IL-4Rα-Expressing B Cells Are Required for CXCL13 Production by Fibroblastic Reticular Cells

Graphical Abstract

Highlights
- Helminth infection increases the number of MRCs producing CXCL13
- MRC-like cells invade B cell follicles and populate the mLN interfollicular regions
- IL-4Rα signaling to B cells promotes expansion and appearance of MRC-like cells

Authors
Lalit Kumar Dubey, Burkhard Ludewig, Sanjiv A. Luther, Nicola L. Harris

Correspondence
lalitkumar.dubey@unil.ch (L.K.D.), nicola.harris@monash.edu (N.L.H.)

In Brief
MRCs are a specialized, CXCL13-producing, stromal population located beneath the subcapsular sinus of lymph nodes. Dubey et al. demonstrate that intestinal helminth infection drives the remodeling and development of MRCs toward the paracortical region within the draining mLN and requires the expression of type 2 cytokines and intimate B cell-stromal cell interactions.
IL-4Rα-Expressing B Cells Are Required for CXCL13 Production by Fibroblastic Reticular Cells

Lalit Kumar Dubey,1,* Burkhard Ludewig,2 Sanjiv A. Luther,1,5 and Nicola L. Harris3,4,5,6,*

1Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
2Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
3Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
4Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia
5These authors contributed equally
6Lead Contact
*Correspondence: lalitkumar.dubey@unil.ch (L.K.D.), nicola.harris@monash.edu (N.L.H.)

https://doi.org/10.1016/j.celrep.2019.04.079

SUMMARY

Adaptive type 2 immune responses against the intestinal helminth Heligmosomoides polygyrus (Hp) require the interaction of follicle-associated CXCR5+ dendritic cells with naive T cells in the draining mesenteric lymph nodes (mLNs). However, the source of CXCL13 responsible for attracting CXCR5+ dendritic cells has remained unclear. Using multiplex imaging combined with deep tissue analysis, we observed new CXCL13+ fibroblastic reticular cells surrounding paracortical and cortical B cell follicles in the mLNs of infected mice. CXCL13+ fibroblasts expressed markers of marginal reticular cells (MRCs), and their expansion required lymphotoxin (LT)-dependent interactions between IL-4Rα-expressing B cells and CCL19+ fibroblasts. Infection-induced follicles did not necessarily contain follicular dendritic cells (FDCs), indicating that CXCL13+ fibroblasts may instead drive their formation. These data reveal a role for lymphotoxin signaling to CCL19+ fibroblasts in the development of CXCL13+ MRC-like cells and adaptive type 2 immunity in response to helminth infection.

INTRODUCTION

Lymph nodes (LNs) are highly organized structures made up of hematopoietic and non-hematopoietic cells (referred to as stromal cells) that provide basic infrastructure and form specialized niches that support T and B cell responses. Stromal cells are broadly differentiated by the surface expression of podoplanin and the endothelial cell marker CD31. Non-endothelial cells are commonly referred to as fibroblastic reticular cells (FRCs) and can be separated into various subpopulations that reside in anatomically distinct regions and actively segregate T and B lymphocytes into distinct compartments (Fletcher et al., 2015; Junt et al., 2008; Mueller and Germain, 2000). FRCs that reside in the T cell-rich paracortical region are podoplanin+ (PDPN+), secrete CCL19/CCL21 to attract CCR7 expressing dendritic cells (DCs) and naive T cells, and are tightly associated with extracellular matrix fibers that are ER-TR7+ and laminin+. Those located immediately beneath the subcapsular sinus (SCS) express mucosal addressin cellular adhesion molecule-1 (MAdCAM-1), tumor necrosis factor (TNF)-related activation-induced cytokine (also known as TRANCE/CD254/RANKL), and the B cell chemoattractant CXCL13 (Hoorweg et al., 2015; Katakai et al., 2008; Magri et al., 2014), and are commonly referred to as marginal reticular cells (MRCs). However, the role of MRCs during homeostasis and inflammatory conditions remain largely unknown, especially in relation to B cell follicle formation and function.

B cell follicle formation strongly depends on CXCL13. It is mainly produced by resident non-hematopoietic cells and is responsible for directing CXCR5-expressing B cells efficiently into the follicles and for forming their typical roundish shape (Ansel et al., 2002; Cyster and Schwab, 2012; Fu et al., 1998; Hardtke et al., 2005). Besides MRCs, the best known CXCL13 source is the follicular dendritic cells (FDCs), which populate the light zone of B cell follicles and expresses FDC-M1 and CD35 as cell type-specific markers. In addition, FDCs retain antigens at the cell surface over weeks or months to support affinity maturation within the germinal centers and to facilitate antibody production. FDC ablation disrupts proper B cell follicle organization and germinal center reactions, leading to high-affinity antibody generation (Aguzzi et al., 2014; Wang et al., 2011). Although the exact lineage relations between T zone FRCs, MRCs, and FDCs remain unclear, a recent study identified MRCs as possible precursors of FDCs (Jarjour et al., 2014). In this fate-mapping study, the authors show that inflammation promotes the formation of new FDCs that arise from the proliferation and differentiation of MRCs rather than from the expansion of existing FDCs. However, the triggers for MRC differentiation into FDCs were not defined (Jarjour et al., 2014). Few other non-hematopoietic CXCL13 sources have been identified in adult secondary lymphoid organs and include B zone reticular cells (BRCs) and versatile stromal cells (VSCs), which are found in the follicular mantle rather than in the follicle center (Ansel et al., 2002; Katakai et al., 2008; Mionnet et al., 2013; Cremasco et al., 2014). High endothelial venules (HEVs) within the mesenteric LN (mLN) can also serve as an arrest factor for incoming B cells by producing CXCL13, which along with other
A

FDCs + CXCL13 + PDPM

Naive mLN

21dpi Hp mLN

FDCs + CXCL13

CXCL13

FDCs + CXCL13 + PDPM

B

Reticular Network (Relative to capsule)

Naive mLN

21dpi Hp mLN

C

Naive mLN

Cortical region of mLN

21dpi Hp mLN

Overlay (ER-TR7 + CXCL13 + Laminin)

D

Paracortical region of mLN

Overlay (ER-TR7 + CXCL13 + Laminin)

E

FRCs remodeling in paracortical region of mLN

Inset-1

Inset-2

Inset-4

Inset-2

Inset-1

Scale bar = 70μm

Also see movie-1

F

Relative expression

0 6 12 21dpi

G

Arbitrary pixel value

Legend on next page
chemokines can regulate the arrest and transmigration of CXCR5+ cells (Kanemitsu et al., 2005; Okada et al., 2002). CXCL13 is important not only for the formation of proper B cell follicles but also for the embryonic development of LN anlagen, which then develops into mature secondary lymphoid organs (Ansel et al., 2002). As a consequence, CXCL13- and CXCR5-deficient mice lack most LNs (Ansel et al., 2002; Ohl et al., 2003; Luther et al., 2003). CXCL13 is mainly expressed in embryonic LN by MAdCAM-1+ fibroblasts that were called lymphoid tissue organizer (LTo) cells due to their critical function in attracting and clustering CXCR5+ type 3 innate lymphoid cells (ILC3) in the early LN anlagen. This CXCL13 expression is strongly dependent on lymphoxygen-1, B (LT−β) signals between the recruited ILC3 and resident stromal cells, including lymphotakin β receptor (LTβR) fibroblasts and endothelial cells, in a positive feedback loop (Fletcher et al., 2015). A similar circuit between adult B cells expressing LTβR and CXCL13+ FDCs drives B cell follicle maintenance in the adult LN and spleen (Cyster, 2014). Thus, both CXCL13 and lymphotakin have emerged as key signals in lymphoid tissue and follicle development and maintenance, with further roles in germinal center reactions. MRCs alongside B cell follicles and subcapsular macrophages were proposed to form interleukin-7+ (IL-7+) niches for ILC3 (Hoornweg et al., 2015). Furthermore, ILC3 trafficking to mLN was proposed to be important for mucosal immunity (Mackley et al., 2015). However, a precise understanding of the contribution of MRCs to the mucosal immune response is still lacking.

The generation of adaptive type 2 immunity in the mLN of mice infected with the intestinal helminth Heligmosomoides polygyrus (Hp) is also CXCL13 dependent and requires the positioning of CXCR5 expressing DCs together with T cells within the follicle mantle and interfollicular regions (IFRs) (León et al., 2012). However, the source of CXCL13, responsible for recruiting and locating the DCs, has remained unclear. We recently uncovered that, in the mLN of Hp-infected mice, interactions between lymphotakin-expressing B cells and LTβR+ FRCs promote the formation of new B cell follicles within the paracortex and that this process was necessary to support antibody production and parasitexpulsion (Dube et al., 2016). As the formation of new B cell follicles would be expected to trigger the development of new CXCL13-producing cells, we next set out to investigate the nature and positioning of CXCL13+ cells within the mLN of Hp-infected mice and to further determine the factors regulating the increased expression of CXCL13. Using immunofluorescence staining, combined with deep tissue imaging and flow cytometry, we were able to demonstrate that Hp infection results in an extensive increase in the number of FRCs expressing a phenotype resembling the previously identified MRCs. These CXCL13+ MRC-like cells were found to extend into the center of peripherally located B cell follicles and to uniquely be present in the IFRs and newly developed paracortical B cell follicles. Of note these follicles did not necessarily contain FDCs, indicating that they can form independently of FDCs. Lastly, the use of bone marrow chimeras demonstrated that the development of CXCL13+ MRC-like cells required IL-4-mediated activation of B cells and B cell-FRC cross-talk via lymphotakin-LTβR.

RESULTS

Helminth Infection Drives the Expansion of CXCL13-Producing FRCs within the Draining mLN

Mice infected with Hp show extensive development of new B cell follicles within draining mLN (Dube et al., 2016). While CXCR5 is known to be important for the efficient induction of T helper 2 (Th2) cells in this model system, the cellular sources of CXCL13 involved in attracting the CXCR5+ DC and T cells to IFR and in initiating and maintaining new follicular structures are not well defined (León et al., 2012). To gain insight into this question, we performed immunofluorescence staining of mLN cryosections using antibodies against B220 (to identify B cell follicles), FDC-M1/CD35 (to identify FDCs), CD11c (for DCs), and PDPN/laminin/ER-TR7 (for reticular cells and the associated matrix). These stains were combined with the detection of CXCL13, and images were taken from the SCS region in and around B cell follicles representing the follicular mantle, the IFR, and the paracortical region of mLN from naive or Hp-infected mice. The cortical region is defined as a capsule-associated area, while the term “paracortex” is used to indicate the more central regions (i.e., paracortical region) of mLN. Naive mLN exhibited clusters of FDCs located solely within the cortex, while in Hp-infected mLNs, FDC clusters could be observed throughout the cortical and paracortical region (or the more

![Figure 1. Upon Helminth Infection, CXCL13-Expressing FRC Expand and Remodel around B Cell Follicles and in Interfollicular Regions of Draining mLNs](image-url)

C57BL/6J (WT) mice were infected with Hp and the mLN collected at day 0 (naive) and 21 dpi and visualized using immunofluorescence microscopy. (A) mLN sections were stained for CXCL13 expression (red), FDCs (FDC-M1*, green), and fibroblastic reticular cells (PDPN*, blue). Magenta stars in the left-hand overlay highlight the locations of FDCs. (B) Higher magnification images shown in (A) were segmented and duplicated, and the non-FDC CXCL13+ reticular structures arising from the SCS were hand-drawn (dashed white line) and shown on a black background for improved visualization. The capsule is highlighted using solid white lines. All of the images shown were taken from a single mouse, but are representative of three or more independent experiments. For all data shown, each independent experiment included n ≥ 2–3 mice per group per time point. Scale bars, 200 and 20 μm. (C and D) mLN sections were stained for CXCL13 expression (red), ER-TR7* (green), and laminin* (blue) reticular cells to better visualize the reticular matrix network. (E) Cortical regions and (D) paracortical regions are shown at increasing magnifications, with pink circles representing follicles. (E) Immunofluorescence analysis of Hp-infected Col-1a1GFP mice mLN (>100-μm-thick sections) showing paracortical FRC networks surrounding B cell follicles (green, Col-1a1GFP; red, CXCL13; blue, laminin). Col-1a1GFP* Laminin* CXCL13+ cells can be found in large numbers outside the B cell follicle. Scale bars, 70, 30, and 10 μm. (F and G) Relative expression of mRNA encoding CXCL13 in CD45 fraction (stroma) of mLN over the indicated time course (F), and quantification of CXCL13 protein staining (pixel intensity) in the follicular mantle and interfollicular regions of images (sampled from non-follicular region; FDC-FRC networks surrounding B cell follicles) (G). Naive, n = 15; 21 dpi, n = 30. Data represent means ± SEMs. *p < 0.05 (Mann-Whitney test). See also Video S1.
Cortical and paracortical region (Figure 1A, magenta stars), in keeping with the expected de novo formation of centrally located follicles following infection (Dubey et al., 2016). However, sequential co-staining for CXCL13 and PDNP along with FDC-M1 revealed the increased presence of CXCL13+ cells expressing FRC but not FDC markers (FDC-M1+PDNP+) within the mLNs of infected mice (Figures 1A and S1A). These cells were observed to extend their PDNP+ reticular structures from the SCS region into the FDC-rich follicles located in the cortex (Figures 1A and 1B), a feature that was not observed in naive mice (Figures 1A, 1B, and S1A). The most striking CXCL13 staining was associated not with FDCs, but with the FRCs or the matrix fibers that FRCs enwrap. Of note, CXCL13 expressing reticular cells in the cortex (Figure 1C) and paracortex (Figure 1D) of Hp-infected mLNs were both follicular and extra-follicular in nature, while CXCL13 signals in naive mice were mainly from reticular cells in the SCS or from non-reticular cells in the follicle and were much reduced by comparison (Figure 1C). Deep tissue imaging of mLN sections obtained from Hp-infected Col-1a1GFP mice confirmed that although the expected CXCL13 expression by GFP+ reticular cells could be observed in the central area of the activated follicle, CXCL13 expression was more prominently found within the GFP+ FRC of the follicular mantle and IFR of the paracortex (Figure 1E; Video S1). A more detailed analysis of mLN sections revealed that many follicles (present in both cortical and paracortical region) did not contain CXCL13+ FDCs, but instead were infiltrated by PDNP+MadCAM-1+ laminin+ reticular structures that extended from SCS or IFR regions into the follicles (Figures S1B and S1C; Videos S2 and S3). Based on these observations, we concluded that non-follicular reticular cells expressing CXCL13 increase in number following Hp infection, penetrate B cell follicles located in the cortex, and associate with newly formed follicles in the paracortex. Given the well-established role for CXCL13 in driving B cell clustering and follicle formation, these observations raise the possibility that cortical and paracortical CXCL13+ reticular cells participate in or drive the previously described de novo generation of follicles that occurs in response to Hp infection (Dubey et al., 2016). Lastly, we show that infection leads to a strong increase in the expression of CXCL13 mRNA in the CD45+ stromal cell fraction (Figure 1F) and of CXCL13 protein in the follicular mantle and IFR where FRC but not FDC localize (Figure 1G).

Figure 2. The CXCL13-Expressing FRC Subset Expanding Strongly in mLNs of H.p.-Infected Mice Represents Mainly MadCAM-1+ MRC-like Cells

(A–H) C57BL/6J (WT) mice were infected with H.p. and the mLN collected at day 0 (naive) and 21 dpi and either analyzed using immunofluorescence microscopy (A and B) or flow cytometry (C–H).

(A) Thick (>50 μm) mLN sections were generated with a vibratome. 3D views of WT mice mLNs at 21 dpi show CXCL13 expression (red) in MRCs expressing PDNP (gray) and MadCAM-1 (green). The dashed magenta circle outlines the B cell follicle.

(B) The white insets from (A) are magnified and shown as an overlay. Dotted magenta square is magnified and individual and combined panels are shown. Scale bars, 100, 70, and 20 μm. See also Video S4.

(C–G) MRCs were quantified using flow cytometry by gating live cells that were TER119+CD45+CD35+Podoplanin+MadCAM-1+ in WT mLN post-H.p. infection. Histogram representing (C) percentage of live cells and (D) the absolute number of MRCs are shown. (E) FACS dot plots showing MRCs proliferation (Ki67+) and histogram representing (F) percentage of live cells and (G) absolute number of proliferating MRCs (Ki67+) within the mLN. Data represent means ± SEMs and are representative of three independent experiments.

(H–J) Intracellular CXCL13 expression in MRCs was quantified using flow cytometry. (H) Overlay histograms showing CXCL13 expression in naive MRCs, 21 dpi MRCs, and other FRCs are shown along with mean fluorescence intensity. Histograms representing (I) percentage of live cells and (J) absolute number of CXCL13+MRCs are shown. Data represent means ± SEMs and are representative of two independent experiments, with n = 3–5 mice per group. *p < 0.05 (Mann–Whitney test).

CXCL13-Producing Cells Arising within the IFRs and Paracortical Region following H.p. Infection Express Markers of MRCs

MRCs are a PDNP+MadCAM-1+CXCL13+ stromal subset present in the LN cortex and located just below SCS on the backside of B cell follicles (Katayama et al., 2008). In addition, MRCs are typically defined by a combination of markers, including the matrix markers laminin and ER-TR7, which are mostly absent on FDCs, and by the high expression of receptor activator of nuclear factor κB ligand (RANKL) and MadCAM-1. In the previous section, we observed a network of cortical laminin+ER-TR7+ reticular cells expressing CXCL13 but lacking FDC markers. This prompted us to further investigate whether these cells expressed markers typical of MRCs. For this purpose, we sequentially stained thin (8 μm) and thick (>40 μm) mLN sections with antibodies directed against PDNP, CXCL13 and MadCAM-1, and CD35. Visualization, by static and deep tissue imaging, of the SCS, cortex and paracortex revealed that while cells expressing MRC surface markers were limited to the SCS in naive mice (Figure S2A), they could be found in all of these regions following H.p. infection (Figures 2A, 2B, and 2S; Video S4). We considered reticular cells to be MRC-like when they were positive for markers such as PDNP or ER-TR7 and laminin, in addition to MadCAM-1 plus CXCL13 (Video S5), or MadCAM-1 plus RANKL (TRANCE). Reticular cells expressing both MadCAM-1 and RANKL and located in the paracortical region of infected mLNs were found to form interconnected networks around the B cell follicles, preferentially within the IFR (Figure S2B, insets 3 and 4). Deep tissue imaging further confirmed that laminin+ reticular cells also formed an interconnected network with laminin+CD35+ FDCs network within the B cell follicle, suggesting an intricate reticular network organization within the mLN (Video S6). We also used flow cytometry to provide a more quantitative analysis of MRCs-like cell numbers and proliferation within the mLNs of naive and infected mice. MRC-like cells were defined as described previously (Fletcher et al., 2011) (Figures S2C and S2D). CD45 TER119 CD35 CD31 PDNP+MadCAM-1+ cells showed an increase in percentage and a >10-fold increase in numbers following infection (Figures 2C and 2D). Intracellular Ki67 staining showed that MRC-like cells actively proliferated following H.p. infection (Figures 2E–2G). Intracellular CXCL13 staining revealed that the percentage of CXCL13+ cells increased, preferentially...
Figure 3. MRC Expansion and Remodeling in mLN of Helminth-Infected Mice Require IL-4Rα Signaling

(A–G) C57BL/6J (WT) mice and IL-4Rα-deficient (IL-4Rα−/−) mice were infected with Hp and the mLNs collected at day 0 (naive) and 21 dpi and either analyzed using immunofluorescence microscopy (A and B) or flow cytometry (C–G).

(legend continued on next page)
those with the MRC-like (MAdCAM-1⁺) phenotype in response to infection, and that the amount of CXCL13 produced was greater in MRC-like cells than in other FRC populations (MAdCAM-1⁻), as determined by microflow imaging (MFI) (Figures 2H–2J). This is in keeping with our histological staining that indicated that increased CXCL13 production in response to Hp is largely associated with cells expressing an MRC-like phenotype.

These observations demonstrate that MRC-like cells strongly increase in number, at least in part due to proliferation, and that they appear within more central locations following infection. Thus, these cells are likely to serve as an important source of CXCL13 at IFRs and in the T-cell-rich paracortical zone. In keeping with the previously reported role for CXCR5⁺ DCs in promoting the T helper 2 response development following Hp infection (León et al., 2012), we found that the increase in CXCL13-expressing cells located at the IFR correlated with increased accumulation of DCs in close association with ER-TR7⁺ fibers (Figure S2E). The IFR is also known to be the site where antigen-activated B cells position themselves to receive T cell help (Garside et al., 1998; Wang et al., 2015). Thus, CXCL13 production by interfollicular MRC-like cells is likely to play an important role in the T cell-DC interactions that are known to be important in driving T helper 2 responses. Based on these observations, we next focused on defining the events that regulate the development of CXCL13⁺ MRC-like cells within the IFR of the mLNs following infection.

IL-4Rα Signaling to B Cells Is Required for the Expansion of CXCL13-Producing MRC-like Cells following Hp Infection

Recent work from our laboratory has indicated that IL-4Rα signaling is necessary for the expansion of FRCs and the generation of new B cell follicles following Hp infection (Dubey et al., 2016). To determine whether this pathway was also necessary for the development of MRC-like cells within the IFR, we examined the mLNs from naive or infected wild-type (WT) and interleukin-4 receptor α knockout (IL-4Rα⁻/⁻) mice. Naïve mLNs from both groups of mice exhibited a similar localization of MRC-like cells, with the majority of these cells present within a reticular layer of the peripheral cortical zone, just beneath the SCS with no sign of their presence at IFR (Figure 3A). As expected, Hp infection led to a significant enlargement of the mLN as measured by total weight and cellularity and the development of MRC-like cells within the cortical and paracortical follicular mantle and/or IFR in WT mice; however, both parameters were markedly reduced in IL-4Rα⁻/⁻ mice (Figures 3B–3D).

To further confirm a requirement for IL-4Rα signaling in the Hp-induced development of MRC-like cells, we enumerated these cells by flow cytometry. Both the percentage of live cells that were positive for FRC markers (CD45⁺ CD35⁺ CD31⁺ PDPN⁺ MAdCAM-1⁺) or MRC markers (CD45⁺ CD35⁺ CD31⁺ PDPN⁺ MAdCAM-1⁻) and the total number of these two cell populations were significantly reduced in IL-4Rα⁻/⁻ animals compared to WT mice following infection (Figures 3E–3G). These results present a previously unidentified function for IL-4Rα signaling in driving the development of reticular cells in the IFR and paracortical region into one that expresses an MRC phenotype following infection.

To gain insight into which cells expressing IL-4Rα upon Hp infection promote the expansion of MRC-like cells within the IFR of the cortex and the paracortex, we generated bone marrow (BM) chimeras using WT or IL-4Rα⁻/⁻ BM cells adoptively transferred into lethally irradiated WT or IL-4Rα⁻/⁻ hosts. Under naive conditions, the selective absence of IL-4Rα on radiosensitive stromal cells (WT → IL-4Rα⁻/⁻ chimeras) or on radiosensitive hematopoietic cells (IL-4Rα⁻/⁻ → WT chimeras) had little impact on the location of cells expressing MRC markers, with these cells largely restricted to the SCS of both sets of mice (Figure 4A). Following Hp infection, WT → IL-4Rα⁻/⁻ chimeras harbored increased numbers of MRC-like cells with a distribution similar to that seen in WT mice (Figures 4B–4D). By contrast, the absence of IL-4Rα on radiosensitive cells (IL-4Rα⁻/⁻ → WT chimeras) resulted in a reduced number of MRC-like cells present in the IFR or in the paracortex (Figures 4B–4D). CXCL13 expression was found to be enriched in MRC-like cells present in the paracortex of WT → IL-4Rα⁻/⁻ chimeras, but not IL-4Rα⁻/⁻ → WT chimeras (Figures S3A and S3B) following infection.

We and others have previously shown that IL-4Rα-expressing B cells play an important role in driving protective immunity against helminths (McCoy et al., 2008; Wojciechowski et al., 2009), and we had previously hypothesized that IL-4Rα signaling directly to B cells is important for driving FRC expansion and remodeling within the mLN (Dubey et al., 2016). To determine whether IL-4-activated B cells were also driving the development of CXCL13⁺ MRC-like cells, we generated mixed BMCs mice in which only B cells lacked IL-4Rα expression (JhT⁻/⁻ + IL-4Rα⁻/⁻ → WT chimeras) and compared these mice to their control counterparts (JhT⁻/⁻ + WT → chimeras). In uninfected mice, the presence or absence of IL-4Rα on B cells did not influence the existence of MRC-like cells adjacent to the SCS of mLNs (Figure 5A). However, following Hp infection, their development within the paracortical region and IFR was

(A and B) mLN cryosections from naïve (A) and 21 dpi (B) were stained for MRCs and visualized by their expression of RANKL (red), MAdCAM-1 (green), and PDPN (gray). Scale bar, 100 μm. Right-hand insets show higher-magnification pictures of the interfollicular region (IFR). All of the images are representative of three or more independent experiments, each including n ≥ 5–5 mice per group per time point.

(C and D) The total weight (C) and total cellularity (D) of WT and IL-4Rα⁻/⁻ mice mLNs at naive 12 and 21 dpi. Data are pooled from two independent experiments and represent means ± SEMs.

(F) Live cells that were TER119⁺ CD45⁺ CD35⁺ Podoplanin⁺MAdCAM-1⁻ were considered FRCs and TER119⁺ CD45⁺ CD31⁺ CD35⁺ Podoplanin⁺ MAdCAM-1⁻ were considered FRDCs and are presented as the percentage of live cells.

(G) Histogram representing the absolute numbers of mLN FRCs and MRCs quantified using flow cytometry in WT and IL-4Rα⁻/⁻ at 21 dpi. Data are pooled from two independent experiments and represent means ± SEMs.

Magenta circle, B cell follicle; blunt-end white arrow, paracortical T cell zone; magenta rectangle, IFR. Statistical analyses were performed using non-parametric Mann-Whitney T test and significance denoted as *p < 0.05,* *p < 0.01,* **p < 0.001, and ***p < 0.0001.
Figure 4. IL-4Rx-Expressing Hematopoietic Cells Are Required for MRC Expansion and Remodeling following Helminth Infection

Bone marrow chimera (BMC) mice (donor strain-recipient strain) were generated using C57BL/6 (WT) and IL-4Rα-/- mice, as described in Method Details. Chimeras lacking IL-4Rα expression on non-hematopoietic cells (WT→IL-4Rα-/-) were compared to chimeras lacking IL-4Rα expression exclusively on hematopoietic cells (IL-4Rα-/-→WT). All of the mice were infected with H.p and the mLN collected at day 0 (naive) and 21 dpi and visualized using immunofluorescence microscopy.

(A and B) mLN cryosections from naive (A) and 21 dpi (B) infected BMCs were stained for MRCs identified by the expression of MadCAM-1 (green), RANKL (blue), and PDNP (red). Scale bar, 100 μm. The capsule, IFR, and B cell follicle are highlighted using a solid white arrow, a cyan rectangle, and dotted yellow circles, respectively. At right are higher-magnification images of the IFR. Scale bars, 100 and 10 μm.

(C) MadCAM-1 expression within the IFR was quantified by segmenting the images and is presented as the percentage of the total area covered.

(D) Naive and 21 dpi mLN images showing the presence of MRCs within the paracortical regions. Scale bar, 20 μm. MRCs are highlighted by long cyan arrows, and MadCAM-1 FRCs are highlighted by short cyan arrows. Images are from single mice and are representative of two independent experiments, each including n ≥ 2–3 mice per group per time point.

Statistical analyses were performed using ANOVA and Bonferroni’s multiple comparison test, and significance denoted as ns = not significant and ****p < 0.0001.
disrupted in the case of mice with B cells lacking IL-4Rx expression (Figures 5B–5E). To further validate our observations, we evaluated the presence or absence of MRC-like cells (laminin−MAdCAM1+PDPN+) within the IFR using thick vibratome sections. We observed a significantly reduced IFR along with reduced numbers of MRC-like cells in the IFR of chimeric mice lacking IL-4Rx on B cells (JhT−/− + IL-4Rx−/− → WT) compared to control chimeras (JhT−/− + WT → WT) following infection (Figure 5F; Video S7). To determine whether IL-4Rx signaling to B cells is also necessary for CXCL13 expression, we examined the mLN s of the same BMCs and observed a clear reduction in Hp-induced CXCL13 expression within the IFR of the paracortex when IL-4Rx signaling to B cells was disrupted (Figures S4A and S4-B). Staining of thick vibratome sections confirmed reduced CXCL13 expression in the IFR of chimeric mice lacking IL-4Rx on B cells (JhT−/− + IL-4Rx−/− → WT) compared to control chimeras (JhT−/− + WT → WT) following infection (Figures 6A and 6B). The diminished CXCL13 expression correlated with a significantly reduced number of newly developed B cell follicles (with and without FDCs) in these chimeras (Figures 6C–6F and S4C) and with reduced DC accumulation within the IFR of both the cortex and the paracortex of infected mice (Figures 6G S4D, and S4E). These observed changes were significant as the loss of IL-4Rx signaling on B cells also resulted in higher worm burdens (Figure 6H). These data demonstrate that IL-4Rx signaling in B cells is necessary for the expansion of CXCL13-producing MRC-like cells within the IFR of mLN s from infected mice. We also observed that the reduced expression of CXCL13-producing MRC-like cells correlates with a reduction in the development of new B cell follicles within the paracortex and with reduced protective immunity.

LTIR Expression by CCL19+ Stromal Cells Is Required for the Expansion of CXCL13-Producing MRC-like Cells following Hp Infection and Their Appearance within the Paracortex

We have previously shown that Hp-induced B cell follicle formation requires IL4Rx-dependent lymphotoxin expression by hematopoietic cells (Dubey et al., 2016), while our findings outlined above showed that the development of both MRC-like cells and new B cell follicles in the paracortex requires IL-4Rx signaling to B cells. Given that IL-4 can upregulate lymphotoxin expression on lymphocytes (Dubey et al., 2016), which then can ligate the LTIR on reticular cells in response to infection (Chai et al., 2013; Dubey et al., 2016), we next assessed whether lymphotoxin expression by B or T cells was necessary for the development of CXCL13-producing MRCs-like cells. To address this question, we created mixed BM chimeras (BMCs) in which B cells (JhT−/− + LTIR−/− → WT) or T cells (TCRβ−/− + LTIR−/− → WT) were incapable of expressing surface lymphotoxin. Mixed BMCs using WT donors were also generated (JhT−/− + WT → WT and TCRβ−/− + WT → WT) as controls. WT mice were used as recipients to ensure that the mice had a well-developed lymphoid structure. Naïve mLNs of all chimeric mice showed the presence of cells expressing MRC markers in the layer beneath the capsule (Figures S5A and S5B). The absence of lymphotoxin on B cells but not T cells resulted in the reduced development of MRC-like cells in the infected mice (Figures S5C and S5D), which most likely accounted for reduced CXCL13 expression at the IFR (Figures S5E–S5G, magenta insets). A higher-magnification view further confirmed that CXCL13+ cells penetrated into the B cell follicle (Figure S5F) in response to Hp infection, as seen previously. Of note, the loss of MRC-like cells in mice lacking lymphotoxin on B cells, but not T cells, also resulted in reduced CXCL13 production in both FDC plus FDC− follicles following infection (Figures S5H–S5J). Overall, these results demonstrate that lymphotoxin expression by B cells is necessary for the expansion of CXCL13-producing MRC-like cells within the IFR of mLN s from infected mice.

We have previously shown that lymphotoxin-producing B cells drive the expansion of FRCs that express LTIR using CCL19-Cre-mediated LTIR ablation on these cells (Dubey et al., 2016). We used this system to address whether the infection-induced development of CXCL13+ MRC-like cells was also driven by LTIR signaling to FRCs. We first validated the previously reported CCL19 promoter-driven expression of Cre on various fibroblast subsets, including MRCs present in the SCS of naive mice (Fasnacht et al., 2014). We achieved this by crossing the CCL19-Cre line to the line of mice expressing enhanced yellow fluorescent protein (eYFP) from the Rosa26 locus (Rosa26-eYFP). An immunohistological analysis for the expression of eYFP was combined with PDPN and MAdCAM-1, which is expressed by SCS cells expressing MRC markers. Cre-mediated activity was observed in both MAdCAM-1+PDPN+ cells (MRCs) and MAdCAM-1+PDPN− cells, with the latter comprising T cell zone FRCs (Figures S6A and S6B). The
MADCAM-1⁺ cells seen in the paracortex are mainly HEVs, which were negative for eYFP expression and showed positive staining for CXCL13, as described previously (Kanemitsu et al., 2005) (Figure S6B, yellow inset, and Figure S6C, cyan arrowheads). Based on these results, we concluded that the Ccl19-cre transgene targets both MADCAM-1⁺ MRCs and T cell zone FRGs, but not MADCAM-1⁺ HEVs. To assess the contribution of LTIR signaling to the development of FRC subsets under naive conditions, we performed an immunohistological analysis on mLN from CCL19-Cre mice crossed to LTIRCre mice. We could easily identify the cells expressing MRC markers in the layer beneath the SCS region in mice lacking LTIR on CCL19Cre cells and in their WT littermate controls (data not shown), along with very low CXCL13 expression within the paracortical region (Figure S6C, yellow inset). Infection with Hp resulted in a dramatic remodeling of the stromal network and the development of CXCL13-producing MRC-like cells within the IFRs of the cortical and paracortical region of LTIRCre mice, but not in LTIRCre mice (Figures S6C–S6E, S7A, and S7B), indicating that infection-induced expansion and/or differentiation of CXCL13-producing MRC requires LTIR signaling to fibroblasts. Whether the infection-induced CXCL13-producing MRC-like cells develop from pre-existing SCS MRCs, T zone FRGs, or precursor FRGs is unclear. However, the reduced number of MADCAM-1⁺ CXCL13⁺ MRC-like cells observed in infected LTIRCre mice (Figure S7C) correlated with a significantly reduced number of germinal centers (Figures S7D and S7E).

Resolution and Re-emergence of CXCL13-Producing MRCs following Parasite Clearance and Re-infection

B cells play an important protective role during secondary Hp infection (McCoy et al., 2008; Wojciechowski et al., 2009); yet whether the de novo B cell follicles observed following primary infection (1 Hp) (Dubey et al., 2016) are also apparent during the host response to secondary infection (2 Hp) is unknown. To address this, we drug cleared the parasite from infected mice and collected the draining mLN from mice no longer harboring the parasite and from secondary challenge infected mice at days 12 or 21 post-infection (Figure 7A). The 2 Hp infection was followed by a dramatic increase in the number of B cell follicles in the paracortical region and an increase in MRC-like cells in the IFR (Figures 7B and 7C). The number of CXCL13-producing cells within the IFR and mantle regions were also increased following secondary infection (Figures 7D, S7F, and S7G). The newly developed B cell follicles present in primary infected mice resolved following antihelminthic treatment, with very few CXCL13-producing cells observed in the mantle region or the IFR (Figures 7D, S7F, and S7G). Increased CXCL13 expressing MRCs in the IFR correlated with an increase in the number of both FDC⁺ and FDC⁺ B cell follicles, with both having comparable CXCL13 expression (Figures 7E–7I). While the number of FDC⁺ follicles did not change, the number of FDC⁺ B cell follicles decreased from days 12 to 21 following secondary infection (Figures 7E and 7F). These experiments suggest that cortical stromal remodeling is an active process that can resolve and re-emerge post-recurring inflammation.

These data indicate that cortical region CXCL13-expressing mLN MRCs can expand, proliferate, and remodel along with other lymphoid stromal cells to seed IFR, non-cortical regions for DCs/T and B cells interaction which is important for constructing the microenvironment that may promote the B cell follicle expansion.

DISCUSSION

CXCL13 is an important chemokine with multiple roles in the proper development and organization of secondary lymphoid organs. CXCL13-producing stromal cells function to position immune cells—including B cells, DCs, and follicular T cells—to distinct compartments, and this process is essential for promoting efficient adaptive immune responses (Bénézech et al., 2015; Randall et al., 2008; Reif et al., 2002; Rozendaal and Mebius, 2011; van de Paver et al., 2009). We have previously reported the expansion and re-localization of FRCs to the mantle of de novo B cell follicles following Hp infection (Dubey et al., 2016). In the present study, we identify a subset of the FRCs that expand in response to infection and are capable of producing the B cell-attracting chemokine CXCL13. Using deep tissue imaging and by combining various surface markers, we were able to more accurately define the mLN stromal microenvironment of the IFR and paracortical region and observed that the Hp-induced CXCL13-producing cell expressed the MRC markers MADCAM-1 and RANKL. We also demonstrated that IL-4Rα

Figure 6. B Cell Expression of IL-4Rα Is Required for CXCL13 Expression by MRCs

Mixed BMC mice (donor strain/recipient strain) were generated as in Figure 5, and mLNs collected from day 0 (naive) and 21 dpi Hp infection. (A and B) Thick vibratome sections from the mLNs of infected chimeric mice (A) lacking IL-4Rα expression exclusively on B cells (JhT⁺⁻ + IL-4Rα⁻⁻) or (B) having WT cells (JhT⁺⁻ + WT) were stained for CXCL13 (red), MADCAM-1 (green), and PDPN (gray). Montage images were acquired and presented for individual and combined channels. Images from the cortical regions are shown. Scale bar, 50 μm. White dashed lines represent a B cell follicle located near the capsule, and red dashed lines indicate an IFR. Higher magnification images of the cyan insets are shown. Scale bars, 50 and 20 μm. (C and D) mLN cryosections from (C) naive and (D) 21 dpi chimeric mice were stained for B220 (green) and PDPN (red). The dashed white circles represent B cell follicles following infection (Figures 7B and 7C). The number of CXCL13-producing cells in the paracortical region is limited, and this process is essential for promoting efficient adaptive immune responses. These data indicate that cortical region CXCL13-expressing mLN MRCs can expand, proliferate, and remodel along with other lymphoid stromal cells to seed IFR, non-cortical regions for DCs/T and B cells interaction which is important for constructing the microenvironment that may promote the B cell follicle expansion.
signaling to B cells and lymphotixin signaling to FRCs were required for the development and remodeling of CXCL13+ MRC-like cells. Based on these findings, we can build a model in which IL-4 activation of B cells leads to a B cell-reticular cell interaction, resulting in the expansion and/or differentiation of CXCL13+ MRC-like cells necessary for promoting the adaptive type 2 immune response (Figure S7/H).

The differentiation and maturation of specific LN stromal cell subpopulations are thought to require LTßR signaling to stromal organizer cells, which then mature into FDCs, FRCs, or MRCs (Randall et al., 2008; Roozendaal and Mebius, 2011). However, the exact lineage relations between these different cell types remain unclear (Roozendaal and Mebius, 2011). Fate mapping studies indicate that MRCs can give rise to FDCs during B cell follicle development (Jarjour et al., 2014). We observed that the increase in CXCL13-producing MRC-like cells in the IFR region of Hp-infected mice correlated with the formation of both FDC− and FDC+ B cell follicles. This indicates that the development of new B cell follicles may be partially driven by the MRC-like cells along with FDCs.

Whether the increased numbers of CXCL13+ MRCs identified in the IFR of infected mLNs arise from precursor stromal cells or CXCL13+ FRCs, or whether they represent existing SCS MRCs that proliferate and migrate to the paracortex is unclear. However, two of our observations together support our model in which existing SCS MRCs can proliferate and seed the IFR: (1) deep tissue image analysis, which reveals a continuous reticular structure from the SCS toward the IFR, and (2) the active proliferation of MRCs. Unfortunately, we were not able to test this hypothetical model, as both SCS MRCs and T cell zone FRCs are positive for CCL19C− driven eYFP+ expression in advance of infection (Figure S6) (Fasnacht et al., 2014). New genetic tools targeting distinct populations of LN reticular cells and their precursors will need to be developed to reveal the exact lineage relations between CXCL13-producing cells located in the SCS, IFRs, and paracortical region.

Chemokine-dependent positioning of ILCs, lymphocytes, and DCs within the LN plays an important role in adaptive immunity (Kastenmüller et al., 2013; Mueller and Germain, 2009; Schulz et al., 2016). Protection against Hp infection has been previously shown to require CXCL13, which allowed CXCR5+ DCs to accumulate within the IFR as early as 8 days post-infection (dpi) (León et al., 2012). Our work supports these findings and extends them to show that MRC-like cells present in the IFR are likely to be responsible for the accumulation of CXCR5+ DCs, as these two cell types accumulated in the same region. Moreover, CXCL13 production by FDCs was decreased rather than increased by helminth infection, as seen previously in other infection models (Mueller et al., 2007; St John and Abraham, 2009). CXCL13 has been shown to upregulate surface lymphotixin expression on B cells (Ansel et al., 2000), and the majority of lymphotixin-producing naive and isotype switched B cells are present at the IFR or mantle region (Dubey et al., 2016). Thus, high CXCL13 expression by MRC-like cells present in these sites would be expected to promote a feed-forward loop and result in further B cell accumulation and activation and further activation of LTßR expressing reticular cells. IL-4, which is largely produced by T helper cells in Hp-infected mLNs (King and Mohrs, 2009) and usually peaks between 12 and 21 dpi (Finney et al., 2007; Mosconi et al., 2015), may act as a second feed-forward loop, with IL-4 upregulating lymphotixin on B cells and thereby promoting CXCL13 production by MRCs in the IFR, eventually leading to the accumulation of more T helper 2-promoting DCs. These results further emphasize the complex interplay between FRCs and DCs, which are already known to contribute to LN expansion (Acton et al., 2014; Chyou et al., 2011; Worbs et al., 2017).

Of note, the findings that MRCs expand and produce CXCL13 raises the possibility that MAdCAM-1 expression by MRCs plays an important role in promoting T helper 2 responses. Both naive and effector lymphocytes in mLNs can express 4β integrin, the ligand for MAdCAM-1, and this integrin is crucial for entry from

Figure 7. Magnitude of CXCL13 Production and MRCs Remodeling during Secondary Infection with Hp
(A) Schematic of infection scheme in which WT mice were infected with Hp, then treated with an anthelmintic drug (cobantril) at 21 dpi and allowed to rest for 2 weeks before challenge infection with 200 infective Hp larvae. mLNs were collected from 21 dpi primary infected (1 Hp), 12 and 21 dpi secondary infected (2 Hp), and 21 dpi mice treated with the anthelmintic drug, sacrificed along with 2 Hp 21 dpi mice. mLNs from naive mice treated with the anthelmintic drug were also analyzed.

(B and C) Cryosections from mLN of 12 (B) and 21 (C) dpi 2 Hp infected mice were stained and MRCs identified by the expression of MAdCAM-1 (green), RANKL (blue), and PDPN (red). The dashed white rectangles represent IFR (insets 1 and 3), and the magenta rectangles represent the SCS region (insets 2 and 4). The capsule is highlighted using solid arrows. At right, higher-magnification images of the IFR and SCS region insets. All of the images are representative of two independent experiments, each including n ≥ 2–3 mice per group per time point. Scale bars, 100 and 10 μm.

(D) CXCL13 pixel intensities were quantified from mice of the various groups: 1 Hp (green circle), 2 Hp (magenta and red squares), resolved group (blue circle), and naive control treated with anthelmintic (gray circle). The resolution (Res) group of mice was treated with the anthelmintic drug without challenge infection and were sacrificed on the same day as 2 Hp 21 dpi along with naive mice for comparison. Data represent means ± SEMs and are representative of two independent experiments, with n = 3 mice per group and >10 IFR per mouse.

(E and F) FDC− (E) and FDC+ (F) follicles within the mLN were enumerated. Data represent means ± SEMs. Data were pooled from two independent experiments, each including n ≥ 2–3 mice per group per time point.

(G) Immunofluorescence images showing combined and segmented panels from the mLN of 21 dpi 2 Hp-infected mice stained with laminin (green), CXCL13 (red), CD35 (gray), and DAPI (blue). CXCL13 expression at follicular (yellow square), mantle (orange rectangle), and intrafollicular regions (cyan rectangles) are shown at higher magnification. White and cyan dashed-line circles represent FDC− and FDC+ follicles, respectively.

(H and I) CD35 (H) and CXCL13 (I) expression within FDC− and FDC+ follicles were determined as described in Method Details. Data represent means ± SEMs and are representative of two independent experiments with n = 3 mice per group, with >15 follicles analyzed. CD35 expression was significantly higher in FDC+ follicles compared to FDC− follicles, which had background-level pixels (range, 65–150, presumably due to the low CD35 expression found in B cells relative to FDCs). Statistical analyses were performed using ANOVA, Bonferroni’s multiple comparison test or the Mann-Whitney t test, and significance denoted as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
the bloodstream into the mLN s and intestinal tissues (Iwata et al., 2004; Miyasaka and Tanaka, 2004; Xu et al., 2010). Our work identifying MadCAM-1-expressing MRC-like cells in the IFR extends this notion by indicating that the availability of such integrins may also play a role in attracting and retaining various lymphocytes within the IFR of the infected mLN, where DC-T cell interactions are known to take place. The adherence of B cells to MadCAM-1 under static and flow conditions are known to be CXCL13 dependent (Kanemitsu et al., 2005). MRCs expressing both MadCAM-1 and CXCL13 in and around the newly formed B cell follicles may thereby retain B cells and promote follicle formation in response to Hp infection. The remodeling of the MRC network during infection such that it frames the B cell follicle, not only on the SCS side but also in the paracortex and the IFR, suggests that these cells may also have roles in delivering additional chemokines and antigens directly to the follicle and/or to FDCs (Gonzalez et al., 2009). This notion is supported by previous observations that FRCs can form conduits that deliver antigen both to B cell follicles and to the paracortex (Roozendaal et al., 2009; Six et al., 2005). On several occasions, we also observed CXCL13 expression in blood vessels, which is in line with previous reports (Kanemitsu et al., 2005). FRC subsets form very firm contact with MadCAM+ HEVs (Herzog et al., 2013), and the presence of an interconnected FRC and MRC reticular network around these vessels may serve as an arresting point for incoming DCs and B and T cells (expressing CXCR5) by providing additional CXCL13. This will help further in cellular activation, which could govern cellular differentiation, trafficking to distinct niches, and follicle formation. Mionnet et al. (2013) previously noted that after complete Freund’s adjuvant injection, B cells migrate out of the follicle to “trespass” into the T cell zone, where they instruct FRCs to produce CXCL13 in an LTβR-dependent manner. In contrast to our findings, these CXCL13+ FRCs did not express RANKL or MadCAM-1 (indicating they were not MRCs), and the authors instead called these cells versatile stromal cells and hypothesized that either FDCs or versatile stromal cells function to establish B cell follicle identity and to promote B cell retention in the germinal center (Mionnet et al., 2013; Wang et al., 2011). Our study expands on this work to indicate that IL-4-driven inflammation also promotes CXCL13+ production, mainly by MRCs and less by versatile stromal cells or FDCs. These results further suggest great plasticity between various lymphoid stromal cells and/or their precursors, with LTβR signaling being crucial for CXCL13 production, FRC proliferation, and TNF expansion (Bénézech et al., 2012; Chai et al., 2013; Cyster, 2014; Fütterer et al., 1998). We could not detect any significant changes in the mLN s of naive WT and LTβR+/− mice, with both groups exhibiting more or less similar organization and B cell follicle numbers during homeostasis (Dubey et al., 2016). This is perhaps not surprising, as the LTO that seed the LN anlagen are clearly different between PLN and mLN (Cupedo et al., 2004) and maintain differences in adulthood (Fletcher et al., 2011).

In summary, we have shown that IL-4Rα signaling to B cells following Hp infection can promote LTβR signaling to stromal fibroblasts, resulting in the development of CXCL13+ MRC-like cells in the IFRs of the cortex and paracortex of the mLN. The presence of these cells correlated with, and is likely to be important for, the accumulation of CXCR5-expressing DCs at this site; these DCs are known to promote the ensuing Th2 response. These cells may also participate in the formation of the newly developed B cell follicles occurring within this region, and partially replace FDC in this function (Figure S7H). Our findings identify a previously unrecognized role for IL-4Rα signaling in promoting the development of CXCL13-expressing FRC/MRC-like cells and highlight the important role of lymphocyte-stromal cell interactions in maintaining effective adaptive immune responses within the draining LNs.

STAR★ METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- CONTACT FOR REAGENT AND RESOURCE SHARING
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
 - Animal experiments and ethics statement
- METHOD DETAILS
 - Flow cytometry and antibodies
 - Histology and immunofluorescence microscopy
 - CXCL13 immunofluorescence staining and quantification
 - Vibratome Sections
 - Image acquisition and processing
 - Bone marrow chimeras (BMC)
 - RNA isolation and qRT-PCR analysis
- QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2019.04.079.

ACKNOWLEDGMENTS

We thank the École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL) animal facility, flow cytometry core facility, Jessica Sorchet-Dessimoz, and the histology core facility (HCF-EPFL) for support and expertise. A special thanks to Olivier Buri, Thierry Laroche, and Anne Seitz from the Bio-Imaging and Optics Platform for ImageJ/Fiji tools and crucial advice regarding image analysis. L.K.D. is Chargé de recherche in the Department of Biochemistry, UNIL (DB-UNIL). This work was supported by a grant from DB-UNIL (to L.K.D.), the Leenaards Prize for Translational Research in Medicine, awarded to N.L.H. and S.A.L. by the Leenaards Foundation, Lausanne, Switzerland, and a grant from the Swiss National Science Foundation (31003A-166161 to S.A.L.), Switzerland.

AUTHOR CONTRIBUTIONS

L.K.D. and N.L.H. conceived of and designed the study. L.K.D. performed all of the experiments, analyzed the data, and wrote the paper. B.L. provided CCL19−/− x LTβR+/− mice and critical suggestions throughout the manuscript. S.A.L. contributed Col-1a1GFP mice, various important tools, reagents, resources, and critical suggestions throughout the manuscript. L.K.D. and N.L.H. analyzed the data and wrote the paper.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat anti mouse B220-biotin (Clone RA3-6B2)</td>
<td>Life Technologies</td>
<td>Cat No# RM2615</td>
</tr>
<tr>
<td>Rat anti mouse B220 (Clone RA3-6B2)</td>
<td>BioLegend</td>
<td>Cat No# 103202</td>
</tr>
<tr>
<td>Armenain hamster anti mouse CD3 (Clone 14S-2C11)</td>
<td>BioLegend</td>
<td>Cat No# 100302</td>
</tr>
<tr>
<td>Rat anti mouse CD35 (Clone 8C12)</td>
<td>BD PharMingen</td>
<td>Cat No# 558768</td>
</tr>
<tr>
<td>Rat anti mouse ER-TR7</td>
<td>BMA Biomedicals</td>
<td>Cat No# T-2109</td>
</tr>
<tr>
<td>Rat anti mouse FDCM1</td>
<td>BD PharMingen</td>
<td>Cat No# 551320</td>
</tr>
<tr>
<td>Armenain hamster anti mouse CD11c (Clone N418)</td>
<td>BioLegend</td>
<td>Cat No# 117308</td>
</tr>
<tr>
<td>Rat anti mouse GL-7-biotin</td>
<td>eBiosciences</td>
<td>Cat No# 13-5902-85</td>
</tr>
<tr>
<td>Rat anti mouse IgD (Clone 11-26c)</td>
<td>Southern Biotech</td>
<td>Cat No# 1120-01</td>
</tr>
<tr>
<td>Rabbit anti mouse laminin</td>
<td>Sigma-Aldrich</td>
<td>Cat No# L9393</td>
</tr>
<tr>
<td>Syrian hamster anti mouse podoplanin (clone 8.1.1)</td>
<td>Hybridoma</td>
<td>N/A</td>
</tr>
<tr>
<td>Rat anti mouse CD254 (Clone IKK22/5)-Biotin</td>
<td>eBiosciences</td>
<td>Cat No# 13-5952-82</td>
</tr>
<tr>
<td>Rabbit anti mouse RANKL</td>
<td>Peprotech</td>
<td>Cat No# 500-P63</td>
</tr>
<tr>
<td>Goat anti mouse CXCL13</td>
<td>R&D Systems</td>
<td>Cat No# AF470</td>
</tr>
<tr>
<td>Goat IgG Control</td>
<td>R&D Systems</td>
<td>Cat No# AB-108-C</td>
</tr>
<tr>
<td>Rat anti mouse MAAdCAM1 (Clone MECA 367)</td>
<td>BioLegend</td>
<td>Cat No# 120702</td>
</tr>
<tr>
<td>Goat anti armenian hamster-Alexa 594</td>
<td>Jackson Immuno Research</td>
<td>Cat No# 127-585-160</td>
</tr>
<tr>
<td>Donkey anti Rabbit IgG-Alexa 488</td>
<td>Thermo Fischer</td>
<td>Cat No# A21206</td>
</tr>
<tr>
<td>Donkey anti Rabbit IgG-Alexa 568</td>
<td>Thermo Fischer</td>
<td>Cat No# A10042</td>
</tr>
<tr>
<td>Donkey anti Rabbit IgG-Alexa 647</td>
<td>Thermo Fischer</td>
<td>Cat No# A31573</td>
</tr>
<tr>
<td>Donkey anti Rat IgG-Alexa 488</td>
<td>Thermo Fischer</td>
<td>Cat No# A21208</td>
</tr>
<tr>
<td>Goat anti Rat IgG-Alexa 568</td>
<td>Thermo Fischer</td>
<td>Cat No# A11077</td>
</tr>
<tr>
<td>Donkey anti Rat IgG-biotin</td>
<td>Jackson Immuno Research</td>
<td>Cat No# 712-065-153</td>
</tr>
<tr>
<td>Donkey anti Rat IgG-Alexa 647</td>
<td>Jackson Immuno Research</td>
<td>Cat No# 712-605-150</td>
</tr>
<tr>
<td>Chicken anti Rat IgG-Alexa 647</td>
<td>Thermo Fischer</td>
<td>Cat No# A-21472</td>
</tr>
<tr>
<td>Goat anti Syrian hamster IgG-Alexa 488</td>
<td>Jackson Immuno Research</td>
<td>Cat No# 107-545-142</td>
</tr>
<tr>
<td>Goat anti Syrian hamster IgG-Alexa 647</td>
<td>Jackson Immuno Research</td>
<td>Cat No# 107-606-142</td>
</tr>
<tr>
<td>Rabbit anti Syrian hamster IgG-Alexa 647</td>
<td>Jackson Immuno Research</td>
<td>Cat No# 307-605-003</td>
</tr>
<tr>
<td>Donkey anti Goat IgG-biotin</td>
<td>Jackson Immuno Research</td>
<td>Cat No# 705-035-003</td>
</tr>
<tr>
<td>Rat anti mouse-CD45</td>
<td>Biolegend</td>
<td>Cat No# 103114</td>
</tr>
<tr>
<td>Rat anti mouse-CD45</td>
<td>Biolegend</td>
<td>Cat No# 103122</td>
</tr>
<tr>
<td>Rat anti mouse-CD31</td>
<td>Biolegend</td>
<td>Cat No# 102422</td>
</tr>
<tr>
<td>Rat anti mouse-CD35</td>
<td>Biolegend</td>
<td>Cat No# 123408</td>
</tr>
<tr>
<td>Rat anti mouse-CD35</td>
<td>Biolegend</td>
<td>Cat No# 123413</td>
</tr>
<tr>
<td>Syrian hamster anti mouse Podoplanin</td>
<td>eBiosciences</td>
<td>Cat No# 50-5381</td>
</tr>
<tr>
<td>Rat anti mouse-TER119</td>
<td>Biolegend</td>
<td>Cat No# 116215</td>
</tr>
<tr>
<td>Rat anti mouse-MAAdCAM1</td>
<td>Biolegend</td>
<td>Cat No# 120706</td>
</tr>
<tr>
<td>Rat anti mouse-MAAdCAM1</td>
<td>Biolegend</td>
<td>Cat No# 120708</td>
</tr>
</tbody>
</table>

(Continued on next page)
Continued

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal mouse serum</td>
<td>Naive mouse (C57BL/6)</td>
<td>N/A</td>
</tr>
<tr>
<td>Normal donkey serum</td>
<td>Millipore</td>
<td>S30-100 mL</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraformaldehyde</td>
<td>Merck-Millipore</td>
<td>Cat No# 104005</td>
</tr>
<tr>
<td>Collagenase P</td>
<td>Roche</td>
<td>Cat No# 11215809103</td>
</tr>
<tr>
<td>Dispase</td>
<td>Roche</td>
<td>Cat No# 04942078001</td>
</tr>
<tr>
<td>DNase I</td>
<td>Roche</td>
<td>Cat No# 11284932001</td>
</tr>
<tr>
<td>Agarose, low gelling temperature</td>
<td>Sigma Aldrich</td>
<td>Cat No# A9414</td>
</tr>
<tr>
<td>(Ethylene)tetraacetic acid (EDTA)</td>
<td>Applichem</td>
<td>Cat No# A4892</td>
</tr>
<tr>
<td>DAPI</td>
<td>Sigma Aldrich</td>
<td>Cat No# D9542</td>
</tr>
<tr>
<td>Streptavidin-Alexa 488</td>
<td>Molecular Probes</td>
<td>Cat No# S-11223</td>
</tr>
<tr>
<td>Streptavidin-Alexa 568</td>
<td>Molecular Probes</td>
<td>Cat No# S-11226</td>
</tr>
<tr>
<td>Streptavidin-Alexa 568</td>
<td>Molecular Probes</td>
<td>Cat No# S-21374</td>
</tr>
<tr>
<td>ProLong Gold Antifade Mountant</td>
<td>ThermoFisher</td>
<td>Cat No# P36934</td>
</tr>
<tr>
<td>Tyramide signal amplification kit (Alexa 488 and Alexa 568)</td>
<td>ThermoFisher</td>
<td>Cat No# T20932/34</td>
</tr>
<tr>
<td>Streptavidin HRP</td>
<td>Jackson Immunosearch</td>
<td>Cat No# 016-030-084</td>
</tr>
<tr>
<td>Cobantril</td>
<td>McCoy et al., 2008</td>
<td>N/A</td>
</tr>
<tr>
<td>Tissue-Tek optimum cutting temperature compound (OCT)</td>
<td>Fisher Scientific</td>
<td>Cat No# 14-373-65</td>
</tr>
<tr>
<td>Acetone for HPLC, ≥ 99.9%</td>
<td>Sigma Aldrich</td>
<td>Cat No# 270725</td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Cycler 480 SYBR Green I Master mix</td>
<td>Roche</td>
<td>Cat No# 04707516001</td>
</tr>
<tr>
<td>Depleting anti-CD45 microbeads</td>
<td>Miltenyi Biotec</td>
<td>Cat No# 130-052-301</td>
</tr>
<tr>
<td>Depleting anti-TER119 microbeads</td>
<td>Miltenyi Biotec</td>
<td>Cat No# 130-049-901</td>
</tr>
<tr>
<td>Direct-zol RNA MiniPrep kit</td>
<td>Zymo Research</td>
<td>Cat No# R2051</td>
</tr>
<tr>
<td>RevertAid First Strand cDNA Synthesis Kit</td>
<td>ThermoFisher</td>
<td>Cat No# K1622</td>
</tr>
<tr>
<td>Experimental Models: Organisms/Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse: C57BL/6 (WT)</td>
<td>Charles River</td>
<td>Strain code: 027</td>
</tr>
<tr>
<td>Mouse: JhT knockout</td>
<td>Dubey et al., 2016</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: IL-4Rx knockout</td>
<td>Dubey et al., 2016</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: LT−j knockout</td>
<td>Dubey et al., 2016</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: TCR−j− knockout</td>
<td>Dubey et al., 2016</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: C57BL/6N-Tg(Ccl19-Cre)(Ccl19-Cre)</td>
<td>Chai et al., 2013</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: Lbr+/−</td>
<td>Chai et al., 2013; Dubey et al., 2017</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: Rosa26-eYFP</td>
<td>Jackson Laboratories</td>
<td>Stock No: 006148</td>
</tr>
<tr>
<td>Parasite: Heligmosomoides polygyrus (Hp)</td>
<td>Dubey et al., 2016</td>
<td>Dubey et al., 2016</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer for RT PCR Forward (Cxcl13): CATGATCGGATTCAGT</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Primer for RT PCR Reverse (Cxcl13): TCTTGGTGCCAGATCACAA</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Primer for RT PCR Forward (Gapdh): GTGCGCGCCTCGTCGCCG</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Primer for RT PCR Reverse (Gapdh): TTGCGGTGAGTGAGGAT</td>
<td>This paper</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Continued on next page)
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Nicola Harris (nicola.harris@monash.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal experiments and ethics statement

C57BL/6J (WT) mice were obtained from Charles River. Jht \(-/-\), IL-4R\(\alpha\)-/- mice were bred and maintained on the C57BL/6J background under specific pathogen-free (SPF) conditions at Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. Ccl19\(^{cre}\) \(3\) LT\(b\)R\(^{+/+}\) (LT\(b\)R\(^{+/+}\)) and Ccl19\(^{cre}\) \(3\) LT\(b\)R\(^{fl/fl}\) (LT\(b\)R\(^{fl/fl}\)) were provided by Burkhard Ludewig, Kantonsspital St. Gallen and were maintained on the C57BL/6J background under specific pathogen-free (SPF) conditions at Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. During the course of study, all the mice (male and females having age in between 8 to 12 weeks) were infected orally with 200 L3 stage \(H. pylori\). Mice were sacrificed at 12 days post-infection (12dpi) or 21 days post-infection (21dpi).

Challenge infections (Secondary \(H. pylori\); 2\(^{nd}\)/C14 \(H. pylori\)) were performed as previously described (Esser-von Bieren et al., 2013), with slight modifications (see Figure 7A). Briefly, worms were cleared by treating mice with two doses of anthelminthic drug; Cobantril (Interdelta - Givisiez, Fribourg, Switzerland) 21 days after primary infection. 14 days later mice were challenge-infected with 200 L3 stage \(H. pylori\). Mice were sacrificed on day 12 (2\(^{nd}\)/C14 \(H. pylori\)-12dpi) and 21 post challenge infection (2\(^{nd}\)/C14 \(H. pylori\)-21dpi) and mLNs were collected for analysis. A group of infected mice were treated with cobantril, then left unchallenged and sacrificed on day 60 (equivalent to 2\(^{nd}\)/C14 \(H. pylori\) 21dpi) as controls. All animal experiments were approved by the Service de la consommation et des affaires ve´terina`ires (1066 Epalinges, Canton of Vaud, Switzerland) with the authorization numbers VD 2238.1 and VD 3001.

METHOD DETAILS

Flow cytometry and antibodies

For flow cytometric analysis, mLNs were processed as previously described (Dubey et al., 2016). For lymphocyte staining mLN single cell suspensions were gently dispersed, cells filtered through 40-\(\mu\)m-cell strainer, counted and used for FACS staining. For stromal cell staining mLN were subjected to enzymatic digestion using a digestion mixture comprised of RPMI- 1640 containing Dispase and Collagenase P (both from Roche), and 0.1 mg/ml DNase I (Invitrogen). Then cells were resuspended in FACS buffer (PBS containing

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Nicola Harris (nicola.harris@monash.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal experiments and ethics statement

C57BL/6J (WT) mice were obtained from Charles River. Jht \(-/-\), IL-4R\(\alpha\)-/- mice were bred and maintained on the C57BL/6J background under specific pathogen-free (SPF) conditions at Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. Ccl19\(^{cre}\) \(3\) LT\(b\)R\(^{+/+}\) (LT\(b\)R\(^{+/+}\)) and Ccl19\(^{cre}\) \(3\) LT\(b\)R\(^{fl/fl}\) (LT\(b\)R\(^{fl/fl}\)) were provided by Burkhard Ludewig, Kantonsspital St. Gallen and were maintained on the C57BL/6J background under specific pathogen-free (SPF) conditions at Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. During the course of study, all the mice (male and females having age in between 8 to 12 weeks) were infected orally with 200 L3 stage **H. pylori**. Mice were sacrificed at 12 days post-infection (12dpi) or 21 days post-infection (21dpi). Challenge infections (Secondary **H. pylori**; 2\(^{nd}\)/C14 **H. pylori**) were performed as previously described (Esser-von Bieren et al., 2013), with slight modifications (see Figure 7A). Briefly, worms were cleared by treating mice with two doses of anthelminthic drug; Cobantril (Interdelta - Givisiez, Fribourg, Switzerland) 21 days after primary infection. 14 days later mice were challenge-infected with 200 L3 stage **H. pylori**. Mice were sacrificed on day 12 (2\(^{nd}\)/C14 **H. pylori**-12dpi) and 21 post challenge infection (2\(^{nd}\)/C14 **H. pylori**-21dpi) and mLNs were collected for analysis. A group of infected mice were treated with cobantril, then left unchallenged and sacrificed on day 60 (equivalent to 2\(^{nd}\)/C14 **H. pylori** 21dpi) as controls. All animal experiments were approved by the Service de la consommation et des affaires vétérinaires (1066 Épalinges, Canton of Vaud, Switzerland) with the authorization numbers VD 2238.1 and VD 3001.

METHOD DETAILS

Flow cytometry and antibodies

For flow cytometric analysis, mLNs were processed as previously described (Dubey et al., 2016). For lymphocyte staining mLN single cell suspensions were gently dispersed, cells filtered through 40-\(\mu\)m-cell strainer, counted and used for FACS staining. For stromal cell staining mLN were subjected to enzymatic digestion using a digestion mixture comprised of RPMI- 1640 containing Dispase and Collagenase P (both from Roche), and 0.1 mg/ml DNase I (Invitrogen). Then cells were resuspended in FACS buffer (PBS containing

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphPad Prism 7.0</td>
<td>GraphPad</td>
<td>https://www.graphpad.com/scientific-software/prism/</td>
</tr>
<tr>
<td>Imaris Versions 8</td>
<td>Bitplane</td>
<td>https://imaris.oxinst.com/packages</td>
</tr>
<tr>
<td>Olympus slide scanner software (OlyVIA v.2.6)</td>
<td>Olympus</td>
<td>https://www.olympus-lifescience.com/en/microscopes/virtual/vs120/</td>
</tr>
<tr>
<td>Image-J software</td>
<td>Open source</td>
<td>Image-J NIH</td>
</tr>
<tr>
<td>VSI reader action bar</td>
<td>EPFL BiImaging & Optics Platform (BIOP)</td>
<td>EPFL BiImaging & Optics Platform (BIOP)</td>
</tr>
<tr>
<td>FIJI tools, action bar and analysis</td>
<td>EPFL BiImaging & Optics Platform (BIOP)</td>
<td>EPFL BiImaging & Optics Platform (BIOP)</td>
</tr>
</tbody>
</table>
fractions that were positive for podoplanin (PDPN) and CD31 were identified as LECs, PDPN + and CD31- MAdCAM-1 were paracortical. The entire length of the mLN chain was carefully dissected, weighed, imaged and embedded in Tissue-Tek optimum cutting temperature compound (OCT) (Thermo Scientific), then frozen in an isopentane dry ice bath. Serial cryostat sections (8 μm in thickness) were collected over a span of 400 μm depth on Superfrost/Plus glass slides (Fisher Scientific), air-dried and fixed for 10-15 min in ice-cold acetone. After rehydration in PBS, sections were blocked with 1% (wt/vol) BSA and 1%–4% (vol/vol) normal mouse and donkey serum. Immunofluorescence staining was performed using antibodies diluted in PBS containing 1% (wt/vol) BSA and 1% (vol/vol) normal mouse serum. Sections were incubated with primary antibodies overnight at 4°C. The following day sections were washed three times in PBS and primary antibodies were detected by incubating sections with fluorescently labeled secondary antibodies, and nuclei counterstained with DAPI prior to mounting of the sections using ProLong® anti-fade reagents (Life technologies). Stained sections were then imaged after 24 hr. A detailed list of antibodies used is provided in the key resources table (see STAR Methods).

Histology and immunofluorescence microscopy
The entire length of the mLN chain was carefully dissected, weighed, imaged and embedded in Tissue-Tek optimum cutting temperature compound (OCT) (Thermo Scientific), then frozen in an isopentane dry ice bath. Serial cryostat sections (8 μm in thickness) were collected over a span of 400 μm depth on Superfrost/Plus glass slides (Fisher Scientific), air-dried and fixed for 10-15 min in ice-cold acetone. After rehydration in PBS, sections were blocked with 1% (wt/vol) BSA and 1%–4% (vol/vol) normal mouse and donkey serum. Immunofluorescence staining was performed using antibodies diluted in PBS containing 1% (wt/vol) BSA and 1% (vol/vol) normal mouse serum. Sections were incubated with the desired panel mix of MRCs markers along with anti-CXCL13 antibodies overnight at 4°C. The following day sections were washed three times in PBS and probed with donkey anti-goat biotin, rabbit anti-Syrian hamster and donkey anti-rat antibody. Sections were incubated at room temperature (RT) and then washed three to five times in PBS and probed with streptavidin-HRP for 1 hour at RT followed by revelation using Tyramide Signal Amplification (TSA) kit (Invitrogen). Nuclei counter-stained with DAPI prior to mounting of the sections using ProLong® anti-fade reagents (Life technologies). On some occasion’s sections were incubated with CXCL13 antibody alone and probed with secondary antibody followed by desired panel mix of MRCs/FRCs/FDCs markers. For thick vibratome sections, 25–50 μg/ml of CXCL13 antibody (AF470) was used in a blocking buffer containing 0.1% Triton X-100 where samples were incubated for at least 5-7 days at 4°C followed by corresponding secondary antibody. The sections were revealed using streptavidin-488/568 as appropriate. On some occasion’s sections were revealed using donkey anti-goat alexa 488/568 antibody. On some occasions, CXCL13 pixel intensity was also measured from a pre-defined region of interest (ROI; follicle, mantle, IFR) using Fiji common drawing tools. Various regions of interest (ROI) were then subjected to a defined measure tool to obtain the various pixel intensity across the various groups. To validate the strength of such measure tool CD35, laminin, CXCL13 and DAPI mean pixel intensity were measured across various ROI. FDC⁺ follicles had higher pixel values for CD35 (ranging from 250 to 600) whereas FDC⁻ follicles had a pixel intensity background level pixels (ranging from 50 to 140). Laminin showed a higher pixel intensity in T cell zone as well as at IFR and mantle region. A positive signal for laminin within the follicle was also seen which most probably be due to presence of B zone reticular cells within the follicle. DAPI remain consistent across the various region analyzed. The low and high pixel values along with background levels were variable across the different experiments, different batch of antibodies and storage time of sections (freshly cut versus stored at −80°C). Therefore, Naive and infected lymph node which were sectioned, stained and imaged on the same day with the same batch of reagents and antibodies were used for such quantification to avoid any batch variations and results were presented as an arbitrary pixel value.

Vibratome sections
Isolated mLN were fixed overnight at 4°C in freshly prepared 1%–2% paraformaldehyde in PBS, washed and embedded in 2% (w/v) low-melting agarose (Sigma-Aldrich) in PBS. = 100-200 μm thick sections were cut with a vibratome (Microm HM 650V) and were used for staining. These thick sections were blocked with blocking buffer (as described above) overnight and stained for at 2 to 5 days with the primary antibodies followed by extensive washing in PBS before incubation with fluorescently labeled secondary antibodies. After staining, samples were cleared as described previously (Dubey et al., 2017; Tomer et al., 2014). Briefly, after hydrogel embedding, polymerization was performed for three hours at 37°C followed by washing twice with 1X- PBS. After washing, the samples were subjected to passive clearing using X-CLARITY electrophoretic tissue clearing system (Logos Biosystems) according to the manufacturer recommendations. Completion of tissue clearing was assessed by assessing for transparency using a black and white sheet. On some occasions tissue were cleared by serially incubating in 10–15 mL of 20%, 40% and 60% (wt/vol) fructose, each for 6–8 h in 15 mL conical tubes with gentle rotation at 25°C. Samples were then incubated in 80% (wt/vol) fructose for 12 h, 100% (wt/vol) fructose for 12-18 h and finally in SeeDB (80.2% wt/wt fructose) for 24 h with gentle shaking. After clearing, vibratome sections were imaged using a light sheet microscope (Zeiss) or LSM700/710 upright confocal microscope with 20 × objective. The 3D reconstruction and movies were made using IMARIS (Bitplane).
Image acquisition and processing

Images were acquired on an Olympus VS120-SL full slide scanner using a 20x/0.75 air objective and an OlympusXM10 B/W camera or LSM710 laser scanning confocal microscope or with light sheet microscope (Zeiss) with 20× objective. For images that were acquired using Olympus VS120-SL full slide scanner or with LSM710 laser scanning confocal microscope, each image was acquired using the indicated fluorescent channels and the same exposure time employed across different samples. The images were downsampled when extracted using the VSI reader action bar developed by the EPFL BioImaging & Optics Platform (BIOP) and were then subjected to the analysis pipeline available through ImageJ/Fiji. For the generation of the final images comparing different samples (i.e., naive versus infected mLN), each fluorescent channel was set to the same brightness and contrast, the mLN chain outlined using Fiji, then assembled such that the final image represented the individual and overlay of all channels. Alternatively, images were directly processed using Olympus slide scanner software (OlyVIA v.2.6) after adjusting the brightness and contrast settings so that they remained the same across all samples compared. For quantitative measurements, immunofluorescence images from naive and infected mice mLN were acquired and segmented using Image-J software and the number of pixels specific for given marker against DAPI was measured using an automated macro and expressed as the percentage of total pixels in each area occupied by given marker.

Bone marrow chimeras (BMC)

Bone marrow (BM) from donor-mice was obtained from the femur and tibia by crushing bones with a mortar. BM cells were injected into C57BL/6j (WT) or IL-4Rα−/− recipient mice previously irradiated two times with 450 rad in a 4 h interval. All mice were maintained in specific pathogen-free conditions. For the generation of mixed bone marrow chimeras B cells lacking IL-4Rα expression (B-IL-4Rα−/−) and B-WT chimeras, C57BL/6J recipients were reconstituted with 80% JhT bone marrow plus 20% IL-4Rα−/− bone marrow or with 80% JhT bone marrow plus 20% WT bone marrow respectively. For the generation of mice lacking lymphoxygen expression on B cells (B-LTβ−/−) and B-WT chimeras, WT recipients were reconstituted with 80% JhT bone marrow plus 20% LTβ−/− bone marrow or with 80% JhT bone marrow plus 20% WT bone marrow, respectively. For the generation of mice lacking lymphoxygen expression on T cells (T-LTβ−/−) and T-WT chimeras, WT recipients were reconstituted with 80% TCR-β bone marrow plus 20% LTβ−/− bone marrow or with 80% TCR-β bone marrow plus 20% WT bone marrow. Mice received the antibiotic ‘Baytril 10%’ (1/1,000) in the drinking water for 4 to 8 weeks following bone marrow reconstitution and were subjected to parasite infection at 8 weeks following reconstitution.

RNA isolation and qRT-PCR analysis

The complete length of mLN were collected into trizol and stored at −80°C until used. Stromal and cellular fraction were separated as described previously (Add Nat comm ref 2017). Briefly, mLN were mashed through a 40-μm cell strainer filter using a 5 mL syringe plunger, with the filtered cells representing the soluble cellular part and the remaining white matter left on strainer representing the stromal fraction. RNA was extracted with a Direct-zol RNA MiniPrep kit (Zymo Research) and reverse transcribed using RevertAid cDNA synthesis reagents (Thermo Scientific) for qPCR analysis. qPCR was performed using SYBR Green I Master Mix (Eurogentec) on an Applied Biosystems 7900HT System. The following primers were used to detect chemokines. Cxcl13 Fw: CATAGATCGGATTC AAGT, Cxcl13 Rv: TCTTGGTCCAGATCACAA, Gapdh Fw GTGCCAGCCTCGTCCCG, Gapdh Rv: TTGCCGTGAGTGGAGTCA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using a non-parametric Mann Whitney Student’s t test, one-way or two-way ANOVA as indicated and with post-tests as appropriate. P values indicated as p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) , p < 0.0001 (****) or ns (statistically not significant). Graph generation and statistical analyses were performed using Prism version 7 (MacOS) software (Graph pad, La Jolla, CA).