall, treatment with perindopril-indapamide therapy, compared with placebo, significantly reduced the risk of the primary outcome (hazard ratio, 0.89; 95% CI, 0.81–0.98) and all-cause mortality (hazard ratio, 0.85; 95% CI, 0.75–0.97).
Table. Characteristics of Study Participants at Registration

<table>
<thead>
<tr>
<th>Variable</th>
<th>Acute Increase in Serum Creatinine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥30%</td>
</tr>
<tr>
<td>No. of participants</td>
<td>530 (4.8)</td>
</tr>
<tr>
<td>Demographic factors</td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>65 (6)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>276 (52)</td>
</tr>
<tr>
<td>Residence in Asia, n (%)</td>
<td>326 (62)</td>
</tr>
<tr>
<td>Medical and lifestyle history</td>
<td></td>
</tr>
<tr>
<td>Duration of diabetes mellitus, y</td>
<td>8.2 (6.5)</td>
</tr>
<tr>
<td>History of macrovascular disease at baseline, n (%)</td>
<td>165 (31)</td>
</tr>
<tr>
<td>Current smoking, n (%)</td>
<td>77 (15)</td>
</tr>
<tr>
<td>Current alcohol drinking, n (%)</td>
<td>108 (20)</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
</tr>
<tr>
<td>SBP, mmHg</td>
<td>145 (22)</td>
</tr>
<tr>
<td>DBP, mmHg</td>
<td>80 (11)</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>77 (11)</td>
</tr>
<tr>
<td>Hemoglobin A<sub>1c</sub>, (%)</td>
<td>7.7 (1.7)</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L</td>
<td>5.3 (1.2)</td>
</tr>
<tr>
<td>Triglycerides,* mmol/L</td>
<td>1.6 (1.1–2.2)</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>27.5 (5.1)</td>
</tr>
<tr>
<td>eGFR, mL/min per 1.73 m²</td>
<td>89 (18)</td>
</tr>
<tr>
<td>UACR, µg/mg</td>
<td>15.9 (7.8–49.5)</td>
</tr>
<tr>
<td>Randomized treatments, n (%)</td>
<td></td>
</tr>
<tr>
<td>Perindopril-indapamide</td>
<td>262 (49)</td>
</tr>
<tr>
<td>Intensive blood glucose control</td>
<td>260 (49)</td>
</tr>
<tr>
<td>Blood glucose-lowering treatments, n (%)</td>
<td></td>
</tr>
<tr>
<td>Oral hypoglycemic agents†</td>
<td>496 (94)</td>
</tr>
<tr>
<td>Insulin</td>
<td>8 (2)</td>
</tr>
<tr>
<td>BP-lowering treatments, n (%)</td>
<td></td>
</tr>
<tr>
<td>β-Blocker</td>
<td>105 (20)</td>
</tr>
<tr>
<td>Calcium channel blocker</td>
<td>179 (34)</td>
</tr>
<tr>
<td>Diuretics‡</td>
<td>112 (21)</td>
</tr>
<tr>
<td>Angiotensin-converting enzyme inhibitors‡</td>
<td>209 (39)</td>
</tr>
<tr>
<td>Angiotensin II receptor blockers</td>
<td>30 (6)</td>
</tr>
<tr>
<td>Other antihypertensive agents</td>
<td>77 (15)</td>
</tr>
<tr>
<td>Any BP-lowering agents‡</td>
<td>378 (71)</td>
</tr>
<tr>
<td>Changes in serum creatinine, µmol/L</td>
<td></td>
</tr>
<tr>
<td>First serum creatinine</td>
<td>68.1 (21.0)</td>
</tr>
<tr>
<td>Second serum creatinine</td>
<td>113.3 (103.1)</td>
</tr>
</tbody>
</table>

Mean values and their corresponding SDs are presented for continuous variables unless described otherwise. BP indicates blood pressure; DBP, diastolic BP; eGFR, estimated glomerular filtration rate; IQI, interquartile interval; SBP, systolic blood pressure; and UACR, urine albumin-creatinine-ratio.

*Median values (IQI) are presented for triglycerides and UACR, categorical variables are presented as numbers and percentages, n (%).
†Randomized treatment with gliclazide was not included.
‡Randomized treatment with perindopril-indapamide was not included.
There was no evidence of heterogeneity of the effect of randomized treatment for any of the 4 outcomes shown in Figure 4 across subgroups defined by an acute increase in serum creatinine (P for heterogeneity ≥0.74).

Consistent results were observed when we assessed participants according to eGFR levels at registration (Figure S4) and ACE inhibitor use at registration (Figure S5).

Discussion

In this analysis of 11 066 patients with type 2 diabetes mellitus from a large randomized controlled trial evaluating the effects of ACE inhibitor-based therapy, acutely increased levels of serum creatinine after starting ACE inhibitor-based therapy were associated with greater risk of subsequent major clinical outcomes. However, the beneficial effects of perindopril-indapamide therapy were consistent with greater risk of subsequent major clinical outcomes. However, the beneficial effects of perindopril-indapamide therapy were consistent with greater risk of subsequent major clinical outcomes. However, the beneficial effects of perindopril-indapamide therapy were consistent with greater risk of subsequent major clinical outcomes. However, the beneficial effects of perindopril-indapamide therapy were consistent with greater risk of subsequent major clinical outcomes. However, the beneficial effects of perindopril-indapamide therapy were consistent with greater risk of subsequent major clinical outcomes. However, the beneficial effects of perindopril-indapamide therapy were consistent with greater risk of subsequent major clinical outcomes. However, the beneficial effects of perindopril-indapamide therapy were consistent with greater risk of subsequent major clinical outcomes. However, the beneficial effects of perindopril-indapamide therapy were consistent with greater

The paradoxical relationship between the negative effects of short-term increase in serum creatinine and the long-term benefits of continuation of ACE inhibitor-based therapy on clinical outcomes seems to be counter-intuitive. However, this study suggests the benefit of continuing ACE inhibitor-based therapy for preventing clinical outcomes, irrespective of the acute increase in creatinine. In other words, clinicians need to be cautious about discontinuation of the drug, as it could result in unnecessary cessation of RAS blockade.

Prior Studies

A recent population-based study showed increased incidence of adverse cardiovascular and renal events associated with increases in serum creatinine of ≥30% in adults commencing ACE inhibitor or Ang II receptor blocker treatment (incidence rate ratio for end-stage renal disease in patients with serum creatinine increase ≥30% versus <30%: 3.43; 95% CI, 2.40–4.91). However, prior studies in relatively small cohorts (n=409 and 1435) have shown initial decreases in eGFR to be associated with longer-term renal benefit. Our findings are largely consistent with the former study and differ from the latter 2 studies. Although the reason for the differences in the results is unclear, differences in patient populations (eg, mean eGFR in RENAAL [the Reduction in Endpoints in Non-Insulin-Dependent Diabetes Mellitus With the Angiotensin II Antagonist Losartan] was 40 mL/min per 1.73 m2) may explain these differences. However, neither of these previous studies assessed the randomized treatment effects of RAS inhibitors on subsequent outcomes according to levels of short-term RAS inhibitor-induced serum creatinine change.

In a recent analysis of 2 randomized trials (ONTARGET [Ongoing Telmisartan Alone and in Combination With Ramipril Global End Point] and the TRANSCEND [Telmisartan Randomized Assessment Study in ACE Intolerant Subjects With Cardiovascular Disease]), among 9340 patients, 2-week changes in eGFR after commencement of treatment with telmisartan (40 or 80 mg) or ramipril (5 mg) were associated with increased risk (although, mostly not statistically significant) of cardiovascular and renal events. In addition, in a smaller subgroup of patients who received telmisartan (n=3217–5384), subsequent treatment effects of telmisartan did not significantly vary according to acute telmisartan-induced change in eGFR (eg, P values for interaction for cardiovascular events and new microalbuminuria or macroalbuminuria=0.63 and 0.18, respectively). Our results also support the continuation of RAS inhibitors even when patients experience an increase in serum creatinine, but close monitoring of kidney function is essential.

Plausible Explanations for Adverse Outcome Associated With Acute Increase in Serum Creatinine

There are several potential pathophysiological mechanisms explaining the association between an acute increase in serum creatinine and an increased risk of adverse cardiovascular and renal outcomes. These mechanisms include:

1. Transient kidney ischemia: Acute increases in serum creatinine may be due to transient kidney ischemia, which can occur after starting ACE inhibitor therapy. However, our results suggest that continuation of ACE inhibitor-based therapy is beneficial, even in the face of acute increases in serum creatinine.

2. Renal tubular dysfunction: Acute increases in serum creatinine may be due to renal tubular dysfunction, which can occur after starting ACE inhibitor therapy. However, our results suggest that continuation of ACE inhibitor-based therapy is beneficial, even in the face of acute increases in serum creatinine.

3. Fluid retention: Acute increases in serum creatinine may be due to fluid retention, which can occur after starting ACE inhibitor therapy. However, our results suggest that continuation of ACE inhibitor-based therapy is beneficial, even in the face of acute increases in serum creatinine.

4. Proteinuria: Acute increases in serum creatinine may be due to proteinuria, which can occur after starting ACE inhibitor therapy. However, our results suggest that continuation of ACE inhibitor-based therapy is beneficial, even in the face of acute increases in serum creatinine.

These mechanisms suggest that the acute increase in serum creatinine is a temporary and reversible effect of ACE inhibitor therapy, which can be overcome by the long-term benefits of continuation of ACE inhibitor-based therapy.
creatinine after starting ACE inhibitor-based therapy and adverse clinical outcomes. First, an acute increase in serum creatinine may reflect preexisting renovascular and systemic vascular disease, which lead to long-term increased risk of cardiovascular disease. Second, the greater increases in serum creatinine may be attributed to increased glomerular filtration pressure (ie, hyperfiltration) at baseline, which was associated with increased risk of cardiovascular disease. Indeed, we observed a significant relationship between the history of macrovascular disease, higher eGFR at baseline, and an acute increase in serum creatinine (Table S1). GFR of patients with these 2 conditions may be dependent on higher glomerular filtration pressure by angiotensin-induced constriction of the efferent glomerular arteriole, and thus leading to GFR reduction in response to the reduced glomerular pressure by RAS blockade-induced dilation. Taken together, an acute increase in serum creatinine may be a risk marker of cardiovascular disease, and further investigation and intervention for the underlying risks should be considered once patients experience it.

Study Strengths and Limitations

Our study has assessed the potential differential impact of acute rises in serum creatinine following ACE inhibitor-based therapy on longer-term randomized ACE inhibitor-based treatment effects based on (1) a large participant population derived from an international, multicenter randomized controlled trial assessing the effects of perindopril-indapamide combination therapy and (2) evaluation of the relationship between acute increases in serum creatinine and subsequent major clinical outcomes using categorical and continuous assessments of serum creatinine change.

However, our study has some limitations. First, our study cohort was derived from a clinical trial of patients with type 2 diabetes mellitus, and thus results may not be representative of broader populations. Second, the rate of end-stage renal disease events in ADVANCE was relatively low (0.1% per year), possibly because of the fact that most had relatively well-preserved kidney function (78.3% of the study participants had an eGFR of ≥60 mL/min per 1.73 m2), which limited our ability to assess the effect of continued ACE inhibitor-based therapy in patients who experience acute serum creatinine elevations of ≥30% on long-term renal outcome. Third, our study is complicated by the inclusion of subjects (43% of the total) who were already taking an ACE inhibitor at registration. However, these subjects

Figure 3. Spline curves are assessing the association between continuous acute increases in serum creatinine and study outcomes. A, Combined major macrovascular events, new or worsening nephropathy, and all-cause mortality; B, major macrovascular events; C, new or worsening nephropathy; D, all-cause mortality; the circles represent the points at which knots were placed (−10%, 0%, 10%, 20%, 30%, and 40% increase). The areas shaded in gray represent the 95% CIs. Models were adjusted for age, sex, region of residence, duration of diabetes mellitus, history of macrovascular diseases, smoking habit, drinking habit, body mass index, hemoglobin A1c, total cholesterol, log-transformed triglyceride, estimated glomerular filtration rate, systolic blood pressure, log-transformed urine albumin-to-creatinine ratio at registration, randomized blood pressure-lowering intervention, and randomized glucose control intervention.
showed similar changes in creatinine during the study, and similar effects of randomized therapy, to those who were not taking ACE inhibitors when the active run-in period began. Finally, randomized treatment of ADVANCE consisted of a combination of the ACE inhibitor perindopril and the diuretic indapamide. Thus, we cannot exclude the possibility that the diuretic contributed to the effects observed nor extrapolate our findings to the effects of other RAS inhibitors, such as Ang II receptor blocker and their combinations with calcium channel blockers, which are commonly used in clinical practice.

Perspectives

Acute increases in serum creatinine following treatment with fixed-dose perindopril-indapamide combination therapy in patients with type 2 diabetes mellitus were associated with greater risk of subsequent major clinical outcomes, including major macrovascular and renal events and all-cause mortality. However, the beneficial effects of continuing long-term randomized treatment on major outcomes were consistent irrespective of the magnitude of acute increases in serum creatinine. This suggests that even in patients with diabetes mellitus who experience ≥30% acute increase in serum creatinine, the benefits of continuing ACE inhibitor-based therapy outweigh the risks.

Sources of Funding

The ADVANCE trial (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation) was funded by the grants from the National Health and Medical Research Council (NHMRC) of Australia and Servier. T. Ohkuma is supported by the John Chalmers Clinical Research Fellowship of the George Institute. M. Jun is supported by a Scholarship from the University of New South Wales Sydney. B. Williams is a National Institute for Health Research (NIHR) Senior Investigator. M. Woodward is an NHMRC of Australia Principal Research Fellow (1080206).

Disclosures

M. Jun reports receiving research support from (1) the Australian National Health and Medical Research Council and (2) VentureWise (a wholly-owned subsidiary of NPS MedicineWise) to conduct a project funded by AstraZeneca. A. Rodgers receives salary in part from George Health Enterprises, the social enterprise arm of The George Institute. George Health Enterprises has received investment to develop fixed-dose combinations containing aspirin, statin, and blood pressure lowering drugs. M.E. Cooper received consulting fees from Merck, GlaxoSmithKline, Amgen and AstraZeneca and lecture fees from Servier. P. Hamet reports consulting fees from Servier. S. Harrap reports lecture fees from Servier, Takeda, and Novartis. G. Manca reports personal fees from Servier Laboratories, Bayer, Boehringer Ingelheim, Daiichi Sankyo, Medtronic, Novartis, Menarini Group, Recordati, and Takeda Pharmaceutical Company. M. Marre received personal fees from Novo Nordisk, Sanofi, Eli Lilly, Merck, Sharp, and Dohme, Abbott, Novartis, Servier, and AstraZeneca and grant support from Novo Nordisk, Sanofi, Eli Lilly, Merck, Sharp, and Dohme, and Novartis. B. Neal reports receiving research support from the Australian National Health and Medical Research Council Principal Research Fellowship and from Janssen, Roche, Servier, and Merck Schering Plough; and serving on advisory boards and involvement in CME programs for Abbott, Janssen, Novartis, Pfizer, Roche, and Servier, with any consultancy, honoraria, or travel support paid to his institution. V. Perkovic reports honoraria for scientific lectures from Boehringer Ingelheim, Merck, AbbVie, Roche, AstraZeneca, and Servier and serves on steering committees and advisory boards supported by AbbVie, Astellas, Baxter, Boehringer Ingelheim, Bristol-Myers Squibb, GlaxoSmithKline, Janssen, and Pfizer. N. Poulter received honoraria from Servier Laboratories, Takeda Pharmaceutical Company, Menarini Group, and Pfizer; grant support from Servier Laboratories, and Pfizer and personal fees from Servier Laboratories, Takeda Pharmaceutical Company, Menarini Group, and Pfizer. B. Williams reports speaker fees for Servier, Novartis, Daiichi Sankyo, Pfizer and Boehringer Ingelheim and serves on trial steering committees for Novartis, Relypsa and Vascular Dynamics. S. Zoungas reports past participation in advisory boards and receiving honoraria from Amgen Australia, AstraZeneca/Bristol-Myers Squibb Australia, Janssen-Cilag, Merck, Sharp & Dohme (Australia), Novartis Australia, Sanofi, Servier Laboratories, and Takeda Pharmaceutical Company Australia. J. Chalmers received research grants from the National Health and Medical Research Council of Australia and from Servier.
for the ADVANCE trial and ADVANCE-ON post-trial follow-up andonoraria for speaking about these studies at scientific meetings. M. Woodward reports consultancy fees from Amgen. The other authors report no conflicts.

References

Novelty and Significance

- However, the long-term effects of its continuation or discontinuation on major clinical outcomes after increases in serum creatinine are unclear.

Summary

Acute increases in serum creatinine after starting perindopril-indapamide were associated with greater risks of subsequent major clinical outcomes. However, the continuation of angiotensin-converting enzyme inhibitor-based therapy reduced the long-term risk of major clinical outcomes, irrespective of the acute increase in creatinine.