

Daily iron supplementation for improving anaemia, iron status and health in menstruating women (Review)

Low MSY, Speedy J, Styles CE, De-Regil LM, Pasricha SR

Low MSY, Speedy J, Styles CE, De-Regil LM, Pasricha SR. Daily iron supplementation for improving anaemia, iron status and health in menstruating women. *Cochrane Database of Systematic Reviews* 2016, Issue 4. Art. No.: CD009747. DOI: 10.1002/14651858.CD009747.pub2.

www.cochranelibrary.com

TABLE OF CONTENTS

HEADER	1
ABSTRACT	1
PLAIN LANGUAGE SUMMARY	2
SUMMARY OF FINDINGS FOR THE MAIN COMPARISON	4
BACKGROUND	5
OBJECTIVES	7
METHODS	7
RESULTS	13
Figure 1	13
Figure 2	15
Figure 3	16
Figure 4	19
Figure 5	20
Figure 6	22
DISCUSSION	26
AUTHORS' CONCLUSIONS	27
ACKNOWLEDGEMENTS	28
REFERENCES	28
CHARACTERISTICS OF STUDIES	35
DATA AND ANALYSES	115
Analysis 1.1. Comparison 1 Anaemia, Outcome 1 Anaemia at end of therapy (total).	121
Analysis 1.2. Comparison 1 Anaemia, Outcome 2 Anaemia at end of therapy (sensitivity analysis).	122
Analysis 1.3. Comparison 1 Anaemia, Outcome 3 Anaemia at end of therapy (cointervention).	122
Analysis 1.4. Comparison 1 Anaemia, Outcome 4 Anaemia at end of therapy (age).	124
Analysis 1.5. Comparison 1 Anaemia, Outcome 5 Anaemia at end of therapy (baseline Hb).	125
Analysis 1.6. Comparison 1 Anaemia, Outcome 6 Anaemia at end of therapy (iron status).	126
Analysis 1.7. Comparison 1 Anaemia, Outcome 7 Anaemia at end of therapy (iron-deficiency anaemia).	127
Analysis 1.8. Comparison 1 Anaemia, Outcome 8 Anaemia at end of therapy (dose).	128
Analysis 1.9. Comparison 1 Anaemia, Outcome 9 Anaemia at end of therapy (duration).	130
Analysis 1.10. Comparison 1 Anaemia, Outcome 10 Anaemia at end of therapy (type of iron).	131
Analysis 2.1. Comparison 2 Haemoglobin, Outcome 1 Haemoglobin (total).	132
Analysis 2.2. Comparison 2 Haemoglobin, Outcome 2 Haemoglobin (sensitivity analysis).	134
Analysis 2.3. Comparison 2 Haemoglobin, Outcome 3 Haemoglobin (cointervention).	135
Analysis 2.4. Comparison 2 Haemoglobin, Outcome 4 Haemoglobin (age).	138
Analysis 2.5. Comparison 2 Haemoglobin, Outcome 5 Haemoglobin (baseline Hb).	140
Analysis 2.6. Comparison 2 Haemoglobin, Outcome 6 Haemoglobin (iron status).	143
Analysis 2.7. Comparison 2 Haemoglobin, Outcome 7 Haemoglobin (iron-deficiency anaemia).	146
Analysis 2.8. Comparison 2 Haemoglobin, Outcome 8 Haemoglobin (dose).	149
Analysis 2.9. Comparison 2 Haemoglobin, Outcome 9 Haemoglobin (duration).	152
Analysis 2.10. Comparison 2 Haemoglobin, Outcome 10 Haemoglobin (type of iron).	154
Analysis 3.1. Comparison 3 Iron deficiency, Outcome 1 Iron deficiency at end of therapy (total).	157
Analysis 3.2. Comparison 3 Iron deficiency, Outcome 2 Iron deficiency at end of therapy (sensitivity analysis).	158
Analysis 4.1. Comparison 4 Iron-deficiency anaemia, Outcome 1 Iron-deficiency anaemia (total).	158
Analysis 4.2. Comparison 4 Iron-deficiency anaemia, Outcome 2 Microcytic anaemia (Total).	159
Analysis 5.1. Comparison 5 Side effects, Outcome 1 Any side effect (total).	159
Analysis 5.2. Comparison 5 Side effects, Outcome 2 Any side effect (sensitivity analysis).	160
Analysis 5.3. Comparison 5 Side effects, Outcome 3 Any side effect (dose).	161
Analysis 5.4. Comparison 5 Side effects, Outcome 4 Gastrointestinal side effects (total).	162
Analysis 5.5. Comparison 5 Side effects, Outcome 5 Gastrointestinal side effects (sensitivity analysis).	163
Analysis 5.6. Comparison 5 Side effects, Outcome 6 Gastrointestinal side effects (dose).	164
Analysis 5.7. Comparison 5 Side effects, Outcome 7 Loose stools/diarrhoea (total).	165

		1//
	Analysis 5.8. Comparison 5 Side effects, Outcome 8 Hard stools/constipation (total).	166
	Analysis 5.9. Comparison 5 Side effects, Outcome 9 Hard stools/constipation (sensitivity analysis).	167
	Analysis 5.10. Comparison 5 Side effects, Outcome 10 Abdominal pain (total).	168
	Analysis 5.11. Comparison 5 Side effects, Outcome 11 Nausea (total).	169
	Analysis 5.12. Comparison 5 Side effects, Outcome 12 Change in stool colour (total).	170
	Analysis 5.13. Comparison 5 Side effects, Outcome 13 Headache (total).	171
	Analysis 6.1. Comparison 6 Iron status, Outcome 1 Ferritin in ng/ml (total).	172
	Analysis 6.2. Comparison 6 Iron status, Outcome 2 Ferritin in ng/ml (cointervention)	174
	Analysis 6.3. Comparison 6 Iron status, Outcome 3 Ferritin in ng/ml (age)	176
	Analysis 6.4. Comparison 6 Iron status, Outcome 4 Ferritin in ng/ml (baseline Hb)	178
	Analysis 6.5. Comparison 6 Iron status, Outcome 5 Ferritin in ng/ml (iron status)	180
	Analysis 6.6. Comparison 6 Iron status, Outcome 6 Ferritin in ng/ml (iron-deficiency anaemia).	183
	Analysis 6.7. Comparison 6 Iron status, Outcome 7 Ferritin in ng/ml (dose)	185
	Analysis 6.8. Comparison 6 Iron status, Outcome 8 Ferritin in ng/ml (duration)	188
	Analysis 6.9. Comparison 6 Iron status, Outcome 9 Ferritin in ng/ml (type of iron)	190
	Analysis 6.10. Comparison 6 Iron status, Outcome 10 Transferrin saturation (total)	192
	Analysis 6.11. Comparison 6 Iron status, Outcome 11 Soluble transferrin receptor (mg/L) (total)	194
	Analysis 6.12. Comparison 6 Iron status, Outcome 12 Total iron binding capacity (total)	195
	Analysis 6.13. Comparison 6 Iron status, Outcome 13 Serum iron (total).	196
	Analysis 6.14. Comparison 6 Iron status, Outcome 14 Erythrocyte protophyrin (ug/g Hb) (total).	197
	Analysis 7.1. Comparison 7 Exercise performance - peak (maximal), Outcome 1 Absolute VO2 max (L/min) (total).	197
	Analysis 7.2. Comparison 7 Exercise performance - peak (maximal), Outcome 2 Relative VO2 max ml/kg/min (total).	198
	Analysis 7.3. Comparison 7 Exercise performance - peak (maximal), Outcome 3 Peak respiratory exchange ratio (RER)	
	(total).	199
	Analysis 7.4. Comparison 7 Exercise performance - peak (maximal), Outcome 4 Maximum heart rate (total).	200
	Analysis 7.5. Comparison 7 Exercise performance - peak (maximal), Outcome 5 Lactate at longest point (total).	201
	Analysis 8.1. Comparison 8 Exercise performance - submaximal, Outcome 1 Percentage VO2 peak (total).	202
	Analysis 8.2. Comparison 8 Exercise performance - submaximal, Outcome 2 Heart rate (total).	203
	Analysis 8.3. Comparison 8 Exercise performance - submaximal, Outcome 3 Energy consumption (kJ/min) (total).	204
	Analysis 8.4. Comparison 8 Exercise performance - submaximal, Outcome 4 Respiratory exchange ratio (RER) (total).	205
	Analysis 8.5. Comparison 8 Exercise performance - submaximal, Outcome 5 Achieved workload (total).	206
	Analysis 8.6. Comparison 8 Exercise performance - submaximal, Outcome 6 Time to exhaustion (total).	206
	Analysis 9.1. Comparison 9 Anthropometric, Outcome 1 Height (cm) (total).	207
	Analysis 9.2. Comparison 9 Anthropometric, Outcome 2 Weight (kg) (total).	208
	Analysis 9.3. Comparison 9 Anthropometric, Outcome 3 Weight (kg) (sensitivity analysis).	209
	Analysis 9.4. Comparison 9 Anthropometric, Outcome 4 Body mass index (total).	210
	Analysis 9.5. Comparison 9 Anthropometric, Outcome 5 Body mass index (total).	210
	Analysis 10.1. Comparison 10 Serum/plasma zinc, Outcome 1 Zinc levels (total).	212
	Analysis 11.1. Comparison 11 Productivity, Outcome 1 Productivity.	212
	Analysis 12.1. Comparison 12 Malaria, Outcome 1 Malaria prevalence at end of therapy (Total).	213
ΑĿ	PPENDICES	213
	HAT'S NEW	219
	DNTRIBUTIONS OF AUTHORS . <	219
	ECLARATIONS OF INTEREST	21)
	DURCES OF SUPPORT	220
	IFFERENCES BETWEEN PROTOCOL AND REVIEW	220
	IDEX TERMS	221
11 1		

[Intervention Review]

Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Michael Sze Yuan Low^{1,2}, Joanna Speedy³, Claire E Styles⁴, Luz Maria De-Regil⁵, Sant-Rayn Pasricha⁶

¹Department of Immunology, Walter & Eliza Hall Institute of Medical Research, Parkville, Australia. ²Department of Clinical Haematology, Monash Health, Clayton, Australia. ³Clinical Services and Research, Australian Red Cross Blood Service, Adelaide, Australia. ⁴Clinical Services and Research, Australian Red Cross Blood Service, Perth, Australia. ⁵Research and Evaluation, Micronutrient Initiative, Ottawa, Canada. ⁶MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK

Contact address: Sant-Rayn Pasricha, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxford, OX5 9DS, UK. sant-rayn.pasricha@unimelb.edu.au, santapasricha@gmail.com.

Editorial group: Cochrane Developmental, Psychosocial and Learning Problems Group. Publication status and date: Edited (no change to conclusions), published in Issue 4, 2016.

Citation: Low MSY, Speedy J, Styles CE, De-Regil LM, Pasricha SR. Daily iron supplementation for improving anaemia, iron status and health in menstruating women. *Cochrane Database of Systematic Reviews* 2016, Issue 4. Art. No.: CD009747. DOI: 10.1002/14651858.CD009747.pub2.

Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background

Iron-deficiency anaemia is highly prevalent among non-pregnant women of reproductive age (menstruating women) worldwide, although the prevalence is highest in lower-income settings. Iron-deficiency anaemia has been associated with a range of adverse health outcomes, which restitution of iron stores using iron supplementation has been considered likely to resolve. Although there have been many trials reporting effects of iron in non-pregnant women, these trials have never been synthesised in a systematic review.

Objectives

To establish the evidence for effects of daily supplementation with iron on anaemia and iron status, as well as on physical, psychological and neurocognitive health, in menstruating women.

Search methods

In November 2015 we searched CENTRAL, Ovid MEDLINE, EMBASE, and nine other databases, as well as four digital thesis repositories. In addition, we searched the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) and reference lists of relevant reviews.

Selection criteria

We included randomised controlled trials (RCTs) and quasi-RCTs comparing daily oral iron supplementation with or without a cointervention (folic acid or vitamin C), for at least five days per week at any dose, to control or placebo using either individual- or clusterrandomisation. Inclusion criteria were menstruating women (or women aged 12 to 50 years) reporting on predefined primary (anaemia, haemoglobin concentration, iron deficiency, iron-deficiency anaemia, all-cause mortality, adverse effects, and cognitive function) or secondary (iron status measured by iron indices, physical exercise performance, psychological health, adherence, anthropometric measures, serum/plasma zinc levels, vitamin A status, and red cell folate) outcomes.

Data collection and analysis

We used the standard methodological procedures of Cochrane.

Main results

The search strategy identified 31,767 records; after screening, 90 full-text reports were assessed for eligibility. We included 67 trials (from 76 reports), recruiting 8506 women; the number of women included in analyses varied greatly between outcomes, with endpoint haemoglobin concentration being the outcome with the largest number of participants analysed (6861 women). Only 10 studies were considered at low overall risk of bias, with most studies presenting insufficient details about trial quality.

Women receiving iron were significantly less likely to be anaemic at the end of intervention compared to women receiving control (risk ratio (RR) 0.39 (95% confidence interval (CI) 0.25 to 0.60, 10 studies, 3273 women, moderate quality evidence). Women receiving iron had a higher haemoglobin concentration at the end of intervention compared to women receiving control (mean difference (MD) 5.30, 95% CI 4.14 to 6.45, 51 studies, 6861 women, high quality evidence). Women receiving iron had a reduced risk of iron deficiency compared to women receiving control (RR 0.62, 95% CI 0.50 to 0.76, 7 studies, 1088 women, moderate quality evidence). Only one study (55 women) specifically reported iron-deficiency anaemia and no studies reported mortality. Seven trials recruiting 901 women reported on 'any side effect' and did not identify an overall increased prevalence of side effects from iron supplements (RR 2.14, 95% CI 0.94 to 4.86, low quality evidence). Five studies recruiting 521 women identified an increased prevalence of gastrointestinal side effects in women taking iron (RR 1.99, 95% CI 1.26 to 3.12, low quality evidence). Six studies recruiting 604 women identified an increased prevalence of loose stools/diarrhoea (RR 2.13, 95% CI 1.10, 4.11, high quality evidence); eight studies recruiting 1036 women identified an increased prevalence of hard stools/constipation (RR 2.07, 95% CI 1.35 to 3.17, high quality evidence). Seven studies recruiting 1190 women identified evidence of an increased prevalence of abdominal pain among women randomised to iron (RR 1.55, 95% CI 0.99 to 2.41, low quality evidence). Eight studies recruiting 1214 women did not find any evidence of an increased prevalence of nausea among women randomised to iron (RR 1.19, 95% CI 0.78 to 1.82). Evidence that iron supplementation improves cognitive performance in women is uncertain, as studies could not be meta-analysed and individual studies reported conflicting results. Iron supplementation improved maximal and submaximal exercise performance, and appears to reduce symptomatic fatigue. Although adherence could not be formally meta-analysed due to differences in reporting, there was no evident difference in adherence between women randomised to iron and control.

Authors' conclusions

Daily iron supplementation effectively reduces the prevalence of anaemia and iron deficiency, raises haemoglobin and iron stores, improves exercise performance and reduces symptomatic fatigue. These benefits come at the expense of increased gastrointestinal symptomatic side effects.

PLAIN LANGUAGE SUMMARY

Iron supplementation taken daily for improving health in menstruating women

Review question

What are the effects of iron, taken orally for at least five days a week, on health outcomes in menstruating women (compared with not giving iron)?

Background

Iron deficiency (a shortage of iron stored in the body) and anaemia (low levels of haemoglobin - healthy red blood cells - in the blood) are common problems globally, especially in women. Low levels of iron can eventually cause anaemia (iron-deficiency anaemia). Among non-pregnant women, around one third are anaemic worldwide. The problem is seen most commonly in low-income countries, but iron deficiency and anaemia are more common in women in all contexts. Iron-deficiency anaemia is considered to impair health and well-being in women, and iron supplements - tablets, capsules, syrup or drops containing iron - are a commonly used intervention to prevent and treat this condition. We sought to review the evidence of iron, taken orally for at least five days per week, for improving health outcomes in non-pregnant women of reproductive age (menstruating women).

Search data

The review is current to November 2015.

Study characteristics

We included studies comparing the effects of iron compared with no iron when given at least five days per week to menstruating women. We identified 67 trials recruiting 8506 women eligible for inclusion in the review. Most trials lasted between one and three months. The most commonly used iron form was ferrous sulphate.

Key results

We found evidence that iron supplements reduce the prevalence of anaemia and iron deficiency, and raise levels of haemoglobin in the blood and in iron stores. Iron supplementation clearly increases the risk of side effects, for example, constipation and abdominal pain.

Quality of the evidence

We found high quality evidence that iron improves haemoglobin and produces changes in bowel function, but moderate quality evidence that iron reduces the prevalence of anaemia and iron deficiency. Evidence of the effects of iron on other outcomes, such as abdominal pain, is of low quality. There are no data on the effects of iron on mortality in this population group.

Further definitive studies are needed to identify whether taking iron supplements orally for at least five days a week has an impact on key, health-related outcomes.

SUMMARY OF FINDINGS FOR THE MAIN COMPARISON [Explanation]

Daily oral iron supplementation

Patient or population: menstruating women (non-pregnant women of reproductive age) Settings: all settings Intervention: daily oral iron supplementation Comparison: no daily iron supplementation

Outcomes	Relative effect (95% Cl)	Number of participants (studies)	Quality of the evidence (GRADE)	Comments
Anaemia at end of ther- apy (total), as defined by trial authors	RR 0.39 (0.25 to 0.60)	3273 (10)	⊕⊕⊕⊖ Moderate ¹	Large effect, but down- graded 1 level for risk of bias and 1 level for inconsistency
Haemoglobin at end of therapy (total), g/L	MD 5.30 (4.14 to 6.45)	6861 (51)	⊕⊕⊕⊕ High	-
Iron deficiency at end of therapy (total), as defined by trial authors	RR 0.62 (0.50 to 0.76)	1088 (7)	⊕⊕⊕⊖ Moderate ¹	Downgraded 1 level for risk of bias
Iron-deficiency anaemia at end of ther- apy, as defined by trial authors		55 (1)	-	Meta-analysis not pos- sible
All-cause mortality, over the course of the study			-	Not measured
Any adverse side ef- fects (total), as defined and reported by trial au- thors	RR 2.14 (0.94 to 4.86)	901 (7)	⊕⊕⊖⊖ Low ²	Downgraded 1 level for imprecision, and 1 level for risk of bias
GI side effects (total) , events during study, as defined and reported by trial authors	RR 1.99 (1.26 to 3.12)	521 (5)	⊕⊕⊖⊖ Low ²	Downgraded 1 level for risk of bias, and 1 level for imprecision
Loose stools/diarrhoea (total), events during study, as defined and reported by trial au- thors	RR 2.13 , (1.10 to 4.11)	604 (6)	$\oplus \oplus \oplus \oplus$ High ²	-

Hard stools/constipa- tion (total), events dur- ing study, as defined and reported by trial au- thors	RR 2.07 (1.35 to 3.17)	1036 (8)	$\oplus \oplus \oplus \oplus$ High ²	-
Abdominal pain (total), events during study, as defined and reported by trial authors	RR 1.55 (0.99 to 2.41)	1190 (7)	$\oplus \oplus \bigcirc \bigcirc$ Low ²	Downgraded 1 level for risk of bias, and 1 level for imprecision
Cognitive function , as measured by trial au-thors		-	-	Unable to combine the data in a meta-analysis

CI: confidence interval; GI: gastrointestinal; GRADE: Grades of Recommendation, Assessment, Development, and Evaluation; MD: mean difference; RR: risk ratio

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹Anaemia and iron deficiency are rated as moderate as, although iron benefits both outcomes, further studies are needed to more accurately guantify benefit.

²The quality of evidence for several adverse outcomes (any adverse effect, GI side effects and abdominal pain) were deemed low due to insufficient numbers to determine the true effect of intervention with wide CIs. Diarrhoea and constipation had similar participant numbers, however, the magnitude of the difference between intervention and control arms were larger.

BACKGROUND

Description of the condition

Over 1.6 billion people worldwide have anaemia, a condition in which haemoglobin production is diminished. Women of menstruating age account for approximately a third of all cases of anaemia across the globe (WHO/CDC 2008). The most recent estimates suggest that 29% of non-pregnant women worldwide are anaemic (Stevens 2013). Iron deficiency is believed to contribute to at least half the global burden of anaemia, especially in non-malaria-endemic countries (Stoltzfus 2001). Iron deficiency is thus considered the most prevalent nutritional deficiency in the world. Iron deficiency occurs following negative iron balance. As body iron stores are exhausted, the production of red blood cells is impaired, and finally iron-deficiency anaemia results (Suominen 1998). The major causes of negative iron balance include inadequate dietary iron intake (due to consumption of a diet with a low overall or bioavailable iron content); increased losses of iron due to chronic blood loss (in women, due to menstruation and exacerbated in cases of heavier menstrual bleeding, and by intestinal hookworm infection in individuals living in endemic settings (Hotez 2005)); and increased iron requirements (e.g. during growth or pregnancy). Low dietary iron intake and bioavailability are considered key contributors to the burden of iron deficiency. This is especially so in populations consuming diets that are low in meat sources and high in cereals such as wheat, rice, maize and

millet, which are rich in phytates, compounds that bind to iron in the meal preventing its absorption (Sharpe 1950). Other dietary components such as tannins (found in tea) and calcium (contained in milk products) also inhibit iron absorption.

Women beyond menarche and prior to menopause are at especially high risk of iron deficiency due to menstrual blood losses. The onset of menstrual blood losses accompanied by rapid growth, with an associated expansion of red cell mass and tissue iron requirements, means adolescent girls have a particularly high iron need compared with their male counterparts. If this is compounded by inadequate dietary iron intake, they may be at especially high risk of iron deficiency (Dallman 1992). Other important causes of iron deficiency in women include intestinal malabsorptive conditions such as coeliac disease, chronic blood losses due to menorrhagia from uterine pathologies (such as fibroids), frequent blood donation, and benign and malignant gastrointestinal lesions (Goddard 2011). Iron deficiency, with and without anaemia, has also been noted to be prevalent among female athletes and is thought to be due to diets deficient in iron, increased losses due to gastrointestinal tract bleeding, and reduced iron absorption due to subclinical inflammation (Peeling 2008). The risk of iron deficiency may be modified by genetic factors such as inheritance of genes associated with haemochromatosis and polymorphisms in the TMPRSS6 gene (Chambers 2009).

As well as being critical to the production of haemoglobin, iron has a critical role in many other aspects of human physiology as it is involved in a range of oxidation-reduction enzymatic reactions in the muscle and nervous tissue (Andrews 1999), as well as other organs. Iron deficiency and iron-deficiency anaemia have been associated with a range of adverse physical, psychological, and cognitive effects. Animal models suggest a role for iron in brain development and function, with iron depletion being associated with dysregulated neurotransmitter levels (Lozoff 2007), and some, but not all, clinical studies have shown associations between iron supplementation and improvement in cognitive performance (Murray-Kolb 2007) and mood and well being, with a reduction in fatigue (Verdon 2003). Observational studies have suggested that iron deficiency in the absence of anaemia impairs exercise performance in women (Scholz 1997), while some, but not all, interventional studies of iron supplementation among the same population have shown variable improvements in maximal and submaximal exercise performance (Brownlie 2002; LaManca 1993), endurance (Brownlie 2004; Hinton 2000), and muscle fatigue (Brutsaert 2003). There may also be associations between iron status and haemoglobin concentrations and work productivity (Li 1994: Scholz 1997; Wolgemuth 1982). When anaemia is severe, it may cause lethargy, fatigue, irritability, pallor, breathlessness and reduced tolerance for exertion.

Alleviation of iron-deficiency anaemia among menstruating women is thus considered a major public health priority, both to improve their existing health status and to enhance their health in preparation for future pregnancies (WHO 2009). Other causes of anaemia important to distinguish from iron deficiency include anaemia of chronic disease (associated with inflammation, which causes iron to be withheld from erythropoiesis (the process by which red blood cells are produced)), functional iron deficiency (associated with renal impairment), genetic conditions of the red cell (haemoglobin, enzymes and membrane), and infectious diseases (including malaria).

Description of the intervention

Strategies to improve iron intake and alleviate iron-deficiency anaemia include mass and point-of-use fortification of foods with iron; dietary diversification to increase iron intake, absorption and utilisation; iron supplementation; and antihelminthic treatment. Supplementation is probably the most widespread intervention practiced clinically and in public health.

Oral iron supplementation, administered once a day or more frequently, is the standard clinical practice of many physicians in the treatment of iron deficiency in women (Goddard 2011). Daily iron and folic acid supplementation for three months should be considered for the prophylaxis of iron deficiency in populations where the prevalence of anaemia exceeds 40% (WHO/UNICEF/UNU 2001). In addition to its haematological effects, the use of folic acid during the periconceptional period helps prevent the risk of neural tube defects in babies (WHO/UNICEF/UNU 2001).

Iron is generally administered as a salt compound in a tablet, capsule, liquid or dispersible formulation. The most commonly prescribed salts are ferrous sulphate, fumarate, and gluconate (Pasricha 2010). Ferrous sulphate is perhaps the most commonly used of these interventions. Iron formulations are commonly combined with vitamin C to improve absorption, or folic acid to improve child outcomes when used before or during pregnancy. Commonly reported side effects of iron supplements include gastrointestinal disturbances (especially constipation and nausea) and dark stools. In those using liquid formulations, tooth staining can occur. Slow or sustained-release formulations in which iron is surrounded by a coating, aim to alleviate gastrointestinal side effects by delaying delivery of iron to a more distal point in the gastrointestinal tract, but their efficacy has been questioned. Thus, compliance to daily oral iron interventions due to adverse events can be a critical limiting factor to their effectiveness.

How the intervention might work

Iron is absorbed by intestinal cell luminal and basal transporters, bound to proteins and transported to the bone marrow, muscle and other tissue, where it is taken up by specific receptors and used for biological functions or stored (Andrews 1999). Textbooks advise that in an iron-deficient anaemic individual, haemoglobin concentrations should rise by 1 g/dL per week, with early evidence

of red blood cell formation discernible in the peripheral blood after 72 hours of supplementation (Mahoney 2011).

There is an inverse relationship between iron status and the ability to absorb iron. Iron deficiency induces changes in intestinal iron transport that can double absorption of iron from the diet (Thankachan 2008). Thus, as with dietary sources of iron, absorption from supplements depends on the baseline iron status of the individual and the co-consumption of iron absorption enhancers (such as vitamin C, other acidic foods, and meat) and inhibitors (calcium, phytates and tannins) (Hurrell 2010; Sharpe 1950).

As mentioned above, the ubiquitous presence of iron in the human body is such that its deficiency impairs a number of physiological functions and iron supplementation may thus benefit physical, psychological and cognitive health. Improvements in haemoglobin and myoglobin concentrations may ensure adequate tissue oxygenation and performance (Umbreit 2005). Iron is also present in the brain in relatively large amounts and is involved in neurotransmitter function (Burhans 2005); an adequate supply may contribute to maintaining normal cognitive and psychological health, although the mechanisms are not completely elucidated as yet.

An additional consideration when providing supplements at population level is the endemicity of malaria in a given region. Approximately 40% of the world's population is exposed to the malaria parasite and it is endemic in over 100 countries, causing more than a million deaths per year (WHO 2010). Provision of iron in malaria-endemic areas, particularly to children, has been controversial due to concerns that iron therapy may exacerbate infections, in particular malaria (Okebe 2011; Oppenheimer 2001). It is still not completely clear whether iron produces the same effects among older populations or whether subclinical malaria alters the response to iron supplementation.

Why it is important to do this review

Daily oral supplementation in women has been a longstanding intervention in both public health and clinical fields. Many patients and clinicians ascribe adverse health outcomes (including fatigue and lethargy, impaired cognitive performance and psychological dysfunction) to iron deficiency, even in the absence of anaemia, and attribute improvement in these symptoms to iron supplementation. In addition, many sporting authorities (including the International Olympic Committee (IOC 2009)) recommend screening of female athletes for iron deficiency in order to target the use of iron supplementation, with a view to improving performance. Daily iron and folic acid supplementation for three months should be considered for the prophylaxis of iron deficiency in populations where the prevalence of anaemia exceeds 40%. Iron supplementation has been recommended for preventing anaemia in women of childbearing age, and to optimise pre-conception iron status (WHO 2011).

Several intervention trials have evaluated improvements in haemoglobin and iron status, as well as non-haematologic outcomes such as physical, cognitive and psychological health, in menstruating women receiving iron supplementation. However, evaluation of this intervention has not been subject to systematic review and thus it is difficult to estimate the benefits and risks associated with the daily use of iron supplements in menstruating women.

This review will complement the findings of other Cochrane systematic reviews assessing the use of iron supplements alone, or in combination with other vitamins and minerals, in different female populations: intermittent supplementation in children (De-Regil 2011), iron supplementation among children in malaria-endemic areas (Okebe 2011), intermittent iron supplementation in menstruating women (Fernández-Gaxiola 2011), daily and intermittent iron and folic acid supplementation in pregnant women (Peña-Rosas 2009), multiple micronutrient supplementation in pregnancy (Haider 2006), and iron supplementation during the postpartum period (Dodd 2004).

OBJECTIVES

To establish the evidence for effects of daily supplementation with iron on anaemia and iron status, as well as on physical, psychological and neurocognitive health, in menstruating women.

METHODS

Criteria for considering studies for this review

Types of studies

Randomised controlled trials (RCTs) and quasi-RCTs with either individual- or cluster-randomisation. Quasi-RCTs are trials that use non-random systematic methods to allocate participants to treatment groups such as alternation, or assignment based on date of birth or case record number (Higgins 2011a).

We did not include observational study designs (e.g. cohort or case-control studies) in the meta-analysis but, where relevant, considered such evidence in the discussion.

Types of participants

Inclusion criteria

1. Menstruating women, that is, women beyond menarche and prior to menopause who were not pregnant or lactating or had any condition that impeded the presence of menstrual

periods, regardless of their baseline iron or anaemia status (or both), ethnicity, country of residence or level of endurance.

2. We included studies for which results for females between 12 years and 50 years of age (plausible age range for menstruation) could be extracted separately, or in which more than half of the participants fulfilled this criterion.

Exclusion criteria

1. Studies targeting populations with conditions affecting iron metabolism, intestinal malabsorption conditions, ongoing excessive blood loss (including ongoing blood donations), inflammatory bowel disease, cancer, chronic congestive cardiac failure, chronic renal failure, chronic liver failure or chronic infectious disease.

2. Studies that were purely evaluating kinetics of erythropoiesis or pharmacology of iron supplements or absorption.

3. Studies in hospitalised or ill people.

Types of interventions

We considered iron supplements to comprise iron formulations that may or may not have also contained folic acid or vitamin C, since these are commonly included in iron preparations. Doses needed to be given no less than five days a week, regardless of dose and duration of the intervention.

We included, in an overall comparison, effects of daily oral supplementation with iron alone, or in combination with folic acid or vitamin C, versus receiving no supplemental iron. In this review, 'iron supplement' refers to compounds containing iron salts such as ferrous sulphate, ferrous fumarate, ferrous gluconate, carbonyl or colloidal iron. Iron may have been delivered as a tablet (including dispersible forms), capsule, or liquid.

We included (and noted) studies in which iron supplements were given along with cointerventions such as other nutrients (e.g. zinc, vitamin A), deworming, education or other approaches but only if the cointerventions were the same in both the intervention and comparison groups. We did not include studies where additional haemopoietic agents were administered such as exogenous erythropoietin.

We undertook a simple overall comparison (iron versus control) and considered use of cointerventions as subgroups. This enabled us to appraise the overall evidence for intervening with iron supplementation, but differed from what we had proposed in our original protocol (Differences between protocol and review).

Interventions excluded from this review include point-of-use fortification with micronutrient powders or lipid-based foods, mass fortification of staple foods such as wheat or maize flours or condiments, and intermittent iron supplementation, which are evaluated in previous or ongoing Cochrane reviews (see Fernández-Gaxiola 2011; Pasrischa 2012; Peña-Rosas 2014; Self 2012).

Types of outcome measures

Primary outcomes

1. Anaemia (haemoglobin concentrations below a cut-off defined by trial authors).*

2. Haemoglobin (g/L).*

3. Iron deficiency (as measured by trial authors using indicators of iron status such as ferritin or transferrin).*

4. Iron-deficiency anaemia (defined by the presence of anaemia plus iron deficiency, diagnosed with an indicator of iron status selected by trialists).*

5. All-cause mortality.*

6. Adverse side effects (as measured by trial authors such as abdominal pain, vomiting, nausea, heartburn, diarrhoea, constipation).*

7. Cognitive function (as defined by trial authors. For example, for adolescents, school grades, test performance, intelligence testing; for adults not in school, formal tests addressing intelligence, memory, attention, and other cognitive domains). We accepted any measure of cognitive function that has been previously validated as an appropriate test in this domain.*

Outcomes marked with an asterisk (*) are included in Summary of findings for the main comparison.

Secondary outcomes

1. Iron status (as reported: ferritin, transferrin saturation, soluble transferrin receptor, soluble transferrin receptor-ferritin index, total iron binding capacity, serum iron).

2. Physical exercise performance (as defined by trial authors, in particular peak exercise performance (VO₂ max/peak - absolute and relative), submaximal exercise performance (heart rate, percentage VO₂ max, energy consumption), and endurance (time)).

3. Psychological health (e.g. depression as defined by the Center for Epidemiological Studies - Depression (CES-D) scale (Radloff 1977) or visual analogue scales; fatigue as defined by the trial authors, anxiety as defined by trial authors.

4. Adherence (percentage of women who consumed more than 70% of the expected doses).

5. Anthropometric measures (Z scores for height and weight by age for adolescents, and body mass index for adults).

6. Serum/plasma zinc (μ mol/L).

7. Vitamin A status (serum/plasma retinol (mmol/L) or

retinol binding protein (mmol/L)).

8. Red cell folate (mmol/L).

For populations in malaria-endemic areas, we reported two additional outcomes.

- 1. Malaria incidence.
- 2. Malaria severity.

If two outcomes evaluated the same construct (e.g. iron status evaluated with either ferritin or soluble transferrin receptors), we treated them separately.

Search methods for identification of studies

Electronic searches

We searched the following databases in March 2012, November 2014 and again on 12 November 2015.

1. Cochrane Central Register of Controlled Trials

(CENTRAL, 2015, Issue 10, part of *The Cochrane Library*), and which includes the specialised register of the Cochrane

Developmental, Psychosocial and Learning Problems Group.

2. Ovid MEDLINE (1946 to November Week 1 2015).

3. Embase (1980 to 2015 Week 45; Ovid).

4. CINAHL (1937 to current; EBSCOHost).

5. Conference Proceedings Citation Index - Science (CPCI-S; 1937 to current; Web of Science).

6. Science Citation Index (SCI; 1970 to 10 November 2015; Web of Science).

7. POPLINE (popline.org; all available years).

We searched the following regional indexes from the World Health Organization (WHO) Global Health Library on 28 May 2015, and again on 8 December 2015.

1. Literature in the Health Sciences in Latin America and the Caribbean (LILACS; all available years).

2. African Index Medicus (AIM; all available years).

3. Western Pacific Region Index Medicus (WPRIM; all available years).

4. Index Medicus for the Eastern Mediterranean Region (IMEMR; all available years).

5. Index Medicus for South-East Asia Region (IMSEAR; all available years).

We used the following sources to search for theses on 28 May 2015, and again on 8 December 2015.

1. WorldCat (worldcat.org; all available years).

2. DART-Europe E-theses Portal (dart-europe.eu; all available years).

3. Australasian Digital Theses Program (trove.nla.gov.au; all available years).

4. Proquest Dissertations and Theses Global (all available years).

The search strategies for each database are reported in Appendix 1. We did not apply any date or language restrictions.

Searching other resources

We searched all available years of the WHO International Clinical Trials Registry Platform (ICTRP) on 25 May 2015, and again on 8 December 2015 (apps.who.int/trialsearch). We also screened previously published reviews in order to identify other possible studies.

Data collection and analysis

Selection of studies

We stored all studies identified by our search strategy in Endnote 2015 reference manager software prior to evaluation. Titles and abstracts of obtained studies were screened by two authors (MSYL and SRP) independently. For those studies that were selected as potentially eligible for inclusion, two of the review authors (from CES, JS, MSYL or SRP) assessed whether they met the review's inclusion criteria. We kept records of all eligibility decisions using a digital eligibility form for each study. If study reports contained insufficient information on methods, participants or interventions, we attempted to contact the authors for further information. Disagreements were resolved through discussion between the coauthors.

Data extraction and management

We extracted data from studies using a digital extraction form designed for this review. We first piloted the form on a small number of study reports and modified it as necessary. For eligible studies, two review authors (two from JS, MSYL, CS or SRP) independently extracted data using the form. One author (MSYL) then entered data into Review Manager (RevMan) software (RevMan 2014) and a second author (SRP) checked data entry for accuracy. We resolved discrepancies through discussion between all review authors.

For each study, we collected data on the following domains.

- 1. Trial methods:
 - i) study design;
 - ii) unit and method of allocation;
 - iii) masking of participants and outcomes; and

iv) exclusion of participants after randomisation and

proportion of losses at follow-up.

2. Participants:

- i) location of the study;
- ii) sample size;
- iii) age;
- iv) baseline status of anaemia;
- v) baseline status of iron deficiency; and

vi) inclusion and exclusion criteria, as described in

Criteria for considering studies for this review.

- 3. Intervention:
 - i) dose of iron;
 - ii) type of iron compound;
 - iii) duration of the intervention; and
 - iv) cointerventions.

4. Comparison group:

i) use of placebo or no intervention.ppe

5. Outcomes:

i) primary and secondary outcomes, as outlined in Types of outcome measures.

We recorded outcomes that were both prespecified and not prespecified, although we did not use the latter to underpin the conclusions of the review.

Assessment of risk of bias in included studies

For each study, two of the four review authors (CES, JS, MSYL, SRP) used the standard Cochrane 'Risk of bias' tool to assess the risk of bias of each included study across the following eight domains: sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective outcome reporting, other biases, and overall risk of bias (Higgins 2011b). They applied the following criteria. Disagreements were resolved through discussion between review authors.

I. Random sequence generation (checking for possible selection bias)

We assessed whether the method used to generate the allocation sequence was described in sufficient detail to allow an assessment of whether it produced comparable groups and rated it as follows.

1. Low risk of bias: any truly random process (e.g. random number table, computer random number generator).

2. High risk of bias: any non-random process (e.g. odd or even date of birth, hospital or clinic record number).

3. Unclear risk of bias: random sequence generation not stated or insufficient information to deem whether study was at low or high risk of bias.

2. Allocation concealment (checking for possible selection bias)

We assessed whether the method used to conceal the allocation sequence was described in sufficient detail to determine whether intervention allocations could have been foreseen in advance of, or during, enrolment and rated it as follows.

1. Low risk of bias: telephone or central randomisation,

consecutively numbered sealed opaque envelopes used to conceal the allocation sequence.

2. High risk of bias: open random allocation, unsealed or nonopaque envelopes used to conceal the allocation sequence.

3. Unclear risk of bias: not stated or insufficient information to deem whether study was at low or high risk of bias.

3. Blinding of participants and personnel (checking for possible performance bias)

We assessed all measures used, if any, to blind study participants and personnel from knowledge of which intervention a participant received. We rated the risk of performance bias associated with blinding as follows.

1. Low risk of bias: participants and personnel were reported to be blinded in such a manner that they could not determine the groups to which participants belonged.

2. High risk of bias: participant or personnel were not blinded or blinding was performed in such a manner that it was possible to determine the groups to which participants belonged.

3. Unclear risk of bias: insufficient information to permit a judgement of low or high risk of bias.

Whilst assessed separately, we combined these assessments into a single evaluation of risk of bias associated with blinding (Higgins 2011b).

4. Blinding of outcome assessment (checking for possible detection bias)

We assessed all measures used, if any, to blind outcome assessors from knowledge as to which intervention a participant received and rated it as follows.

1. Low risk of bias: blinding of outcome assessment or no blinding of outcome assessment but measurement is unlikely to be influenced by lack of blinding.

2. High risk of bias: no blinding of outcome assessment, where measurement is likely to be influenced by lack of blinding, or where blinding could have been broken.

3. Unclear risk of bias: insufficient information to permit a judgement of low or high risk of bias.

5. Incomplete outcome data (checking for possible attrition bias through withdrawals, dropouts, protocol deviations)

We assessed whether incomplete outcome data were adequately addressed and rated it as follows.

1. Low risk of bias: either there were no missing outcome data, or the missing outcome data were unlikely to bias the results because the study authors provided transparent documentation of participant flow throughout the study, or the proportion of missing data was similar in the intervention and control groups, the reasons for missing data were provided and balanced across intervention and control groups, or the reasons for missing data were not likely to bias the results (e.g. moving house).

2. High risk of bias: missing outcome data were likely to bias the results. Studies were also considered at high risk of bias if more than 30% of randomised participants were lost to followup and unavailable for final assessment.

3. Unclear risk of bias: insufficient information was available to permit a judgement of low or high risk of bias.

6. Selective outcome reporting (checking for possible reporting bias)

We evaluated whether reports of the study were free from selective outcome reporting and rated it as follows.

1. Low risk of bias: where it was clear that all of the study's pre-specified outcomes and all expected outcomes of interest to the review were reported.

2. High risk of bias: where not all of the study's pre-specified outcomes were reported, one or more reported primary outcomes were not prespecified, outcomes of interest were reported incompletely and so could not be used, or the study failed to include results of a key outcome that was expected to have been reported.

3. Unclear risk of bias: insufficient information to deem whether the study was at low or high risk of bias.

7. Other sources of bias

We assessed whether the study was free from other problems that could put it at risk of bias as follows.

1. Low risk of bias: no other sources of bias appeared relevant

to the trial that were not covered in previous categories of bias.

2. High risk of bias: another source of bias was uncovered.

3. Unclear risk of bias: insufficient evidence was available to permit a judgement of high or low risk of bias.

8. Overall risk of bias

We summarised the risk of bias at two levels: within studies (across domains) and across studies (for each primary outcome).

For the first, we assessed the likely magnitude and direction of the bias in each of the above mentioned domains and whether we considered them likely to impact on the findings. We considered studies to be at low overall risk of bias if they were not at high risk of bias for any category, and were assessed as having low risk of bias for random sequence generation OR low risk of bias for allocation concealment (selection bias), and were also rated at low risk of bias for either blinding (performance or detection bias) or incomplete outcome data (attrition bias). Studies which failed to provide sufficient information (i.e. unclear risk of bias) to enable categorisation of risk of bias were excluded from categorisation as being at low risk of bias. We explored the impact of including only studies at low risk of bias on primary outcomes through a Sensitivity analysis.

For the assessment across studies, we set out the main findings of the review in Summary of findings for the main comparison. The primary outcomes for each comparison were listed with estimates of relative effects along with the number of participants and studies contributing data for those outcomes. For each primary outcome, we assessed the quality of the evidence across all trials contributing data using the GRADE (Grades of Recommendation, Assessment, Development, and Evaluation) approach (Balshem 2011), which involves consideration of within-study risk of bias (methodological quality), directness of evidence, heterogeneity, precision of effect estimates, and risk of publication bias. The results were expressed as one out of four levels of quality (high, moderate, low or very low). This assessment was limited to the trials included in this review only. We produced the tables using GRADEpro GDT 2015.

Measures of treatment effect

We did not combine dichotomous and continuous data for analysis, and instead considered them separately.

Dichotomous data

We presented the results as average risk ratios (RRs) with 95% confidence intervals (CI).

Continuous data

We used the mean difference (MD) with 95% CI if outcomes were measured in the same way between trials. Where some studies reported endpoint data and others reported change from baseline data (with errors), we combined these in the meta-analysis using the MD providing the outcomes were reported using the same scale.

We used the standardised mean difference (SMD) with 95% CI to combine trials that measured the same outcome but used different methods of measurement.

Unit of analysis issues

Cluster-randomised trials

We combined the results from both cluster-randomised and individually-randomised studies if there was little heterogeneity between these study designs and the interaction between the effect of intervention and the choice of randomisation unit was considered as unlikely.

If the results from cluster trials were not adjusted by trial authors, we calculated the trials' effective sample size to account for the effect of clustering in the data. We used the intracluster correlation coefficient (ICC) derived from the trial (if available), or from another source (e.g. used the ICCs derived from other, similar trials), and then calculated the design effect with the formula provided in the *Cochrane Handbook for Systematic Reviews of Interventions* (Deeks 2011).

Studies with multiple intervention groups

For studies with more than two intervention groups (multi-arm studies), we included the directly relevant arms only. Where we identified studies with various relevant arms, we combined the

groups into a single pair-wise comparison (Deeks 2011) and included the disaggregated data in the corresponding subgroup category. If the control group was shared by two or more study arms, we divided the control group (events and total population) over the number of relevant subgroup categories to avoid double counting the participants.

Cross-over trials

We only included the first period of any randomised cross-over trial prior to the wash-out period or to a change in the sequence of treatments, and treated them as parallel trials.

Dealing with missing data

Missing individuals

We noted the dropout rate for each included study, which can be seen in Characteristics of included studies tables. We reported rates of attrition in the 'Risk of bias' tables (beneath the Characteristics of included studies tables) and included them in the 'Risk of bias' summary graph. We conducted analysis on an available case-analysis basis: data were included from those participants whose results were known. We considered variation in the degree of missing data as a potential source of heterogeneity.

Missing data

Where key data (e.g. standard deviations) were missing from the report, we attempted to contact corresponding authors (or other authors if necessary) of included studies to request unreported data. Two authors were contacted for further information (Pereira 2014; Waldvogel 2012). If we were not able to obtain this information, we used methods recommended in the *Cochrane Handbook for Systematic Reviews of Interventions* (Higgins 2011c), to attempt to calculate it (performed in one study Zavaleta 2000). If this could not be achieved, we did not impute it and noted that the study did not provide data for that particular outcome.

Assessment of heterogeneity

We assessed methodological heterogeneity by examining the methodological characteristics and risk of bias of the studies, and clinical heterogeneity by examining the similarity between the types of participants, interventions and outcomes (Deeks 2011). For statistical heterogeneity, we examined the forest plots from meta-analyses for heterogeneity among studies and used the I² statistic (Higgins 2003), Tau², and Chi² test for heterogeneity to quantify the level of heterogeneity among the trials in each meta-analysis.

Assessment of reporting biases

Where more than 10 trials contributed data to the primary outcomes, we presented a funnel plot to evaluate asymmetry - a possible indicator of publication bias. Where funnel plot asymmetry was evident, this was formally assessed using Egger's regression test (continuous outcomes) or Peter's or Harbord's test (Sterne 2011); see Differences between protocol and review for more information. This was undertaken using the metan and metabias userwritten modules in Stata 13 (Harbord 2009).

Data synthesis

We conducted a meta-analysis to obtain an overall estimate of the effect of treatment when more than one study examined similar interventions using similar methods, was conducted in similar populations, and measured similar (comparable) outcomes. We carried out statistical analysis using RevMan 2014.

We used a random-effects meta-analysis for combining data, as we anticipated that there was natural heterogeneity between studies attributable to the different doses, durations, populations and implementation/delivery strategies.

Where different studies reported the same outcomes using both continuous and dichotomous measures, we re-expressed RRs as SMDs or vice versa, and combined the results using the generic inverse-variance method, as described in the *Cochrane Handbook for Systematic Reviews of Interventions* (Deeks 2011).

We performed meta-analyses of dichotomous outcomes using the Mantel-Haenszel method.

Subgroup analysis and investigation of heterogeneity

We performed the following subgroup analyses on the primary outcomes only.

1. Age: adolescents (12 to 18 years), older adults (50 to 55 years).

2. Nutrient: iron alone or iron + other intervention versus intervention alone, iron plus vitamin C versus vitamin C alone, iron + any cointervention versus that same cointervention alone.

3. Baseline anaemia status (as defined by trial authors): anaemic, non-anaemic, mixed or unknown.

4. Baseline iron status (as defined by trial authors): iron deficient, non-iron deficient, mixed or unknown.

5. Baseline iron-deficiency anaemia status (as defined by trial authors): iron deficient with anaemia, iron deficient without anaemia, non-iron deficient/unknown status of deficiency.

6. Daily dose of elemental iron supplementation: less than 30 mg, 30 mg to 60 mg, 61 mg to 100 mg, 101 mg or more elemental iron.

7. Duration of iron supplementation: 30 days (one month) or less, more than one month to three months inclusive, more than three months.

8. Malaria endemicity of the setting in which the study was performed: endemic, not endemic, not reported/unknown.

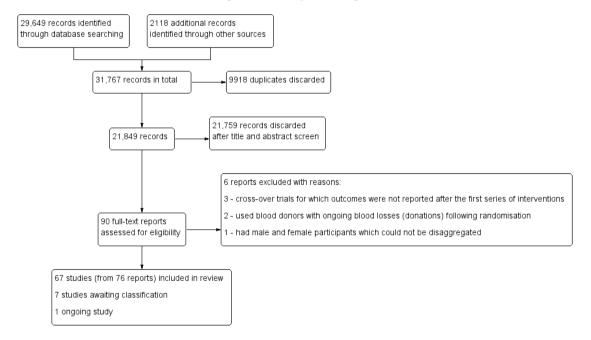
We added a further subgroup analysis post-hoc: types of iron (ferrous sulphate, ferrous fumarate and others). In addition, we decided to undertake subgroup analysis on the following secondary outcome: ferritin (see Differences between protocol and review). For meta-analysis including both endpoint and change scores data, we also conducted a subgroup analysis to separate the effects of the two outcome measures.

We did not conduct subgroup analyses in those outcomes with three or less trials. We explored the forest plots visually and identified where CIs did not overlap to assess differences between subgroup categories. We also formally investigated differences between two or more subgroups (Borenstein 2008).

Sensitivity analysis

We conducted sensitivity analyses examining effects of removing studies at high risk of bias (studies with poor or unclear allocation concealment and either inadequate blinding or high/imbalanced loss to follow-up) from the analysis. Likewise, for cluster studies reporting outcomes where reliable ICCs could not be obtained, we examined the effects of removing these studies from the analysis. For additional sensitivity analyses archived for future updates of this review, please see our protocol (Pasricha 2012) and Appendix 2.

RESULTS


Description of studies

See: Characteristics of included studies; Characteristics of excluded studies; Characteristics of studies awaiting classification; Characteristics of ongoing studies.

Results of the search

The search strategy identified 31,767 records for possible inclusion, 9918 of which were duplicates. Three studies were published in languages other than English (Machado 2011; Radjen 2011; Wang 2012) - these were translated to English for extraction. After screening, we assessed 90 full-text reports for eligibility. We included 67 studies (from 76 reports and one personal communication (see DellaValle 2012)), excluded six studies and classified seven studies as awaiting assessment either because we were unable to access the full text for the trials, despite assistance from an academic library, or determine if they were eligible for inclusion. Our search of WHO ICTRP identified one ongoing study, which may be eligible for inclusion when the results become available, although the findings are unlikely to alter the conclusions of this analysis (IRCT201409082365N9).

Figure 1 depicts the process by which we assessed and selected studies.

Figure I. Study flow diagram.

Daily iron supplementation for improving anaemia, iron status and health in menstruating women (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Included studies

Overall, we included 67 trials that recruited a total of 8506 women. The sample size ranged between 10 and 1390 participants but overall tended to be small: 96% of the studies included fewer than 400 women.

Settings

Studies were conducted in numerous countries of differing cultural and economic background. Included studies in this review were conducted in USA (Binkoski 2004; Bruner 1996; Cooter 1978; DellaValle 2012; Gordeuk 1987; Gordeuk 1990; Hinton 2000; Hinton 2007; Jensen 1991; Kiss 2015; Klingshirn 1992; LaManca 1993; Lyle 1992; McClung 2009; Murray-Kolb 2007; Rajaram 1995; Rowland 1988; Swain 2007; Viteri 1999; Yadrick 1989; Zhu 1998), Australia (Booth 2014; Leonard 2014; Marks 2014; Walsh 1989; Zaman 2013), United Kingdom (Bryson 1968; Elwood 1966; Elwood 1970; Pereira 2014), Iran (Eftekhari 2006; Kianfar 2000; Maghsudlu 2008), Sri Lanka (Edgerton 1979; Javatissa 1999; Lanerolle 2000), Sweden (Flink 2006; Hoppe 2013; Rybo 1985), Canada (Larocque 2006; Newhouse 1989), China (Li 1994; Wang 2012), Finland (Fogelholm 1992; Fogelholm 1994), India (Agarwal 2003; Kanani 2000), Israel (Ballin 1992; Magazanik 1991), Japan (Taniguchi 1991; Yoshida 1990), New Zealand (Heath 2001; Prosser 2010), Switzerland (Verdon 2003; Waldvogel 2012), Bolivia (Berger 1997), Brazil (Machado 2011), Chile (Mujica-Coopman 2015), Korea (Kang 2004), Mexico (Brutsaert 2003), Nepal (Shah 2002), Norway (Røsvik 2010), Peru (Zavaleta 2000), Phillipines (Florencio 1981), Serbia (Radjen 2011), Tanzania (Gunaratna 2015) and Thailand (Charoenlarp 1988).

Only two studies specifically stated being conducted in low socioeconomic settings (Kanani 2000; Zavaleta 2000); however it is likely that other studies were also performed in situations that would include low socioeconomic participants. One study specifically targeted middle-class participants (as defined by the trial authors) (Agarwal 2003).

Nine studies were performed specifically in an urban setting (Agarwal 2003; Ballin 1992; Bruner 1996; Florencio 1981; Heath 2001; Rybo 1985; Shah 2002; Wang 2012; Zavaleta 2000), four in a rural setting (Berger 1997; Charoenlarp 1988; Edgerton 1979; Gunaratna 2015). One study reports specifically recruiting from both rural and urban settings (Lanerolle 2000). The majority of studies did not specifically state whether the trials were performed in rural or urban settings (Binkoski 2004; Booth 2014; Brutsaert 2003; Bryson 1968; Cooter 1978; DellaValle 2012; Eftekhari 2006; Elwood 1966; Elwood 1970; Flink 2006; Fogelholm 1992; Fogelholm 1994; Gordeuk 1987; Gordeuk 1990; Hinton 2000; Hinton 2007; Jayatissa 1999; Jensen 1991; Hoppe 2013; Kanani 2000; Kang 2004; Kianfar 2000; Kiss 2015; Klingshirn 1992; LaManca 1993; Larocque 2006; Leonard 2014; Li 1994; Lyle 1992; Machado 2011; Magazanik 1991; Maghsudlu

2008; Marks 2014; McClung 2009; Mujica-Coopman 2015, Murray-Kolb 2007; Newhouse 1989; Pereira 2014; Prosser 2010; Radjen 2011; Rajaram 1995; Rowland 1988; Røsvik 2010; Swain 2007; Taniguchi 1991; Verdon 2003; Viteri 1999; Waldvogel 2012; Walsh 1989; Yadrick 1989; Yoshida 1990; Zaman 2013; Zhu 1998).

Only two studies specifically reported being performed in a malaria-endemic area (Charoenlarp 1988; Gunaratna 2015), with the majority not reporting malaria endemicity at the site of the trial.

Participants

Across the included studies a total of 8508 women were included; 4444 in the intervention arm, 4,064 in the control arm. The majority of studies recruited women between the ages of 13 years and 45 years. Three studies included women below 13 years of age: Agarwal 2003: range 10 years to 17 years (mean age not stated); Shah 2002: age range 11 years to 18 years (mean age 15 years); Zavaleta 2000: age range 12 years to 18 years (mean age 15 years). Six studies recruited females older than 45 years (Edgerton 1979: age range 20 years to 60 years (mean age: 35 years); Kiss 2015: age range not reported (mean age: 45.7 years); Machado 2011: age range 20 years to 49 years (mean age: not reported); Røsvik 2010: age range 18 years to 69 years (mean age: 43 years); Swain 2007: age range 21 years to 51 years (mean age: 40 years); Verdon 2003: age range 18 years to 55 years (mean age: 35 years). In these trials, data for participants aged within the target age range could not be extracted separately, although they met our inclusion criteria of comprising more than half of participants within the eligible age range.

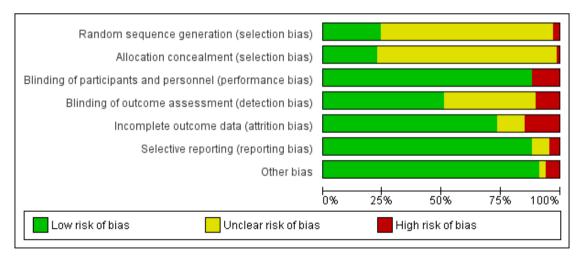
Twenty-six studies recruited women in an educational setting with 12 in secondary education (Agarwal 2003; Ballin 1992; Bruner 1996; Eftekhari 2006; Jayatissa 1999; Kanani 2000; Kianfar 2000; Lanerolle 2000; Larocque 2006; Rowland 1988; Shah 2002; Zavaleta 2000) and 14 in tertiary education (Cooter 1978; DellaValle 2012; Hoppe 2013; Jensen 1991; Klingshirn 1992; Lyle 1992; Murray-Kolb 2007; Pereira 2014; Rajaram 1995; Taniguchi 1991; Viteri 1999; Yoshida 1990; Zaman 2013; Zhu 1998).

Four studies recruited women through a specific workplace: factory workers (Bryson 1968; Florencio 1981), tea pickers (Edgerton 1979; Li 1994). Ten studies recruited women through sports teams (Cooter 1978; DellaValle 2012; Fogelholm 1992; Kang 2004; Klingshirn 1992; LaManca 1993; Radjen 2011; Rowland 1988; Walsh 1989; Yoshida 1990). Seven studies recruited women through blood donation centres (Gordeuk 1987; Gordeuk 1990; Kiss 2015; Maghsudlu 2008; Marks 2014; Røsvik 2010; Waldvogel 2012); in these studies, women did not undergo further blood donations between enrolment and outcome measurement.

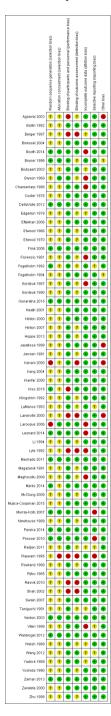
Dose and type of iron interventions

A variety of oral iron formulations were included in this review. The most frequently used was ferrous sulphate (33 studies; Binkoski 2004; Bruner 1996; Brutsaert 2003; DellaValle 2012; Edgerton 1979; Eftekhari 2006; Florencio 1981; Fogelholm 1992; Hinton 2000; Hinton 2007; Jensen 1991; Kianfar 2000; Klingshirn 1992; Lanerolle 2000; Leonard 2014; Li 1994; Lyle 1992; Machado 2011; Magazanik 1991; Maghsudlu 2008; McClung 2009; Mujica-Coopman 2015; Murray-Kolb 2007; Newhouse 1989; Pereira 2014; Radjen 2011; Rajaram 1995; Shah 2002; Verdon 2003; Viteri 1999; Waldvogel 2012; Zavaleta 2000; Zhu 1998). One study included two arms: ferrous sulphate and carbonyl iron (Gordeuk 1987). Two studies used carbonyl iron (Gordeuk 1990; Marks 2014). Five studies used ferrous fumarate (Bryson 1968; Cooter 1978; Flink 2006; Fogelholm 1994; Hoppe 2013), and one study used ferric pyrophosphate and ferrous fumurate together (Wang 2012).

Other iron formulations that were used included ferrous carbonate (Elwood 1966; Elwood 1970), ferrous gluconate (Booth 2014; Kiss 2015; Larocque 2006; Zaman 2013), ferric ammonium citrate (Taniguchi 1991), ferrous succinate (Rybo 1985), Niferex ferrous glycine sulphate (Røsvik 2010), amino acid chelate (Heath 2001; Prosser 2010), ferrous sodium citrate (Yoshida 1990), LiquiFer® (Iron polystyrene sulfonate) (Ballin 1992). Twelve studies did not state the specific iron formulation used (Agarwal 2003; Berger 1997; Charoenlarp 1988; Gunaratna 2015; Jayatissa 1999; Kanani 2000; Kang 2004; LaManca 1993; Rowland 1988; Swain 2007; Walsh 1989; Yadrick 1989). Doses of elemental iron varied from 1 mg of elemental iron to approximately 300 mg of elemental iron a day. Duration of iron supplement also varied significantly, ranging from 1 week to 24 weeks.


Excluded studies

We excluded six studies because they did not meet eligibility criteria. Three studies were cross-over trials that did not report on outcomes at the end of the first parallel intervention period (Brigham 1993; Powell 1991; Schoene 1983). Two studies were undertaken in blood donors in whom further donations during the trial indicated ongoing blood losses (Cable 1988; Simon 1984). In one trial, data from male and female participants could not be disaggregated (Powers 1988).


Risk of bias in included studies

Study methods were generally not well described in many of the studies and thus 'Risk of bias' assessment was difficult (see Figure 2 and Figure 3). Using the criteria defined above, only 11 studies were assessed as being at low risk of bias (Bruner 1996; DellaValle 2012; Flink 2006; Fogelholm 1992; Gunaratna 2015; Machado 2011; Marks 2014; Pereira 2014; Verdon 2003; Waldvogel 2012; Zaman 2013). The remaining studies were either assessed as being at high risk of bias or the methods were unclear and thus could not be rated as being at low risk of bias.

Figure 2. Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Figure 3. Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Allocation

Sixteen studies were considered to have generated the random sequence using a method considered to be at low risk of bias (Booth 2014; Bruner 1996; DellaValle 2012; Flink 2006; Fogelholm 1992; Gunaratna 2015; Kiss 2015; Leonard 2014; Machado 2011; Marks 2014; Murray-Kolb 2007; Pereira 2014; Prosser 2010; Verdon 2003; Waldvogel 2012; Zaman 2013. Sequence generation was considered at high risk of bias in two studies (Kanani 2000; Larocque 2006). In 49 of the included trials, it was unclear how the randomisation sequence had been generated.

Fifteen of the included studies used methods of concealing group allocation that we judged to be at low risk of bias (Booth 2014; Bruner 1996; Bryson 1968; DellaValle 2012; Flink 2006; Gunaratna 2015; Larocque 2006; Leonard 2014; Machado 2011; Murray-Kolb 2007; Pereira 2014; Prosser 2010; Verdon 2003; Waldvogel 2012; Zaman 2013). In one trial, methods were considered at high risk of bias (Rajaram 1995). In the remaining 51 trials, methods were either not described or were unclear.

Blinding

Most trials administered the placebo to blinded participants and relatively few trials reported on methods for blinding outcome assessors. Overall, 59 studies reported blinding of participants and were deemed at low risk of performance bias (Ballin 1992; Binkoski 2004; Booth 2014; Bruner 1996; Brutsaert 2003; Bryson 1968; Charoenlarp 1988; Cooter 1978; DellaValle 2012; Edgerton 1979; Eftekhari 2006; Elwood 1966; Elwood 1970; Flink 2006; Florencio 1981; Fogelholm 1992; Fogelholm 1994; Gordeuk 1987; Gordeuk 1990; Gunaratna 2015; Heath 2001; Hinton 2000; Hinton 2007; Hoppe 2013; Jayatissa 1999; Jensen 1991; Kanani 2000; Kang 2004; Kianfar 2000; Klingshirn 1992; LaManca 1993; Larocque 2006; Leonard 2014; Li 1994; Machado 2011; Magazanik 1991; Marks 2014; Maghsudlu 2008; McClung 2009; Mujica-Coopman 2015; Murray-Kolb 2007; Newhouse 1989; Pereira 2014; Prosser 2010; Radjen 2011; Rowland 1988; Rybo 1985; Swain 2007; Taniguchi 1991; Verdon 2003; Viteri 1999; Waldvogel 2012; Walsh 1989; Wang 2012; Yadrick 1989; Yoshida 1990; Zaman 2013; Zavaleta 2000; Zhu 1998). Eight studies were deemed to be at high risk of performance bias: seven as placebo was not used (Agarwal 2003; Berger 1997; Kiss 2015; Lanerolle 2000; Rajaram 1995; Røsvik 2010; Shah 2002), one as diet intervention was not blinded and would have revealed placebo group from intervention group (Lyle 1992).

Thirty-four studies were deemed to be at low risk of detection bias (Ballin 1992; Binkoski 2004; Booth 2014; Brutsaert 2003; Charoenlarp 1988; Cooter 1978; DellaValle 2012; Eftekhari 2006; Flink 2006; Fogelholm 1994; Gunaratna 2015; Heath 2001; Hinton 2000; Jayatissa 1999; Kang 2004; Kianfar 2000;

Kiss 2015; Larocque 2006; Leonard 2014; Machado 2011; Marks 2014; Mujica-Coopman 2015; Murray-Kolb 2007; Pereira 2014; Prosser 2010; Rybo 1985; Swain 2007; Verdon 2003; Viteri 1999; Waldvogel 2012; Wang 2012; Yadrick 1989; Zaman 2013; Zavaleta 2000). Twenty-six studies were deemed unclear for detection bias as the study failed to state whether personnel were blinded or it remained unclear if outcomes would be affected by lack of blinding (Agarwal 2003; Bruner 1996; Bryson 1968; Edgerton 1979; Elwood 1966; Elwood 1970; Florencio 1981; Fogelholm 1992; Gordeuk 1987; Gordeuk 1990; Hinton 2007; Hoppe 2013; Jensen 1991; Klingshirn 1992; LaManca 1993; Li 1994; Magazanik 1991; Maghsudlu 2008; McClung 2009; Newhouse 1989; Radjen 2011; Rowland 1988; Taniguchi 1991; Walsh 1989; Yoshida 1990; Zhu 1998). Seven studies were deemed at high risk of detection bias as assessors may have known which participants belonged to which group due to a lack of placebo or unblinded personnel, with outcomes that may have been influenced by this lack of blinding (Berger 1997; Kanani 2000; Lanerolle 2000; Lyle 1992; Rajaram 1995; Røsvik 2010; Shah 2002).

Incomplete outcome data

While we assessed that the majority of the included trials had acceptable levels of attrition (with loss to follow-up and missing data being less than 30% and balanced across groups), in nine trials the levels of attrition were high or not balanced across groups (Booth 2014; Bryson 1968; Charoenlarp 1988; Florencio 1981; Gordeuk 1987; Larocque 2006; Leonard 2014; Lyle 1992; Viteri 1999), while attrition was not reported in a further eight trials (Berger 1997, Brutsaert 2003, Edgerton 1979, Radjen 2011, Taniguchi 1991, Walsh 1989; Wang 2012; Yadrick 1989).

Selective reporting

We were not able to fully assess outcome reporting bias as we only had access to published study reports. We assessed publication bias using funnel plots for haemoglobin, anaemia, iron deficiency, ferritin and adverse effects (any effects, any gastrointestinal effects, constipation, loose stools/diarrhoea, and abdominal pain). While we detected no funnel plot asymmetry for haemoglobin or ferritin, we observed evidence of asymmetry for anaemia and ferritin (both indicating the possibility of missing studies reporting a smaller than observed effect on anaemia prevalence from iron). However, there were few studies reporting these outcomes precluding more detailed statistical analysis of these funnel plots. Nevertheless, the possibility of publication bias exists for these key outcomes. Five studies were deemed to be at an unclear risk of selective reporting (Fogelholm 1992; LaManca 1993; Radjen 2011; Viteri 1999;

Wang 2012) and three studies were deemed to be at high risk of selective reporting due to outcomes mentioned being analysed but not presented (Murray-Kolb 2007; Prosser 2010; Rajaram 1995).

Other potential sources of bias

The majority of trials had no clear other sources of bias. Only four studies used a cluster design but did not report the ICC or other relevant data in the manuscript and were thus deemed to be at high risk of other bias (Agarwal 2003; Jayatissa 1999; Kanani 2000; Lanerolle 2000). These papers reported on the following outcomes: haemoglobin and anaemia (Agarwal 2003); haemoglobin, anaemia and ferritin (Jayatissa 1999); haemoglobin, weight and body mass index (Kanani 2000); haemoglobin, ferritin, iron deficiency, transferrin saturation (Lanerolle 2000). We obtained the ICC from external sources (Gulliford 1999): the ICC for haemoglobin was 0.00059, which is low; for example, for a cluster comprising 30 individuals, the design effect would be only 1.017, which implies adjustment of the sample size would only be minor. Likewise, the ICC for ferritin from this source was only 0.00004, which again is unlikely to result in a large design effect and obviates the need for an adjustment of the sample size (Ukoumunne 1999). For weight and body mass index, reported in Kanani 2000, we undertook a sensitivity analysis to evaluate effects of excluding this study (which can be seen in Analysis 9.5).

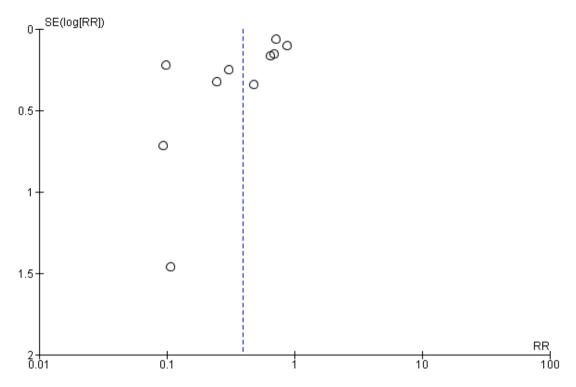
Of the remaining studies, two were deemed at unclear risk of other bias (Bruner 1996; Fogelholm 1994) as data was only presented in a table making other sources of bias unable to be excluded, and 61 studies (from 71 reports) had no other identifiable potential source of bias and were therefore deemed at low risk (Ballin 1992; Berger 1997; Binkoski 2004; Booth 2014; Brutsaert 2003; Bryson 1968; Charoenlarp 1988; Cooter 1978; DellaValle 2012; Edgerton 1979; Eftekhari 2006; Elwood 1966; Elwood 1970; Flink 2006; Florencio 1981; Fogelholm 1992; Gordeuk 1987; Gordeuk 1990; Gunaratna 2015; Heath 2001; Hinton 2000; Hinton 2007; Hoppe 2013; Jensen 1991; Kang 2004; Kianfar 2000; Kiss 2015; Klingshirn 1992; LaManca 1993; Larocque 2006; Leonard 2014; Li 1994; Lyle 1992; Machado 2011; Magazanik 1991; Maghsudlu 2008; Marks 2014; McClung 2009; Mujica-Coopman 2015; Murray-Kolb 2007; Newhouse

1989; Pereira 2014; Prosser 2010; Radjen 2011; Rajaram 1995; Rowland 1988; Rybo 1985; Røsvik 2010; Shah 2002; Swain 2007; Taniguchi 1991; Verdon 2003; Viteri 1999; Waldvogel 2012; Walsh 1989; Wang 2012; Yadrick 1989; Yoshida 1990; Zaman 2013; Zavaleta 2000; Zhu 1998.

Effects of interventions

See: Summary of findings for the main comparison

All included trials contributed data to the review but some studies randomised participants to intervention arms that were not relevant to the comparisons we assessed. For these studies we did not include data from all groups in the analyses. Furthermore, some studies did not contain data in an extractable form, or did not contain data in a way in which they could be combined in metaanalyses. For these studies, we provided a narrative description of the results.


For cluster-randomised trials we extracted the estimated effective sample size by adjusting the data to account for the clustering effect.

Primary Outcomes

Anaemia

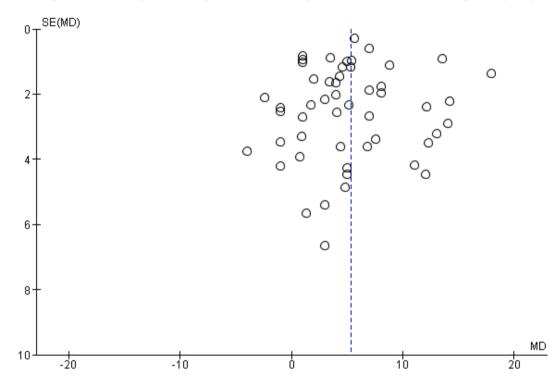
Ten studies, comprising 3273 women, measured anaemia prevalence at the end of intervention (Agarwal 2003; Charoenlarp 1988; Florencio 1981; Gordeuk 1990; Gunaratna 2015; Jayatissa 1999; Shah 2002; Viteri 1999; Wang 2012; Zavaleta 2000). Women receiving iron were significantly less likely to be anaemic at the end of intervention compared to women receiving control (RR 0.39, 95% CI 0.25 to 0.60, moderate quality evidence; Analysis 1.1; Summary of findings for the main comparison). There was variation among trials in terms of the size of the treatment effect (Tau² = 0.37; Chi² = 124.24, df = 9, (P < 0.00001); I² = 93%). Although visual inspection of the funnel plot indicated asymmetry, broadly suggesting missing studies reported smaller effect sizes on anaemia, which may be in keeping with a reporting bias, formal statistical testing using the Harbord and Peters tests did not demonstrate evidence of publication bias (Sterne 2011); see Figure 4.

Figure 4. Funnel plot of comparison: I Anaemia, outcome: I.I Anaemia at end of therapy (total).

Only one study reporting this outcome was considered at low overall risk of bias (Gunaratna 2015). Analysis of this study did not show a difference between iron and control (Analysis 1.2).

Subgroup analysis

There was evidence of differences between subgroups. Specifically, women in studies comparing iron alone with control experienced a smaller reduction in the prevalence of anaemia (RR 0.57, 95% CI 0.45 to 0.74, 8 studies, 2775 women) compared with women randomised to iron + vitamin C versus vitamin C alone (RR 0.10, 95% CI 0.06 to 0.15, 2 studies, 498 women; test for subgroup differences: Chi² = 51.2, df = 1 (P < 0.00001), I² = 98%; Analysis 1.3). There were no differences observed in effect sizes based on age of participants (Analysis 1.4). Although subgroup differences were observed based on baseline anaemia status (Analysis 1.5), iron status (Analysis 1.6), and iron-deficiency anaemia status (Analysis 1.7), most studies fell into the 'unclassified' subgroup and thus subgroup analyses were not constructive. Significant differences in effect size on risk of anaemia were seen for different doses and durations of iron supplementation, however these were non-linear with increasing dose (Analysis 1.8) or duration (Analysis 1.9). No studies in malaria-endemic settings were included. Limited data indicated that ferrous sulphate is more effective than other formulations in reducing prevalence of anaemia (ferrous sulphate: RR 0.20, 95% CI 0.09 to 0.48, 4 studies, 838 women; ferrous fumarate: RR 0.65, 95% CI 0.47 to 0.90, 1 study, 69 women; other formulations: RR 0.66, 95% CI 0.50 to 0.87, 4 studies, 2285 women; test for subgroup differences: Chi² = 6.85, df = 2 (P value = 0.03), I² = 70.8%; Analysis 1.10).


High levels of heterogeneity may be explained by variation in the clinical matrix of study designs (i.e. more than one factor could account for heterogeneity, which cannot be adequately captured by each subgroup analysis. For example, studies used different doses and durations, and recruited participants with different underlying iron status.

Haemoglobin

Fifty-one trials recruiting 6861 women measured haemoglobin concentrations at the end of intervention (Agarwal 2003; Berger 1997; Binkoski 2004; Booth 2014; Bruner 1996; Brutsaert 2003; Charoenlarp 1988; Cooter 1978; DellaValle 2012; Edgerton 1979; Eftekhari 2006; Elwood 1966; Florencio 1981; Fogelholm 1992; Fogelholm 1994; Gordeuk 1987; Gordeuk 1990; Hinton 2000; Hinton 2007; Hoppe 2013; Jayatissa 1999; Jensen 1991; Kanani 2000; Kang 2004; Kianfar 2000; Klingshirn 1992; LaManca 1993; Lanerolle 2000; Larocque 2006; Leonard 2014;

Li 1994; Maghsudlu 2008; Marks 2014; McClung 2009; Mujica-Coopman 2015; Murray-Kolb 2007; Newhouse 1989; Radjen 2011; Rowland 1988; Rybo 1985; Røsvik 2010; Taniguchi 1991; Viteri 1999; Waldvogel 2012; Walsh 1989; Wang 2012; Yadrick 1989; Yoshida 1990; Zaman 2013; Zavaleta 2000; Zhu 1998). Women receiving iron had a higher haemoglobin concentration at the end of intervention compared with women receiving control (MD 5.30, 95% CI 4.14 to 6.45; heterogeneity: Tau² = 11.74; Chi² = 356.76, df = 50 (P < 0.00001); I² = 86%; high quality evidence; Analysis 2.1; Summary of findings for the main comparison). There was no obvious funnel plot asymmetry (Figure 5).

Figure 5. Funnel plot of comparison: 2 Haemoglobin, outcome: 2.1 Haemoglobin (total).

When only studies considered at low overall risk of bias were included in the analysis (six studies; 581 women: Bruner 1996; DellaValle 2012; Fogelholm 1992; Marks 2014; Waldvogel 2012; Zaman 2013), the effect size was similar (MD 5.08, 95% CI 2.99 to 7.17; Analysis 2.2).

Subgroup analysis

Subgroup analyses may explain the observed heterogeneity. The

large number of studies and participants for this outcome provide a rich data set for evaluation of subgroup differences. There was no evidence of a difference in MD between women receiving iron alone or iron with vitamin C or another cointervention (Analysis 2.3). There was no subgroup difference based on age of women (Analysis 2.4). There was a greater increase in haemoglobin in studies among women with baseline anaemia (MD 8.67, 95%)

CI 5.16 to 12.18, 8 studies, 558 women) or in whom baseline anaemia status was not defined (MD 6.30, 95% CI 4.52 to 8.08, 25 studies, 4207 women) compared with those who were nonanaemic at baseline (MD 3.11, 95% CI 1.67 to 4.54, 25 studies, 2120 women; test for subgroup differences: $Chi^2 = 12.73$, df = 2 (P value = 0.002), I² = 84.3%; Analysis 2.5). Similarly, iron did not improve haemoglobin in iron replete women (MD 0.84, 95% CI -2.26 to 3.95, 5 studies, 421 women), but did increase haemoglobin concentration in women who were either iron deficient (as defined by the trial authors) (MD 6.92, 95% CI 4.76 to 9.09, 21 studies, 1124 women) or in whom iron status had not been defined at baseline (MD 4.92, 95% CI 3.49 to 6.35, 28 studies, 5296 women; test for subgroup differences: $Chi^2 = 9.90$, df = 2 (P value = 0.007), I² = 79.8%); see Analysis 2.6. There was no subgroup difference in the effect of iron on haemoglobin between women who were iron-deficient anaemic, non-anaemic iron deficient, non-anaemic non-iron deficient, and undefined (Analysis 2.7). There was no difference in effect from iron on haemoglobin according to dose of iron given (Analysis 2.8). Haemoglobin levels increased more when iron was given for one to three months (MD 6.14, 95% CI 4.70 to 7.58, 37 studies, 4171 women) when compared to less than one month (MD 2.60, 95% CI 0.28 to 4.91, 6 studies, 765 women) or greater than three months (MD 3.84, 95% CI 0.94 to 6.75, 8 studies, 1925 women; test for subgroup differences: Chi² = 7.15, df = 2 (P value = 0.03), I² = 72%; Analysis 2.9). Only one study had been undertaken in a malariaendemic area limiting subgroup analyses by malaria endemicity. There was no evidence of subgroup difference between trials using different formulations of iron (ferrous sulphate, ferrous fumarate, and others) (Analysis 2.10).

Iron deficiency

Seven studies recruiting 1088 women measured iron deficiency at the end of the intervention (Ballin 1992; Lanerolle 2000; Leonard 2014; Marks 2014; Mujica-Coopman 2015; Viteri 1999; Wang 2012). Women receiving iron had a reduced risk of iron deficiency compared with women receiving control (RR 00.62, 95% CI 0.50 to 0.76; heterogeneity: Tau² = 0.02; Chi² = 8.37, df = 6 (P value = 0.21); I² = 28%; moderate quality evidence; Analysis 3.1). When only the single study (257 women) at low risk of bias was included (Marks 2014), the effect size was similar (RR 0.65, 95% CI 0.54 to 0.78; Analysis 3.2).

Subgroup analysis

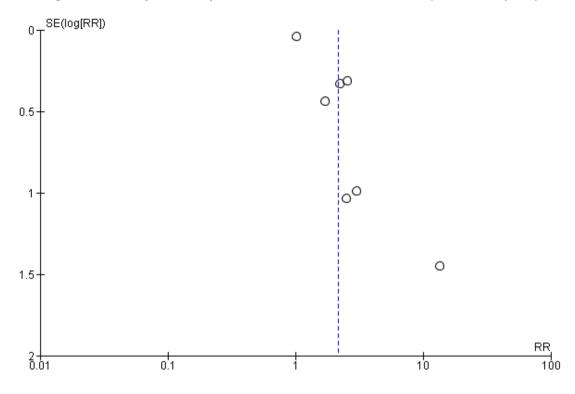
There were too few studies to enable subgroup analysis.

Iron-deficiency anaemia

Only one study (Mujica-Coopman 2015), involving 55 women, specifically reported iron-deficiency anaemia, with no events in either the iron or control groups (Analysis 4.1). One other study (Gunaratna 2015) reported microcytic anaemia and showed a significant reduction with iron therapy compared to controls (RR 0.51, 95% CI 0.33 to 0.77, 378 women; Analysis 4.2).

All-cause mortality

No studies reported data on all-cause mortality.


Adverse side effects

Data on adverse effects were generally reported as proportions of populations experiencing side effects. Data were amalgamated using terms defined by the trial authors: 'any side effect' (Ballin 1992; Hoppe 2013; Leonard 2014; Maghsudlu 2008; Marks 2014; Pereira 2014; Waldvogel 2012), 'any gastrointestinal side effect' (Gordeuk 1987; Hoppe 2013; Marks 2014; Pereira 2014; Waldvogel 2012), 'loose stools/diarrhoea' (Gordeuk 1987; Leonard 2014; Marks 2014; Pereira 2014; Rybo 1985; Waldvogel 2012), 'hard stools/constipation' (Bruner 1996; Gordeuk 1990; Leonard 2014; Maghsudlu 2008; Marks 2014; Pereira 2014; Rybo 1985; Waldvogel 2012), 'abdominal pain' (Bryson 1968; Gordeuk 1990; Maghsudlu 2008; Marks 2014; Pereira 2014; Rybo 1985; Waldvogel 2012), 'nausea' (Bryson 1968; Gordeuk 1990; Leonard 2014; Maghsudlu 2008; Marks 2014; Pereira 2014; Rybo 1985; Waldvogel 2012), 'change in stool colour' (Bruner 1996; Leonard 2014; Marks 2014; Pereira 2014), 'reflux/heartburn' (Pereira 2014), and 'headache' (Gordeuk 1987; Gordeuk 1990; Maghsudlu 2008; Pereira 2014).

Any side effects

Seven trials recruiting 901 women reported on 'any side effect' and did not identify an overall increased prevalence of side effects from iron supplements (RR 2.14, 95% CI 0.94 to 4.86, P value = 0.07; heterogeneity: Tau² = 0.84; Chi² = 49.95, df = 6 (P < 0.00001); I² = 88%, low quality evidence; Analysis 5.1; Summary of findings for the main comparison). The funnel plot of this outcome indicates asymmetry (Figure 6), raising the possibility of missing studies with fewer adverse effects. When only the three trials (415 women) considered at low overall risk of bias were included in the analysis (Marks 2014; Pereira 2014; Waldvogel 2012), the effect of iron on 'any adverse effect' was similar (RR 1.59, 95% CI 0.66 to 3.81; Analysis 5.2).

Figure 6. Funnel plot of comparison: 7 Side effects, outcome: 7.1 Any Side effect (Total).

Subgroup analysis

There were too few studies in different subgroup categories to enable subgroup analyses by cointervention, age, baseline anaemia/ iron deficiency/iron-deficiency anaemia status, duration of intervention, malaria endemicity, or type of iron utilised. However, there was evidence of a trend towards an increase in risk of any adverse effects as dose of elemental iron was increased, from 30 mg to 60 mg (RR 1.01, 95% CI 0.93 to 1.10, 3 studies, 305 women), to 61 mg to 100 mg (RR 2.61, 95% 1.44 to 4.75, 2 studies, 157 women), to more than 100 mg (2.15, 95% CI 1.24 to 3.73, 3 studies, 439 women; test for subgroup differences: Chi² = 16.30, df = 2 (P value = 0.0003), I² = 87.7%; Analysis 5.3).

Any gastrointestinal side effects

Five studies recruiting 521 women identified an increased prevalence of gastrointestinal side effects in women taking iron (RR 1.99, 95% CI 1.26 to 3.12; heterogeneity: Tau² = 0.11; Chi² = 7.33, df = 4 (P value = 0.12); I² = 45%; low quality evidence; Analysis 5.4). When three studies (415 women) considered at low overall risk of bias were included in the analysis (Marks 2014; Pereira 2014; Waldvogel 2012), the magnitude of effect was similar (RR 1.91, 95% CI 0.96 to 3.80; heterogeneity: Tau² = 0.23; Chi² = 5.56, df = 2 (P value = 0.06); I² = 64%; Analysis 5.5).

Subgroup analysis

There were too few studies in different subgroup categories to enable subgroup analyses by cointervention, age, baseline anaemia/ iron deficiency/iron-deficiency anaemia status, duration of intervention, malaria endemicity, or type of iron utilised. However, there was evidence of a trend towards an increase in risk of gastrointestinal adverse effects as dose of elemental iron was increased: from 31 mg to 60 mg (RR 1.23, 95% CI 0.84 to 1.81, 2 studies, 293 women), to 61 mg to 100 mg (RR 3.00, 95% CI 1.45 to 6.20, 1 study, 145 women), to more than 100 mg (RR 2.42, 95% CI 1.45 to 4.05, 2 studies, 83 women; test for subgroup differences: Chi² = 6.80, df = 2 (P value = 0.03), I² = 70.6%; Analysis 5.6).

Loose stools/diarrhoea

Six studies recruiting 604 women identified an increased prevalence of loose stools/diarrhoea (defined by the trial authors): RR 2.13, 95% CI 1.10 to 4.11; heterogeneity: Tau² = 0.11; Chi² =

5.99, df = 5 (P value = 0.31); I² = 17%; high quality evidence; Analysis 5.7; Summary of findings for the main comparison.

Subgroup analysis

Data were inadequate for subgroup analyses for this outcome given the small number of trials in each subgroup category.

Hard stools/constipation

Eight studies recruiting 1036 women demonstrated an increased prevalence of hard stools/constipation (as defined by the authors): RR 2.07, 95% CI 1.35 to 3.17; heterogeneity: Tau² = 0.00; Chi² = 4.10, df = 7 (P value = 0.77); I² = 0%; high quality evidence; Analysis 5.8. When only the four studies (480 women) considered at low overall risk of bias were included (Bruner 1996; Marks 2014; Pereira 2014; Waldvogel 2012), an increased risk for this outcome was still observed (RR 2.14, 95% CI 1.04 to 4.38; Analysis 5.9).

Subgroup analysis

Data were inadequate for subgroup analyses given the small number of trials in each subgroup category.

Abdominal pain

Seven studies recruiting 1190 women showed no definitive increase in abdominal pain (RR 1.55, 95% CI 0.99 to 2.41; heterogeneity: Tau² = 0.00; Chi² = 4.04, df = 6 (P value = 0.67); I² = 0%; low quality evidence; Analysis 5.10).

Subgroup analysis

Data were inadequate for subgroup analyses given the small number of trials in each subgroup category.

Nausea

Eight studies recruiting 1214 women did not find any evidence of an increased prevalence of nausea among women randomised to iron (RR 1.19, 95% CI 0.78 to 1.82; heterogeneity: Tau² = 0.00; Chi² = 6.30, df = 7 (P value = 0.51); I² = 0%; Analysis 5.11).

Subgroup analysis

Data were inadequate for subgroup analyses given the small number of trials in each subgroup category.

Change in stool colour

Four studies (359 women) reported a markedly elevated increase in prevalence reporting a change in stool colour among women receiving iron (RR 6.92, 95% CI 3.83 to 12.52; heterogeneity: Tau² = 0.00; Chi² = 0.08, df = 3 (P value = 0.99); I² = 0%; Analysis 5.12).

Subgroup analysis

Data were inadequate for subgroup analyses given the small number of trials in each subgroup category.

Reflux/Heartburn

Only one study reported rates of reflux/heartburn (Pereira 2014). Four patients in the iron intervention group reported reflux/heartburn compared to none in the control group.

Headache

Four studies involving 526 women reported on prevalence of headache and found no evidence of an effect on this outcome from iron (RR 0.98, 95% CI 0.58 to 1.66; heterogeneity: Tau² = 0.00; Chi² = 1.11, df = 3 (P value = 0.78); I² = 0%; Analysis 5.13).

Subgroup analysis

Data were inadequate for subgroup analyses given the small number of trials in each subgroup category.

Cognitive function

Five studies reported on cognitive function but reported outcomes using different tools or domains, and thus results could not be meta-analysed. We present the data from the five studies below. Bruner 1996 randomised 81 adolescent girls with non-anaemic iron deficiency to iron supplementation versus placebo and found that girls taking iron had a significant improvement over baseline and end of treatment, compared to those taking placebo, in the total recall score in a test of verbal learning (Hopkins Verbal Learning Test) (P < 0.02), with no differences in any other domains of this test. There were no differences attributable to iron on the Symbol Digit Modalities Test, the Visual Search and Attention Test, or the Brief Test of Attention.

Elwood 1970 randomised women, aged 20 years or older, with anaemia (Hb < 10.5 g/dL) to daily iron supplementation or placebo for eight weeks, and administered several cognitive tests. Data were not reported to directly compare intervention and control, and thus groups (haematologic responders and non-responders) were merged. Women randomised to iron demonstrated a reduction in the number of errors made while completing a maze

(MD -9.73, 95% CI -17.22 to -2.24). However, no effects from iron were seen on other cognitive tests (Serial 7s, E-test, Card Sorter test, Peg board time).

Larocque 2006 randomised schoolgirls, aged 14 years to 16 years, to iron or placebo and measured a series of cognitive outcomes. There was no effect from iron on the results of any of the cognitive tests performed (Trail Making Test Part A and Part B, Motor-Free Visual Perception Test, Digit Span, Covert Orienting of Visual Attention Task).

Leonard 2014 randomised 24 women, aged 18 years to 35 years, who were not iron deficient and not currently taking iron, to ferrous sulphate at two doses (60 mg and 80 mg) and compared them to placebo. Participants underwent testing at baseline and the end of intervention with the IntegNeuro Battery of Cognitive Tests (Brainclinics 2015). Women treated with iron (at either dose) had a significant reduction in impulsivity (P value = 0.047), but no difference in memory, response speed, attention, information processing, executive function or emotion identification.

Murray-Kolb 2007 randomised women, aged 18 to 35 years, of differing iron status (iron replete, non-anaemic iron deficient, irondeficient anaemic) to daily iron supplementation or placebo. Unfortunately, effect sizes for cognitive scores at end of intervention or change from baseline were not reported and hence could not be extracted.

Secondary outcomes

Iron status

Ferritin

Forty-two studies (3881 women) reported on ferritin concentrations at the end of intervention; iron increased ferritin levels (MD 10.27, 95% CI 8.90 to 11.65; heterogeneity: Tau² = 9.96; Chi² = 475.21, df = 41 (P < 0.00001); I² = 91%; Analysis 6.1).

Subgroup analysis

We further explored potential sources of heterogeneity with subgroup analyses (even though these were not prespecified), as it offered an opportunity to evaluate subgroup effects on effects of iron status changes induced by iron supplementation (see Differences between protocol and review). Subgroup analyses indicated that iron interventions had a lesser effect when coadministered with vitamin C (Analysis 6.2), but had no effect on difference of effect on different age groups (Analysis 6.3). The effect of iron on ferritin was not affected by baseline anaemia status (Analysis 6.4), but women who were iron deficient had a smaller increase in ferritin (MD 8.40, 95% CI 6.31 to 10.49, 20 studies, 1065 women) compared with women who were iron replete (MD 13.38, 95% CI 6.74 to 20.01, 5 studies, 297 women) or in whom iron status had not been characterised (MD 12.88, 95% CI 9.99 to 15.78, 20 studies, 2499 women; test for subgroup differences: Chi² = 7.02, df = 2 (P value = 0.03), I² = 71.5%; Analysis 6.5). No difference in effect was observed by iron-deficiency anaemia status (Analysis 6.6). Ferritin levels rose less among women given 30 mg or less elemental iron compared with women given higher doses; test for subgroup differences: Chi² = 8.59, df = 3 (P value = 0.04), I² = 65.1%; Analysis 6.7). Giving iron for one to three months (MD 12.17, 95% CI 9.81 to 14.53, 31 studies, 2829 women) showed a larger increase in ferritin than giving iron for less than one month (MD 7.60, 95% CI 4.64 to 10.57, 7 studies, 794 women) or more than three months (MD 7.85, 95% CI 1.31 to 14.38, 4 studies, 258 women; test for subgroup differences: $Chi^2 = 6.12$, df = 2 (P value = 0.05), I² = 67.3%; Analysis 6.8). There was no evidence of an effect from different iron formulations (Analysis 6.9). Although examination of the funnel plot suggested asymmetry, Egger's regression test did not indicate evidence of publication bias (P value = 0.644).

Transferrin saturation

Twenty-three studies recruiting 1637 women identified an effect from iron supplementation on transferrin saturation (5.98, 95% CI 3.93 to 8.02; heterogeneity: Tau² = 13.38; Chi² = 142.46, df = 22 (P < 0.00001); I² = 85%; Analysis 6.10).

Soluble transferrin receptor

Eleven studies recruiting 579 women identified an effect from iron supplementation on soluble transferrin receptor (as many assays are available, each with a different scale, we estimated the SMD (-0.32, 95% CI -0.49 to -0.16; heterogeneity: Tau² = 0.00; Chi² = 9.34, df = 10 (P value = 0.50); I² = 0%; Analysis 6.11).

Total iron binding capacity

Nineteen studies recruiting 960 women identified no effect from iron supplementation on total iron binding capacity at the end of the intervention (SMD -0.64, 95% CI -1.38 to 0.09; heterogeneity: Tau² = 2.49; Chi² = 390.10, df = 18 (P < 0.00001); I² = 95%; Analysis 6.12).

Serum iron

Seventeen studies recruiting 902 women identified an increase from iron supplementation on serum iron concentrations (SMD 0.47, 95% CI 0.19 to 0.74; heterogeneity: Tau² = 0.19; Chi² = 48.20, df = 16 (P < 0.00001); I² = 67%; Analysis 6.13).

Erythrocyte protoporphyrin

Only a single study reported on erythrocyte protoporphyrin (Berger 1997), finding that iron supplementation did not significantly affect erythrocyte protoporphyrin. (For illustrative purposes, see Analysis 6.14).

Physical exercise performance

Exercise performance was reported in terms of both peak (maximal) and submaximal performance.

Peak (maximal) exercise performance

A meta-analysis found that women receiving iron had increased absolute VO₂ max score (MD 0.11 L/min, 95% CI 0.02 to 0.20, 8 studies, 276 women ; heterogeneity: Tau² = 0.00; Chi² = 4.96, df = 7 (P value = 0.66); l² = 0%; Analysis 7.1) and relative VO₂ max (MD 2.36 mL/kg/min, 95% CI 0.55 to 4.17, 15 studies, 407 women; heterogeneity: Tau² = 8.39; Chi² = 58.26, df = 14 (P < 0.00001), l² = 0.76; Analysis 7.2), indicating that iron supplementation increases peak exercise performance in women. No effects on peak respiratory exchange ratio (RER; Analysis 7.3), heart rate (Analysis 7.4), or lactate at longest point of exercise (Analysis 7.5) were observed from iron. There was no evidence of funnel plot asymmetry.

Submaximal exercise performance

Five studies recruiting 126 women found that women randomised to iron required a lower proportion of their VO₂ max to achieve a defined submaximal exercise task (MD -3.34%, 95% CI -6.17 to -0.51; heterogeneity: Tau² = 4.45; Chi² = 7.33, df = 4 (P value = 0.12); I² = 45%; Analysis 8.1). Similarly, six studies recruiting 212 women found that women randomised to iron required a lower heart rate to achieve the same exercise task (MD -4.72 beats per minute, 95% CI -8.64 to -0.80; heterogeneity: Tau² = 0.00; Chi² = 2.27, df = 5 (P value = 0.81); I² = 0%; Analysis 8.2). No effects from iron on energy consumption during exercise (Analysis 8.3), submaximal RER (Analysis 8.4), achieved workload (Analysis 8.5) or time to exhaustion (Analysis 8.6) were observed. There was no evidence of funnel plot asymmetry.

Psychological health

Waldvogel 2012 compared four weeks of iron supplementation with placebo following blood donation in females, and observed an improvement in self-reported physical condition (as assessed by the Short Form 12 (SF-12) health survey (Gandek 1998)) at the end of intervention, but found no differences in self-reported fatigue, vitality or mental health scores.

Zaman 2013 compared 12 weeks of iron supplementation as ferrous gluconate with vitamin C to placebo in females recruited through advertisements at the University of Sydney. Using the Short Form 36 Health Survey (SF-36) (Ware 1992), participants receiving iron self-reported improvement in vitality but no difference in other scores.

Adherence

Adherence was not reported in any form in 34 of the studies; other studies reported adherence in heterogenous ways, and hence we could not include data in a meta-analysis. We have described data in the 'Notes' section of the Characteristics of included studies tables. Participants randomised to iron did not appear to have poorer adherence compared with those randomised to placebo.

Anthropometric measures

Height

Four studies recruiting 302 women did not identify an effect of iron on height (MD -0.32, 95% CI -2.25 to 1.61; heterogeneity: Tau² = 1.84; Chi² = 5.87, df = 3 (P value = 0.12); I² = 49%; Analysis 9.1).

Weight

Eight studies recruiting 593 women did not identify evidence of an effect from iron supplementation on weight (MD 0.76 kg, 95% CI -0.41 to 1.92; heterogeneity: Tau² = 0.00; Chi² = 3.19, df = 7 (P value = 0.87); I² = 0%; Analysis 9.2). A sensitivity analysis excluding the single cluster randomised trial (Kanani 2000) did not meaningfully affect this finding (MD 0.24 kg, 95% CI -1.13 to 1.60; Analysis 9.3).

Body mass index

Six studies recruiting 520 women found that iron supplementation increased body mass index in women (MD 0.53, 95% CI 0.10 to 0.96; heterogeneity: Tau² = 0.00; Chi² = 1.33, df = 5 (P value = 0.93); I² = 0%; Analysis 9.4). A sensitivity analysis excluding the single cluster randomised trial (Kanani 2000) resulted in a similar effect size although the statistical significance of this finding was no longer observed (MD 0.52, 95% CI -0.04 to 1.07; Analysis 9.5).

Serum/plasma zinc (μ mol/L)

Four studies recruiting 151 women did not identify evidence of an effect from iron supplementation on zinc concentrations (MD -0.65, 95% CI -2.70 to 1.40; Analysis 10.1).

No studies reported data on the following secondary outcomes: vitamin A status and red cell folate.

Other outcomes

Productivity

Although not a pre-specified outcome, productivity is an important clinical and economic outcome linked with iron interventions and thus we extracted these data where available (see Differences between protocol and review). We identified three studies (446 women), which reported effects of iron supplementation on productivity, defined as a particular work-related output per unit time (Edgerton 1979; Florencio 1981; Li 1994). Meta-analysis of these studies revealed that iron supplementation did not increase productivity (SMD 0.07, 95% CI -0.12 to 0.26; Analysis 11.1).

Malaria prevalence

Only one study (378 women) reported malaria prevalence (Gunaratna 2015), with no difference between iron and control groups (P value = 0.66; Analysis 12.1).

Fatigue

Although not a pre-specified outcome, fatigue is considered an important clinical outcome from iron deficiency and anaemia, and thus we extracted data from studies reporting on effects of daily iron supplementation on fatigue.

Ballin 1992 reported that a larger number of adolescent girls randomised to iron (n = 29) compared to placebo (n = 30) experienced an improvement in 'lassitude' (about 25% iron, about 4% control, data reported on graphs).

Booth 2014 recruited 49 women undertaking cadet training in the Australian army and reported no difference in fatigue scores (P > 0.9) with daily oral iron (mean 12.9) compared to controls (mean 15.7).

Bruner 1996 reported that 35.3% (n = 37) of adolescent girls randomised to iron compared with 22.6% (n = 36) randomised to placebo reported an improvement in 'energy' levels after intervention.

Elwood 1966 reported that 40 women with a Hb > 10 g/dL randomised to iron experienced a mean increase in fatigue scores of 0.15 ± 0.78 points (graded along a 16-point scale), whereas 49 women randomised to placebo experienced a mean increase in fatigue scores of 0.39 ± 0.73 points.

Elwood 1970 randomised anaemic (Hb < 10.5 g/dL), communityliving women to iron (n = 26) or placebo (n = 21) and reported that women receiving iron experienced a mean -1.32 point (standard deviation (SD) 1.78) change in fatigue scores, compared with a -0.7 point (SD 1.83) change in women receiving placebo.

McClung 2009 randomised female soldiers at the onset of their rigorous basic combat training to iron (n = 86) versus placebo (n = 85), and did not find evidence that iron benefited fatigue (mean: 9.8 ± 7.0 iron, 9.3 ± 6.4 placebo), as measured by the Profile of

Mood States (McNair 1971), although there was an increase (P < 0.05 for group interaction) in reported 'vigour' (mean: 13.1 ± 6.3 iron, 11.6 ± 6.5 placebo).

Verdon 2003 specifically recruited women presenting with fatigue for which no other cause (including anaemia) could be identified, and randomised them to iron (n = 75) versus placebo (n = 69): women receiving iron experienced a greater reduction in fatigue scores along a 10-point scale (mean -1.82, SD 1.7) compared with control (mean 0.85, SD 2.1) (difference 0.97, P value = 0.004); interestingly, a benefit was identified exclusively in women with a baseline ferritin < 50 ug/L.

Waldvogel 2012 recruited 154 non-anaemic iron-deficient female blood donors and randomised them to iron or placebo; women receiving iron experienced similar endpoint fatigue scores (mean: 3.4 iron, 3.5 control) and fatigue severity scores (mean: 2.5 iron, 2.6 control), as assessed by the Fatigue Severity Scale (Krupp 1989).

The variation in outcome measures and proportion/change from baseline/endpoint data reported precludes meta-analysis. However, these data appear to indicate that iron may improve symptoms among women who are fatigued, although the effects on asymptomatic women appear less evident.

DISCUSSION

Summary of main results

The findings, together with an assessment of the quality of the evidence for the primary outcomes, are summarised in Summary of findings for the main comparison. Overall, 67 studies involving 8506 women were included in the review.

Findings suggest that women receiving iron were less likely to be anaemic and iron deficient at the end of intervention, and more likely to experience an increase in haemoglobin concentrations and iron stores (as measured by indices such as ferritin and soluble transferrin receptor). Effects of iron supplementation on haemoglobin did not appear dose related, although increases in ferritin concentration were greater at higher doses. Also, providing iron for one to three months achieved greater increases in haemoglobin and ferritin than either shorter or more prolonged durations.

Although only limited data reported on functional health outcomes associated with iron supplementation, our meta-analyses indicate that iron supplementation improves maximal and submaximal exercise performance in women, and reduces symptomatic fatigue. No effects on cognitive function or self-reported psychological health were evident.

Iron supplementation was associated with an increase in gastrointestinal adverse effects, among women receiving doses exceeding 30 mg elemental iron.

Vitamin C appeared to augment the beneficial effect of iron on anaemia prevalence (but not on haemoglobin or ferritin concen-

tration), although only limited data were available for these subgroup analyses.

Overall completeness and applicability of evidence

Despite the overall large number of trials assessing the effects of daily iron supplementation in menstruating women, most of these collected basic haematologic and iron indices data, with surprisingly few studies reporting on key outcomes - anaemia, iron deficiency, iron-deficiency anaemia; functional outcomes such as cognitive performance and psychological health (e.g. depression, fatigue); and only a very small proportion of the overall number of studies collected data on adverse effects experienced by the participants. This indicates that trials included in this review frequently did not address these clinically relevant endpoints. In particular, even though haemoglobin measurements are commonly performed, the field is limited by the lack of reporting of the effects of iron on anaemia in these key trials. Ultimately, however, the trials which do report on anaemia collectively provide moderate quality evidence to support a substantial benefit from iron on this outcome (RR 0.39, 95% CI 0.25 to 0.60). Likewise, reporting of effects of iron supplementation on iron deficiency and irondeficiency anaemia was uncommon (even though ferritin levels were frequently reported). A similar pattern of reporting the continuous rather than dichotomous outcomes has been observed in systematic reviews of daily iron supplementation in children (Low 2013; Pasricha 2013).

We did not undertake a formal subgroup analysis to compare trials undertaken in low- and middle-income countries and those undertaken in high-income countries. Many trials in high-income countries were undertaken in participants who were iron deficient at baseline, and thus, such a subgroup comparison would not have been appropriate. However, the effects of iron in anaemic and irondeficient populations, reminiscent of the burden of these conditions in low-income settings, can be inferred from the subgroup analyses we did perform.

The design of this review could not account for differences in efficacy between iron alone or iron in addition to common cointerventions such as folic acid or vitamin C (compared to no intervention).

Quality of the evidence

Although there have been many RCTs addressing the issue of daily iron supplementation in menstruating women, we considered only few at overall low risk of bias. In particular, only 14 studies reported using a low risk of bias method of random sequence generation (with two being at high risk of bias, and the remainder not reporting on sequence generation), and 15 reported using a low risk method of allocation concealment. Eight studies did not attempt to blind participants; while this is unlikely to affect laboratory-measured outcomes, such as haemoglobin and iron indices, outcomes relying on more subjective tools (e.g. patient reports of adverse effects, fatigue, exercise performance and self-reported quality of life) may have been at risk of bias. Attrition was a problem in nine trials. Overall, only 10 studies were assessed as being at low overall risk of bias.

The quality of evidence for haematologic and iron status-related outcomes was generally moderate or high, but was poor for other outcomes, including the pre-specified primary outcome of cognitive function. Adherence was frequently not reported, and where it was reported, it was described heterogeneously, preventing detailed analysis of the effects of adherence on outcomes.

Potential biases in the review process

The systematic review encompassed a broad and sensitive search strategy across multiple international databases, and at least two authors independently screened and extracted data. We did not apply language restrictions. We sought to identify published data and data published in the grey literature.

One potential bias in the review, however, is that it is possible that historic studies may have been undertaken that are no longer indexed or available on accessible databases, and hence for which data were not identified. Also, our classification of risk of bias may have been excessively stringent, as many trials were undertaken many years ago, before formal recommendations for trial reporting were released, and thus for which methods used to reduce risk of bias were not included in the manuscript.

Agreements and disagreements with other studies or reviews

The effects of daily iron supplementation on women's health have not been previously subject to a systematic review and meta-analysis. A systematic review evaluating intermittent iron supplementation in menstruating women found that it was a feasible intervention for reducing anaemia compared with no iron intervention, although in comparison with daily supplementation, intermittent iron was less effective in controlling anaemia (Fernández-Gaxiola 2011).

AUTHORS' CONCLUSIONS

Implications for practice

Daily iron supplementation appears to be an effective clinical and public health strategy for alleviating anaemia and iron deficiency,

and for increasing haemoglobin and iron stores. Daily iron supplementation also improves exercise performance (maximal and submaximal) in women. There is evidence, moreover, that iron supplementation improves fatigue scores, particularly among women with baseline fatigue. However, these benefits come at the risk of adverse effects, especially abdominal side effects. Providing iron at lower doses (e.g. up to 30 mg elemental iron) for one to three months may have an optimal benefit and adverse effect profile. There is no evidence of difference in efficacy between different iron salts.

Implications for research

Studies reporting on haemoglobin and ferritin alone are no longer required. Only limited data exist for a range of key outcomes (both primary and secondary) relating to iron supplementation - for example, effects of iron on cognitive function, psychological health, well-being, and economic productivity. Lack of these data preclude precise economic and risk-benefit analyses of this intervention. Further studies are needed to identify whether iron has effects on these outcomes. In the public health setting, further research is needed to understand the benefits of oral iron interventions in the preconception context on future pregnancy outcomes, and again whether iron interventions ultimately have functional benefits on well-being and health. In low- and middleincome countries, where iron may interact with infection and iron supplementation may coexist with other micronutrient deficiencies, the risk benefit of iron interventions must be more clearly understood.

ACKNOWLEDGEMENTS

We would like to thank the staff at the editorial office of the Cochrane Developmental, Psychosocial and Learning Problems Group for their support in the preparation of this review.

REFERENCES

References to studies included in this review

Agarwal 2003 {published data only}

Agarwal KN, Gomber S, Bisht H, Som M. Anemia prophylaxis in adolescent school girls by weekly or daily iron-folate supplementation. *Indian Pediatrics* 2003;**40**(4): 296–301. [PUBMED: 12736400]

Ballin 1992 {published data only}

Ballin A, Berar M, Rubinstein U, Kleter Y, Hershkovitz A, Meytes D. Iron state in female adolescents. *American Journal of Diseases of Children* 1992;**146**(7):803–5.

Berger 1997 {published data only}

Berger J, Aguayo VM, San Miguel JL, Lujan C, Tellez W, Traissac P. Definition and prevalence of anemia in Bolivian women of childbearing age living at high altitudes: the effect of iron-folate supplementation. *Nutrition Reviews* 1997;**55** (6):247–56. [DOI: 10.1111/j.1753-4887.1997.tb01612.x]

Binkoski 2004 {published data only}

Binkoski AE, Kris-Etherton PM, Beard JL. Iron supplementation does not affect the susceptibility of LDL to oxidative modification in women with low iron status. Journal of Nutrition 2004; Vol. 134, issue 1:99–103. [PUBMED: 14704300]

Booth 2014 {published data only}

Booth CK, Carins JE, Robertson IK. Randomised doubleblind, placebo-controlled trial of iron supplementation attenuates fatigue and declining iron stores for female officers-in-training. *Journal of Military & Veterans' Health* 2014;**22**(3):13–24.

Bruner 1996 {published data only}

Bruner AB, Joffe A, Duggan AK, Casella JF, Brandt J. Randomised study of cognitive effects of iron

supplementation in non-anaemic iron-deficient adolescent girls. *Lancet* 1996;**348**(9033):992–6. [PUBMED: 8855856]

Brutsaert 2003 {published data only}

Brutsaert TD, Hernandez-Cordero S, Rivera J, Viola T, Hughes G, Haas JD. Iron supplementation improves progressive fatigue resistance during dynamic knee extensor exercise in iron-depleted, nonanemic women. *American Journal of Clinical Nutrition* 2003;77(2):441–8.

Bryson 1968 {published data only}

Bryson DD. Iron and anaemia in adolescent girls: a doubleblind trial. *Practitioner* 1968;**200**(199):694–7.

Charoenlarp 1988 {published data only}

Charoenlarp P, Dhanamitta S, Kaewvichit R, Silprasert A, Suwanaradd C, Na-Nakorn S, et al. A WHO collaborative study on iron supplementation in Burma and in Thailand. *American Journal of Clinical Nutrition* 1988;**47**(2):280–97.

Cooter 1978 {published data only}

Cooter RG, Mowbray KW. Effects of iron supplementation and activity on serum iron depletion and hemoglobin levels in female athletes. *Research Quarterly* 1978;**49**(2):114–8.

DellaValle 2012 {unpublished data only}

* DellaValle DM [pers comm]. The effects of iron depletion without anemia on training and performance in female collegiate rowers [personal communication]. Email to: SR Pasrischa 10 May 2012.

DellaValle DM, Haas JD. Iron supplementation improves energetic efficiency in iron-depleted female rowers. *Medicine and Science in Sports and Exercise* 2014;**46**(6):1204–15. [PUBMED: 24195864]

Edgerton 1979 {published data only}

Edgerton VR, Gardner GW, Ohira Y, Gunawardena KA, Senewiratne B. Iron-deficiency anaemia and its effect on worker productivity and activity patterns. *British Medical Journal* 1979;**2**(6204):1546–9.

Eftekhari 2006 {published data only}

Eftekhari MH, Simondon KB, Jalali M, Keshavarz SA, Elguero E, Eshraghian MR, et al. Effects of administration of iron, iodine and simultaneous iron-plus-iodine on the thyroid hormone profile in iron-deficient adolescent Iranian girls. *European Journal of Clinical Nutrition* 2006;**60**(4): 545–52.

Elwood 1966 {published data only}

Elwood PC, Wood MM. Effect of oral iron therapy on the symptoms of anaemia. *British Journal of Preventive & Social Medicine* 1966;**20**(4):172–5.

Elwood 1970 {published data only}

Elwood PC, Hughes D. Clinical trial of iron therapy of psychomotor function in anaemic women. *British Medical Journal* 1970;**3**(5717):254–5.

Flink 2006 {published data only}

Flink H, Tegelberg A, Thörn M, Lagerlöf F. Effect of oral iron supplementation on unstimulated salivary flow rate: a randomized, double-blind, placebo-controlled trial. *Journal of Oral Pathology & Medicine* 2006;**35**(9):540–7. [PUBMED: 16968234]

Florencio 1981 {published data only}

Florencio CA. Effects of iron and ascorbic acid supplementation on hemoglobin level and work efficiency of anemic women. *Journal of Occupational and Environmental Medicine* 1981;**23**(10):699–704.

Fogelholm 1992 {published data only}

Fogelholm M, Jaakkola L, Lampisjärvi T. Effects of iron supplementation in female athletes with low serum ferritin concentration. *International Journal of Sports Medicine* 1992;**13**(2):158–62. [PUBMED: 1555906]

Fogelholm 1994 {published data only}

Fogelholm M, Suominen M, Rita H. Effects of low-dose iron supplementation in women with low serum ferritin concentration. *European Journal of Clinical Nutrition* 1994; **48**(10):753–6. [PUBMED: 7835330]

Gordeuk 1987 {published data only}

Gordeuk VR, Brittenham GM, Hughes MA, Keating LJ. Carbonyl iron for short-term supplementation in female blood donors. *Transfusion* 1987;**27**(1):80–5.

Gordeuk 1990 {published data only}

Gordeuk VR, Brittenham GM, Bravo J, Hughes MA, Keating LJ. Prevention of iron deficiency with carbonyl iron in female blood donors. *Transfusion* 1990;**30**(3):239–45. [PUBMED: 2180144]

Gunaratna 2015 {published data only}

Gunaratna NS, Masanja H, Mrema S, Levira F, Spiegelman D, Hertzmark E, et al. Multivitamin and iron supplementation to prevent periconceptional anemia in rural Tanzanian women: a randomized, controlled trial. *PloS one* 2015;**10**(4):e0121552. [DOI: 10.1371/ journal.pone.0121552]

Heath 2001 {published data only}

Heath AL, Skeaff CM, O'Brien SM, Williams SM, Gibson RS. Can dietary treatment of non-anemic iron deficiency improve iron status?. *Journal of the American College of Nutrition* 2001;**20**(5):477–84. [PUBMED: 11601562]

Hinton 2000 {published data only}

Brownlie T, Utermohlen V, Hinton PS, Giordano C, Haas JD. Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. *American Journal of Clinical Nutrition* 2002;**75**(4):734–42. [PUBMED: 11916761]

Brownlie T, Utermohlen V, Hinton PS, Haas JD. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. *American Journal of Clinical Nutrition* 2004;**79**(3):437–43. [PUBMED: 14985219]

* Hinton PS, Giordano C, Brownlie T, Haas JD. Iron supplementation improves endurance after training in irondepleted, nonanemic women. *Journal of Applied Physiology* 2000;**88**(3):1103–11. [PUBMED: 10710409]

Hinton 2007 {published data only}

Hinton PS, Sinclair LM. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. *European Journal* of *Clinical Nutrition* 2007;**61**:30–9. [DOI: 10.1038/ sj.ejcn.1602479]

Hoppe 2013 {published data only}

Hoppe M, Brün B, Larsson MP, Moraeus L, Hulthén L. Heme iron-based dietary intervention for improvement of iron status in young women. *Nutrition* 2013;**29**(1):89–95. [PUBMED: 22951158]

Jayatissa 1999 {published data only}

Jayatissa R, Piyasena C. Adolescent schoolgirls: daily or weekly iron supplementation?. *Food and Nutrition Bulletin* 1999;**20**(4):429–34.

Jensen 1991 {published data only}

Jensen CA, Weaver CM, Sedlock DA. Iron supplementation and iron status in exercising young women. *Journal* of Nutritional Biochemistry 1991;**2**(7):368–73. [DOI: 10.1016/0955-2863(91)90093-K]

Kanani 2000 {published data only}

Kanani SJ, Poojara RH. Supplementation with iron and folic acid enhances growth in adolescent Indian girls. *Journal of Nutrition* 2000;**130**(2S Suppl):452S–5S.

Kang 2004 {published data only}

Kang HS, Matsuo T. Effects of 4 weeks iron supplementation on haematological and immunological status in elite female soccer players. *Asia Pacific Journal of Clinical Nutrition* 2004;**13**(4):353–8. [PUBMED: 15563440]

Kianfar 2000 {published data only}

Kianfar H, Kimiagar M, Ghaffarpour M. Effect of daily and intermittent iron supplementation on iron status of high school girls. *International Journal for Vitamin and Nutrition Research* 2000;**70**(4):172–7. [PUBMED: 10989766]

Kiss 2015 {published data only}

Cable G, Brambilla D, Glynn S, Mast AE, Kiss JE. Quantification of iron stores, body iron, and iron absorption in blood donors: effect of iron supplementation. Transfusion. Abstract Presentations from the AABB Annual Meeting; 2014 October 25-28; Philadelphia, (PA). 2014; Vol. 54 Suppl S2:37A.

* Kiss JE, Brambilla D, Glynn SA, Mast AE, Spencer BR, Stone M, et al. Oral iron supplementation after blood donation: a randomized clinical trial. *JAMA* 2015;**313**(6): 575–83. [DOI: 10.1001/jama.2015.119]

Klingshirn 1992 {published data only}

Klingshirn LA, Pate RR, Bourque SP, Davis JM, Sargent RG. Effect of iron supplementation on endurance capacity in iron-depleted female runners. *Medicine and Science in Sports and Exercise* 1992;**24**(7):819–24.

LaManca 1993 {published data only}

LaManca JJ. Effects of Iron Supplementation on Aerobic Power, Endurance Performance, Blood Lactate, and Body Iron Stores in Women [Post doctoral thesis]. Florida: Florida State University, 1989.

* LaManca JJ, Haymes EM. Effects of iron repletion on VO2max, endurance, and blood lactate in women. *Medicine and Science in Sports and Exercise* 1993;25(12): 1386–92. [PUBMED: 8107547]

Lanerolle 2000 {published data only}

Lanerolle P, Atukorala S, De Silva G, Samarasinghe S, Dharmawardena L. Evaluation of nutrition education for improving iron status in combination with daily iron supplementation. *Food and Nutrition Bulletin* 2000;**21**(3): 259–69. [DOI: 10.1177/156482650002100302]

Larocque 2006 {published data only}

Larocque T. Iron Status and Cognitive Performance in Adolescent Females [thesis]. Lakehead University, 2006.

Leonard 2014 {published data only}

* Leonard AJ. Iron Deficiency in Young Australian Women: Role of Iron Knowledge, Dietary Intake and Supplementation, and the Effects on Cognition [Thesis]. Newcastle Australia: University of Newcastle, 2014.

Leonard AJ, Chalmers KA, Collins CE, Patterson AJ. A study of the effects of latent iron deficiency on measures of cognition: a pilot randomised controlled trial of iron supplementation in young women. *Nutrients* 2014;**6**(6): 2419–35. [PUBMED: 24959952]

Leonard AJ, Chalmers KA, Collins CE, Patterson AJ. Comparison of two doses of elemental iron in the treatment of latent iron deficiency: efficacy, side effects and blinding capabilities. *Nutrients* 2014;**6**(4):1394–405. [DOI: 10.3390/nu6041394]

Li 1994 {published data only}

Li R, Chen X, Yan H, Deurenberg P, Garby L, Hautvast JG. Functional consequences of iron supplementation in iron-deficient female cotton mill workers in Beijing, China. *American Journal of Clinical Nutrition* 1994;**59**(4):908–13.

Lyle 1992 {published data only}

Lyle RM, Weaver CM, Sedlock DA, Rajaram S, Martin B, Melby CL. Iron status in exercising women: the effect of oral iron therapy vs increased consumption of muscle foods. *American Journal of Clinical Nutrition* 1992;**56**(6):1049–55.

Machado 2011 {published data only}

Machado KMM, Ferreira LOC, de Souza AI, Diniz AS. The side-effects of different doses of iron sulfate on women of reproductive age: a randomized double-blind, placebo controlled study [Efeitos colaterais do sulfato ferroso administrado em diferentes posologias em mulheres em idade reprodutiva: estudo randomizado, duplo cego e controlado por placebo]. *Revista Brasileira de Saúde Materno Infantil* 2011;**11**(3):275–81. [DOI: 10.1590/ S1519-38292011000300008]

Magazanik 1991 {published data only}

Magazanik A, Weinstein Y, Abarbanel J, Lewinski U, Shapiro Y, Inbar O, et al. Effect of an iron supplement on body iron status and aerobic capacity of young training women. *European Journal of Applied Physiology and Occupational Physiology* 1991;**62**(5):317–23.

Maghsudlu 2008 {published data only}

Maghsudlu M, Nasizadeh S, Toogeh GR, Zandieh T, Parandoush S, Rezayani M. Short-term ferrous sulfate supplementation in female blood donors. *Transfusion* 2008; **48**(6):1192–7. [DOI: 10.1111/j.1537-2995.2007.01671.x]

Marks 2014 {published and unpublished data}

Marks DC, Speedy J, Robinson KL, Brama T, Capper HR, Mondy P, et al. An 8-week course of 45 mg of carbonyl iron daily reduces iron deficiency in female whole blood donors aged 18 to 45 years: results of a prospective randomized controlled trial. *Transfusion* 2014;**54**(3 Pt 2):780–8. [DOI: 10.1111/trf.12464]

McClung 2009 {published data only}

McClung JP, Karl JP, Cable SJ, Williams KW, Nindl BC, Young AJ, et al. Randomized, double-blind, placebocontrolled trial of iron supplementation in female soldiers during military training: effects on iron status, physical performance, and mood. *American Journal of Clinical Nutrition* 2009;**90**(1):124–31. [PUBMED: 19474138]

Mujica-Coopman 2015 {published data only}

Mujica-Coopman MF, Borja A, Pizarro F, Olivares M. Effect of daily supplementation with iron and zinc on iron status of childbearing age women. *Biological Trace Element Research* 2015;**165**(1):10–7.

Murray-Kolb 2007 {published data only (unpublished sought but not used)}

Murray-Kolb LE. Iron Status, Cognitive Performance, and Behavioral Affect in Young Women [Doctoral thesis]. Pennsylvania State University, 2003. * Murray-Kolb LE, Beard JL. Iron treatment normalizes cognitive functioning in young women. American Journal of Clinical Nutrition 2007;85(3):778–87. [PUBMED: 17344500]

Newhouse 1989 {published data only}

Newhouse IJ, Clement DB, Taunton JE, McKenzie DC. The effects of prelatent/latent iron deficiency on physical work capacity. *Medicine and Science in Sports and Exercise* 1989;**21**(3):263–8. [DOI: 10.1249/00005768-198906000-00006]

Pereira 2014 {published and unpublished data}

* Pereira D, Couto Irving SS, Lomer MC, Powell JJ. A rapid, simple questionnaire to assess gastrointestinal symptoms after oral ferrous sulphate supplementation. *BMC Gastroenterology* 2014;**14**:103. [DOI: 10.1186/ 1471-230X-14-103]

Pereira, D. Question re your paper in BMC Gastroenterology 2014 [personal communication]. Email to: SR Pasricha 3 November 2014.

Prosser 2010 {published data only}

Prosser NR, Heath AL, Williams SM, Gibson RS. Influence of an iron intervention on the zinc status of young adult New Zealand women with mild iron deficiency. *British Journal of Nutrition* 2010;**104**(5):742–50. [DOI: 10.1017/ S0007114510001091]

Radjen 2011 {published data only}

Radjen S, Radjen G, z ivotic -Vanovic M, Radakovi

e S, Vasiljevie N, Stojanovic D. Effect of iron supplementation on maximal oxygen uptake in female

athletes [Uticaj suplementacije gvož đ a na maksimalnu potrošnju kiseonika kod sportistkinja]. *Military-Medical and Pharmaceutical Review* 2011;**68**(2):130–5. [DOI: 10.2298/VSP1102130R]

Rajaram 1995 {published data only}

Rajaram S, Weaver CM, Lyle RM, Sedlock DA, Martin B, Templin TJ, et al. Effects of long-term moderate exercise on iron status in young women. *Medicine and Science in Sports and Exercise* 1995;**27**(8):1105–10.

Rowland 1988 {published data only}

Rowland TW, Deisroth MB, Green GM, Kelleher JF. The effect of iron therapy on the exercise capacity of nonanemic iron-deficient adolescent runners. *American Journal of Diseases of Children* 1988;**142**(24):165–9. [DOI: 10.1001/archpedi.1988.02150020067030]

Rybo 1985 {published data only}

Rybo E, Bengtsson C, Hallberg L, Oden A. Effect of iron supplementation to women with iron deficiency. *Scandinavian Journal of Haematology* 1985;**34**(S43):103–14. [DOI: 10.1111/j.1600-0609.1985.tb00790.x]

Røsvik 2010 {published data only}

Røsvik AS, Hervig T, Wentzel-Larsen T, Ulvik RJ. Effect of iron supplementation on iron status during the first week after blood donation. Vox Sanguinis 2010; Vol. 98, issue 3 Pt 1:e249–56. [DOI: 10.1111/j.1423-0410.2009.01270.x]

Shah 2002 {published data only}

Shah BK, Gupta P. Weekly vs daily iron and folic acid supplementation in adolescent Nepalese girls. Archives of Pediatrics & Adolescent Medicine 2002; Vol. 156, issue 2: 131–5. [PUBMED: 11814373]

Swain 2007 {published data only}

Swain JH, Johnson LK, Hunt JR. Electrolytic iron or ferrous sulfate increase body iron in women with moderate to low iron stores. *Journal of Nutrition* 2007;**137**(3):620–7. [PUBMED: 17311950]

Taniguchi 1991 {published data only}

Taniguchi M, Imamura H, Shirota T, Okamatsu H, Fujii Y, Toba M, et al. Improvement in iron deficiency anemia through therapy with ferric ammonium citrate and vitamin C and the effects of aerobic exercise. Journal of Nutritional Science and Vitaminology 1991; Vol. 37, issue 2:161–71. [PUBMED: 1919803]

Verdon 2003 {published data only}

Verdon F, Burnand B, Stubi CL, Bonard C, Graff M, Michaud A, et al. Iron supplementation for unexplained fatigue in non-anaemic women: double blind randomised placebo controlled trial. BMJ 2003; Vol. 326, issue 7399: 1124.

Viteri 1999 {published data only}

Viteri FE, Ali F, Tujague J. Long-term weekly iron supplementation improves and sustains nonpregnant women's iron status as well or better than currently recommended short-term daily supplementation. *Journal of Nutrition* 1999;**129**(11):2013–20.

Waldvogel 2012 {published data only}

Waldvogel S, Pedrazzini B, Vaucher P, Bize R, Cornuz J, Tissot J-D, et al. Clinical evaluation of iron treatment efficiency among non-anemic but iron-deficient female blood donors: a randomized controlled trial. *BMC Medicine* 2012;**10**(8):8. [DOI: 10.1186/1741-7015-10-8]

Walsh 1989 {published data only (unpublished sought but not used)}

Walsh R, McNaughton L. Effects of iron supplementation on iron status of young female swimmers during pre-season phase of competition. *Journal of Swimming Research* 1989;**5** (2):13–8.

Wang 2012 {published data only}

Wang Z, Sun J, Wang L, Zong M, Chen Y, Lin Y, et al. Effect of iron supplementation on iron deficiency anemia of childbearing age women in Shanghai. *Journal of Hygiene Research* 2012;**41**(1):51–5. [PUBMED: 22443058]

Yadrick 1989 {published data only}

Yadrick MK, Kenney MA, Winterfeldt EA. Iron, copper, and zinc status: response to supplementation with zinc or zinc and iron in adult females. *American Journal of Clinical Nutrition* 1989;**49**(1):145–50. [PUBMED: 2912000]

Yoshida 1990 {published data only}

Yoshida T, Udo M, Chida M, Ichioka M, Makiguchi K. Dietary iron supplement during severe physical training in competitive female distance runners. *Sports Training, Medicine and Rehabilitation* 1990;1(4):279–85. [DOI: 10.1080/15438629009511885]

Zaman 2013 {published data only}

McArthur JO, Petocz P, Caterson ID, Samman S. A randomized controlled trial in young women of the effects of consuming pork meat or iron supplements on nutritional status and feeling of well-being. *Journal of the American*

College of Nutrition 2012;**31**(3):175–84. [DOI: 10.1080/ 07315724.2012.10720025]

* Zaman K, McArthur JO, Abboud MN, Ahmad ZI, Garg ML, Petocz P, et al. Iron supplementation decreases plasma zinc but has no effect on plasma fatty acids in non-anemic women. *Nutrition Research* 2013;**33**(4):272–8. [DOI: 10.1016/j.nutres.2013.02.001]

Zavaleta 2000 {published data only}

Zavaleta N, Respicio G, Garcia T. Efficacy and acceptability of two iron supplementation schedules in adolescent school girls in Lima, Peru. *Journal of Nutrition* 2000;**130**(2): 462S–4S.

Zhu 1998 {published data only}

* Zhu YI, Haas JD. Altered metabolic response of irondepleted nonanemic women during a 15-km time trial. *Journal of Applied Physiology* 1998 May;84(5):1768–75. Zhu YI, Haas JD. Response of serum transferrin receptor to iron supplementation in iron-depleted, nonanemic women. *American Journal of Clinical Nutrition* 1988;67(2):271–5.

References to studies excluded from this review

Brigham 1993 {published data only}

Brigham DE, Beard JL, Krimmel RS, Kenney WL. Changes in iron status during competitive season in female collegiate swimmers. *Nutrition* 1993;**9**(5):418–22. [PUBMED: 8286880]

Cable 1988 {published data only}

Cable RG, Morse EE, Keltonic J, Kakaiya R, Kiraly T. Iron supplementation in female blood donors deferred by copper sulfate screening. *Transfusion* 1988;**28**(5):422–6. [DOI: 10.1046/j.1537-2995.1988.28588337328.x]

Powell 1991 {published data only}

Powell PD, Tucker A. Iron supplementation and running performance in female cross-country runners. *International Journal of Sports Medicine* 1991;**12**(5):462–7.

Powers 1988 {published data only}

Powers HJ, Bates CJ, Downes R, Brubacher D, Sutcliffe V, Thurnhill A. Running performance in Gambian children: effects of water-soluble vitamins on iron. *European Journal* of *Clinical Nutrition* 1988;**42**(11):895–902.

Schoene 1983 {published data only}

Schoene RB, Escourrou P, Robertson HT, Nilson KL, Parsons JR, Smith NJ. Iron repletion decreases maximal exercise lactate concentrations in female athletes with minimal iron-deficiency anemia. *Journal of Laboratory and Clinical Medicine* 1983;**102**(2):306–12. [PUBMED: 6864076]

Simon 1984 {published data only}

Simon TL, Hunt WC, Garry PJ. Iron supplementation for menstruating female blood donors. *Transfusion* 1984;**24**(6): 469–72. [PUBMED: 6506175]

References to studies awaiting assessment

Blot 1980 {published data only}

Blot I, Chenayer M, Diakhate L, Leluc R, Gross E, Tchernia G. Iron reserves in blood donors. Should we prescribe

systematic iron supplementation?. *Revue Francaise de Transfusion et Immuno-hematologie* 1980;**23**(2):119–29.

Böttiger 1971 {published data only}

Böttiger LE, Nyberg A, Astrand I, Astrand PO. Iron administration to healthy, physically very active students. *Nordisk Medicin* 1971;**85**(13):396–8. [PUBMED: 4928926]

Charoenlarp 1981 {published data only}

Charoenlarp P. Iron supplementation studies. Experimental design and interpretation of results. *Progress in Clinical and Biological Research* 1981;77:355–61.

Greene 1995 {published data only}

Greene LM. Effect of Iron Supplementation on Measures of Cognitive Functioning During Adolescence. [Thesis]. University of Ulster, 1995.

Isager 1974 {published data only}

Isager H. Iron deficiency, growth, and stimulated erythropoiesis. *Scandinavian Journal of Haematology*. *Supplementum* 1974;**21**:1–176.

Izak 1973 {published data only}

Izak G, Levy S, Rachmilewitz M, Grossowicz N. The effect of iron and folic acid therapy on combined iron and folate deficiency anaemia: the results of a clinical trial. *Scandinavian Journal of Haematology* 1973;**11**(3):236–40.

Parkinson 1981 {published data only}

Parkinson CF, Parkinson SB. Effect of vitamin-iron preparation on tooth staining studied. *Journal of the Missouri Dental Association* 1981;**61**(4):34–7.

References to ongoing studies

IRCT201409082365N9 {published data only}

IRCT201409082365N9. The effects of vitamin D or iron-vitamin supplementation on bone metabolism and inflammation in 18-40-year women. http://apps.who.int/ trialsearch/Trial2.aspx?trialid=IRCT201409082365N9 (accessed 15 November 2015).

Additional references

Andrews 1999

Andrews NC. Disorders of iron metabolism. *New England Journal of Medicine* 1999;**341**(26):1986–95. [DOI: 10.1056/NEJM199912233412607]

Balshem 2011

Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines 3. Rating the quality of evidence. *Journal of Clinical Epidemiology* 2011; **64**(4):401–6. [DOI: 10.1016/j.jclinepi.2010.07.015]

Borenstein 2008

Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. *Introduction to Meta-Analysis (Statistics in Practice)*. Chichester, UK: John Wiley & Sons, 2008.

Brainclinics 2015 [Computer program]

Brainclinics Products. Neuropsychological tests: IntegNeuro. Nijmegen, The Netherlands: Brainclinics Product, 2015.

Brownlie 2002

Brownlie T, Utermohlen V, Hinton PS, Giordano C, Haas JD. Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. *American Journal of Clinical Nutrition* 2002;**75**(4):734–42.

Brownlie 2004

Brownlie T 4th, Utermohlen V, Hinton PS, Haas JD. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. *American Journal of Clinical Nutrition* 2004;**79**(3):437–43.

Burhans 2005

Burhans MS, Dailey C, Beard Z, Wiesinger J, Murray-Kolb LJ, Byron C, et al. Iron deficiency: differential effects on monoamine transporters. *Nutritional Neuroscience* 2005;**8** (1):31–8.

Chambers 2009

Chambers JC, Zhang W, Li Y, Sehmi J, Wass MN, Zabaneh D, et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. *Nature Genetics* 2009;**41**(11):1170–2. [DOI: 10.1038/ng.462]

Dallman 1992

Dallman PR. Changing iron needs from birth through adolescence. In: Fomon SJ, Zlotkin S editor(s). *Nutritional Anemias*. Vol. **30**, New York: Nestle Nutrition Workshop Series, Nestec Ltd. Vevey/Raven Press Ltd, 1992:34.

De-Regil 2011

De-Regil LM, Jefferds MED, Sylvetsky AC, Dowswell T. Intermittent iron supplementation for improving nutrition and development in children under 12 years of age. *Cochrane Database of Systematic Reviews* 2011, Issue 12. [DOI: 10.1002/14651858.CD009085.pub2]

Deeks 2011

Deeks J, Higgins JPT, Altman D. Chapter 9: Analysing data and undertaking meta-analyses. In Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane-handbook.org.

Dodd 2004

Dodd J, Dare MR, Middleton P. Treatment for women with postpartum iron deficiency anaemia. *Cochrane Database of Systematic Reviews* 2004, Issue 4. [DOI: 10.1002/ 14651858.CD004222]

Endnote 2015 [Computer program]

McCracken MO. Endnote X7. Thomson Reuters, 2015.

Fernández-Gaxiola 2011

Fernández-Gaxiola AC, De-Regil LM. Intermittent iron supplementation for reducing anaemia and its associated impairments in menstruating women. *Cochrane Database* of Systematic Reviews 2011, Issue 12. [DOI: 10.1002/ 14651858.CD009218.pub2]

Gandek 1998

Gandek B, Ware JE, Aaronson NK, Apolone G, Bjorner JB, Brazier JE, et al. Cross-validation of item selection and

scoring for the SF-12 Health Survey in nine countries: results from the IQOLA Project. *Journal of Clinical Epidemiology* 1998;**51**(11):1171–8. [DOI: 10.1016/ S0895-4356(98)00109-7]

Goddard 2011

Goddard AF, James MW, McIntyre AS, Scott BB, on behalf of the British Society of Gastroenterology. Guidelines for the management of iron deficiency anaemia. *Gut* 2011;**60** (10):1309–16. [DOI: 10.1136/gut.2010.228874]

GRADEpro GDT 2015 [Computer program]

McMaster University. GRADEpro GDT: GRADEpro Guideline Development Tool. McMaster University, 2015 (developed by Evidence Prime, Inc.) Available from www.gradepro.org.

Gulliford 1999

Gulliford MC, Ukoumunne OC, Chinn S. Components of variance and intraclass correlations for the design of community-based surveys and intervention studies: data from the Health Survey for England 1994. *American Journal of Epidemiology* 1999;**149**(9):876–83. [PUBMED: 10221325]

Haider 2006

Haider BA, Bhutta ZA. Multiple-micronutrient supplementation for women during pregnancy. *Cochrane Database of Systematic Reviews* 2006, Issue 4. [DOI: 10.1002/14651858.CD004905.pub2]

Harbord 2009

Harbord RM, Harris RJ, Sterne JAC. Updated tests for small-study effects in meta-analyses. *The Stata Journal* 2009;**9**(2):197–210.

Higgins 2003

Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *British Medical Journal* 2003;**327**(7414):557–60.

Higgins 2011a

Higgins JPT, Deeks JJ (editors). Chapter 7: Selecting studies and collecting data. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane-handbook.org.

Higgins 2011b

Higgins JPT, Altman DG, Sterne JAC. Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane-handbook.org.

Higgins 2011c

Higgins JPT, Deeks JJ, Altman DG (editors). Chapter 16: Special topics in statistics. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane-handbook.org.

Hotez 2005

Hotez PJ, Bethony J, Bottazzi ME, Brooker S, Buss P. Hookworm: "the great infection of mankind". *PLoS Medicine* 2005;**2**(3):e67. [DOI: 10.1371/journal.pmed.0020067]

Hurrell 2010

Hurrell R, Egli I. Iron bioavailability and dietary reference values. *American Journal of Clinical Nutrition* 2010;**91**(5):1461S–7S. [DOI: 10.3945/ %E2%80%8Bajcn.2010.28674F]

IOC 2009

International Olympic Committee. The International Olympic Committee (IOC) consensus statement on periodic health evaluation of elite athletes: March 2009. http://bit.ly/1Wn3aJX (accessed 25 January 2015).

Krupp 1989

Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. *Archives of Neurology* 1989;**46**(10):1121–3. [PUBMED: 2803071]

Low 2013

Low M, Farrell A, Biggs BA, Pasricha SR. Effects of daily iron supplementation in primary-school-aged children: systematic review and meta-analysis of randomized controlled trials. *Canadian Medical Association Journal* 2013;**185**(17):E791–802. [PUBMED: 24130243]

Lozoff 2007

Lozoff B. Iron deficiency and child development. *Food and Nutrition Bulletin* 2007;**28**(4 Suppl):S560–71.

Mahoney 2011

Mahoney DH. Iron deficiency in infants and young children: treatment. www.uptodate.com/contents/iron-deficiency-in-infants-and-young-children-treatmenthttp (accessed 31 August 2011).

McNair 1971

McNair DM, Lorr M, Droppleman LF. *Manual for the Profile of Mood States.* San Diego: Educational and Industrial Testing Service, 1971.

Okebe 2011

Okebe JU, Yahav D, Paul M. Oral iron supplements for children in malaria-endemic areas. *Cochrane Database* of Systematic Reviews 2011, Issue 10. [DOI: 10.1002/ 14651858.CD006589.pub3]

Oppenheimer 2001

Oppenheimer SJ. Iron and its relation to immunity and infectious disease. *Journal of Nutrition* 2001;**131**(2): S616–35S.

Pasricha 2010

Pasricha SR, Flecknoe-Brown SC, Allen KJ, Gibson PR, McMahon LP, Olynyk JK, et al. Diagnosis and management of iron deficiency anaemia: a clinical update. *Medical Journal of Australia* 2010;**193**(9):525–32.

Pasricha 2013

Pasricha SR, Hayes E, Kalumba K, Biggs BA. Effect of daily iron supplementation on health in children aged

4-23 months: a systematic review and meta-analysis of randomised controlled trials. *Lancet Global Health* 2013;**1** (2):e77–86. [PUBMED: 25104162]

Pasrischa 2012

Pasricha S-R, De-Regil LM, Garcia-Casal MN, Burford BJ, Gwirtz JA, Peña-Rosas JP. Fortification of maize flour with iron for preventing anaemia and iron deficiency in populations. *Cochrane Database of Systematic Reviews* 14 November 2012;11:Art. No.: CD010187. DOI: 10.1002/14651858.CD010187.

Peeling 2008

Peeling P, Dawson B, Goodman C, Landers G, Trinder D. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. *European Journal of Applied Physiology* 2008;**103**(4):381–94.

Peña-Rosas 2009

Peña-Rosas JP, Viteri FE. Effects and safety of preventive oral iron or iron+folic acid supplementation for women during pregnancy. *Cochrane Database of Systematic Reviews* 2009, Issue 4. [DOI: 10.1002/14651858.CD004736.pub3]

Peña-Rosas 2014

Peña-Rosas J, Field MS, Burford BJ, De-Regil L. Wheat flour fortification with iron for reducing anaemia and improving iron status in populations. *Cochrane Database* of *Systematic Reviews* 2014, Issue 9. [DOI: 10.1002/ 14651858.CD011302]

Radloff 1977

Radloff LS. The CES-D Scale. A self-report depression scale for research in the general population. *Applied Psychological Measurement* 1977;1(3):385–401. [DOI: 10.1177/014662167700100306]

RevMan 2014 [Computer program]

The Nordic Cochrane Centre, The Cochrane Collaboration. Review Manager (RevMan). Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.

Scholz 1997

Scholz BD, Gross R, Schultink W, Sastroamidjojo S. Anaemia is associated with reduced productivity of women workers even in less-physically-strenuous tasks. *British Journal of Nutrition* 1997;77(1):47–57. [DOI: 10.1017/ S0007114500002877]

Self 2012

Self JL, Serdula M, Dowswell T, De-Regil LM. Fortification of condiments and seasonings with iron for preventing anaemia and improving health. *Cochrane Database of Systematic Reviews* 2012, Issue 2. [DOI: 10.1002/ 14651858.CD009604]

Sharpe 1950

Sharpe LM, Peacock WC, Cooke R, Harris RS. The effect of phytate and other food factors on iron absorption. *Journal of Nutrition* 1950;**41**(3):433–46.

Sterne 2011

Sterne JAC, Egger M, Moher D, on behalf of the Cochrane Bias Methods Group (editors). Chapter 10:

Addressing reporting biases. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane-handbook.org.

Stevens 2013

Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, et al. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and nonpregnant women for 1995-2011: a systematic analysis of population-representative data. *Lancet Global Health* 2013; 1(1):e16–25. [DOI: 10.1016/S2214-109X(13)70001-9]

Stoltzfus 2001

Stoltzfus R. Defining iron-deficiency anemia in public health terms: a time for reflection. *Journal of Nutrition* 2001;**131**(2S-2):5658–7S.

Suominen 1998

Suominen P, Punnonen K, Rajamäki A, Irjala K. Serum transferrin receptor and transferrin receptor-ferritin index identify healthy subjects with subclinical iron deficits. *Blood* 1998;**92**(8):2934.

Thankachan 2008

Thankachan P, Walczyk T, Muthayya S, Kurpad AV, Hurrell RF. Iron absorption in young Indian women: the interaction of iron status with the influence of tea and ascorbic acid. *American Journal of Clinical Nutrition* 2008;**87**(4):881–6.

Ukoumunne 1999

Ukoumunne OC, Gulliford MC, Chinn S, Sterne JAC, Burney PGJ. Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review. *Health Technology Assessment* 1999;**3**(5): i–97. [PUBMED: 10982317]

Umbreit 2005

Umbreit J. Iron deficiency: a concise review. *American Journal of Hematology* 2005;78(3):225–31. [DOI: 10.1002/ ajh.20249]

Ware 1992

Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. *Medical Care* 1992;**30**(6):473–83. [PUBMED: 1593914]

WHO 2009

World Health Organization. Weekly iron-folic acid supplementation (WIFS) in women of reproductive age: its role in promoting optimal maternal and child health. www.who.int/nutrition/publications/micronutrients/ weekly iron folicacid/en/index.html (accessed 31 August 2011).

WHO 2010

World Health Organization. World Malaria Report 2010. http://whqlibdoc.who.int/publications/2010/ 9789241564106[•]eng.pdf (accessed 31 August 2011).

WHO 2011

World Health Organization. *Prevention of Iron Deficiency Anaemia in Adolescents. Role of Weekly Iron and Folic Acid Supplementation.* 1st Edition. Vol. 1, New Delhi: SEARO, World Health Organization, 2011.

WHO/CDC 2008

World Health Organization/Centers for Disease Control and Prevention. Worldwide prevalence of anaemia 1993-2005: WHO global database on anaemia. http://whqlibdoc.who.int/publications/2008/ 9789241596657⁻eng.pdf (accessed 31 August 2011).

WHO/UNICEF/UNU 2001

World Health Organization/United Nations Children's Fund/United Nations University. *Iron Deficiency Anaemia:* Assessment, Prevention, and Control. A Guide for Programme Managers. Geneva: World Health Organization, 2001.

Wolgemuth 1982

Wolgemuth JC, Latham MC, Hall A, Chesher A, Crompton DW. Worker productivity and the nutritional status of Kenyan road construction laborers. *American Journal of Clinical Nutrition* 1982;**36**(1):68–78.

References to other published versions of this review

Pasricha 2012

Pasricha SRS, De-Regil LM. Daily iron supplementation for improving iron status and health among menstruating women. *Cochrane Database of Systematic Reviews* 2012, Issue 4. [DOI: 10.1002/14651858.CD009747] dicates the main publication for the study.

* Indicates the major publication for the study

CHARACTERISTICS OF STUDIES

Characteristics of included studies [ordered by study ID]

Agarwal 2003

bias)

All outcomes

Methods	Design: cluster randomised controlled trial Randomisation: by school class Trial: daily iron versus weekly iron versus control. Weekly iron arm not extracted for this review Date of study: not stated	
Participants	 Setting: middle class area of New Delhi, North India Malaria endemicity: not stated Included: adolescent high-school girls aged 10 years to 17 years (mean age not reported) , attending government high schools Excluded: children with haemoglobin < 7 g/dL Dropouts: 7 girls from daily iron group failed to complete trial. No reports in other groups Sample size: total: 1390; intervention: 699, control: 691 	
Interventions	Intervention: daily iron (100 mg) + folic acid (500 mcg) daily Control: no intervention Duration: 100 days	
Outcomes	Haemoglobin, anaemia, iron status*	
Notes	ICC: not provided Compliance: not reported Conflicts of interest: not reported Funded by: UNICEF *Not included in our analyses as ferritin was not measured at study endpoint in daily iron arm	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported. Class randomisation
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	High risk	No placebo administered
Blinding of outcome assessment (detection	Unclear risk	Not reported. Only biochemical measures

Daily iron supplementation for improving anaemia, iron status and health in menstruating women (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

were reported

Agarwal 2003 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Low risk	7 girls dropped out
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	High risk	No intracluster correlation coefficient in- cluded
Ballin 1992		
Methods	Design: randomised, double-blind, placebo Randomisation: individual Trial: daily iron versus placebo Date of study: not stated	o-controlled trial
Participants	 Setting: high school in a middle socioeconomic-level community in urban Israel Malaria endemicity: not stated Included: adolescent girls aged 16 years to 17 years attending high school (mean age not reported) Excluded: if they had a prior gastrointestinal or haematologic illness Dropouts: not reported Sample size: total: 59; intervention: 29, control: 30 	
Interventions	Intervention: LiquiFer® liquid iron solution (105 mg elemental iron) daily Control: placebo Duration: 2 months	
Outcomes	Haematology, subjective reports of health,	physical fitness, side effects
Notes	Compliance: not reported Conflicts of interest: not stated Funded by: not stated Other notes: physical fitness not reported health data derived from bar charts	in extractable manner, subjective reports of

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Method for sequence generation not de- scribed
Allocation concealment (selection bias)	Unclear risk	Method for allocation concealment not de- scribed
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo liquid administered to control group

Ballin 1992 (Continued)

Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported in paper, outcomes unlikely to be affected.
Incomplete outcome data (attrition bias) All outcomes	Low risk	No dropouts or loss to follow-up
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	No evidence of other bias

Berger 1997

Methods	Design: randomised, double-blind, controlled trial Randomisation: individual Trial: daily oral iron versus control Date of study: not stated	
Participants	 Setting: two rural populations of the Bolivian Altiplano in the region of Potosi: Atocha (3600 m) and Santa Barbara (4800 m) Malaria endemicity: not stated Included: women aged 15 years to 40 years (mean age 28 years), non-pregnant, well-nourished, not suffering from chronic illness and/or acute infection, residing in the study region for at least the two previous years Excluded: not meeting above criteria or planning to leave the study region during the following 6 months Dropouts: not reported Sample size: total: 130; intervention: 65, control: 65 	
Interventions	Intervention: 3 mg elemental iron/d (6 days a week) + 20 ug folic acid Control: no intervention Duration: 3 months	
Outcomes	Haemoglobin, height, weight, erythrocyte protoporphyrin	
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated	
Risk of bias		
Bias	Authors' judgement	Support for judgement

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not stated
Allocation concealment (selection bias)	Unclear risk	Not stated

Berger 1997 (Continued)

Blinding of participants and personnel (performance bias) All outcomes	High risk	No placebo
Blinding of outcome assessment (detection bias) All outcomes	High risk	No placebo
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not stated
Selective reporting (reporting bias)	Low risk	No evidence
Other bias	Low risk	No evidence

Binkoski 2004

Methods	Design: randomised, cross-over study Randomisation: individual Trial: daily iron versus placebo Date of study: not stated	
Participants	 Setting: USA, no further information regarding location Malaria endemicity: not stated Included: healthy women aged 19 years to 47 years (mean age 26 years) Excluded: did not have serum low-density lipoprotein (LDL) cholesterol between the 50th and 90th percentiles and high-density lipoprotein (HDL) cholesterol and triglycerides between the 5th and 95th percentiles. Must also have had low normal baseline haemoglobin (120 to 140 g/L) and low ferritin (15 to 40 ng/mL) Dropouts: not stated Sample size: total: 26; intervention: 14, control: 12 	
Interventions	Intervention: 320 mg of ferrous sulphate daily administered as 160 mg ferrous sulphate (50 mg elemental iron) twice a day Control: placebo Duration: 10 weeks	
Outcomes	Haematology, iron status	
Notes	Compliance: not reported Conflicts of interest: reported that no conflict of interest Funded by: donation from "Intelligent Cuisine products"	
Risk of bias		
Bias	Authors' judgement	Support for judgement

Binkoski 2004 (Continued)

Random sequence generation (selection bias)	Unclear risk	Method for sequence generation not de- scribed
Allocation concealment (selection bias)	Unclear risk	Method for allocation concealment not de- scribed
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered to control group
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Only biochemical outcomes were evaluated
Incomplete outcome data (attrition bias) All outcomes	Low risk	No loss to follow-up
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	No evidence of other bias

Booth 2014

Methods	Design: randomised, double-blind controlled study Randomisation: individual Trial: daily oral iron versus placebo Date of study: initial recruitment started February 2003 (completion not stated)
Participants	Setting: Australian defence force academy, Canberra, Australia Malaria endemicity: not stated Included: first and second year female officer cadets; age range not reported (mean age 20 years) Excluded: current medical problems, recent blood donation, pregnancy in the previous 12 months, breast-feeding, anaemia (haemoglobin < 120 g/L), iron overload (serum ferritin > 300 μ g/L), or a positive <i>Helicobacter pylori</i> antibody test Dropouts: 49 participants completed from 71 initially recruited (69%) Sample size: total: 49, Iron: 25, placebo: 24
Interventions	Intervention: ferrous gluconate containing 18 mg of elemental iron + 0.5 mg of folate daily Control: 0.5 mg of folate daily Duration: 13 weeks
Outcomes	Haemaglobin, iron status, general fatigue scores
Notes	Compliance: 85% compliance in both groups (equivalent to 6 tablets a week) Conflicts of interest: not declared Funded by: Defence Science & Technology Organisation's annual tasking

Booth 2014 (Continued)

Risk of bias

Kisk of bids		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	On-line random number generator
Allocation concealment (selection bias)	Low risk	Reported allocation concealment
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Reported double blinding
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not evident
Incomplete outcome data (attrition bias) All outcomes	High risk	31% dropout rate
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Bruner 1996

Methods	Design: randomised controlled trial Randomisation: individual Trial: iron daily versus placebo Date of study: August to September 1993
Participants	 Setting: two public high schools and two private Catholic high schools in Baltimore, Maryland, USA Malaria endemicity: not stated Included: girls in grades 9 to 12, aged 13 years to 18 years (mean age 16 years) Excluded: if did not have non-anaemic iron deficiency (i.e. haemoglobin > 120g/L (> 115g/L for African American girls)); ferritin < 12mg/L) Dropouts: 8 in total. 5 became anaemic and were excluded (3 in intervention, 2 in control group). 3 were lost to follow-up Sample size: total: 73; intervention: 37, control: 36
Interventions	Intervention: ferrous sulphate 1300 mg daily (420 mg elemental iron daily) Control: placebo Duration: 8 weeks
Outcomes	Haematology, cognitive function, iron status, side effects

Bruner 1996 (Continued)

Notes	Compliance: not reported	
	Conflicts of interest: authors report no conflict of interest	
	Funded by: SmithKline Beecham Consumer Brand Pharmaceuticals	
	Other notes: results of most cognitive tests were presented only in figures (without error	
	bars), not tables, and thus could not be used for meta-analysis	
	Funded by: SmithKline Beecham Consumer Brand Pharmaceuticals Other notes: results of most cognitive tests were presented only in figures (without error	

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Computer-generated random number lists
Allocation concealment (selection bias)	Low risk	Quote: "Participants and investigators were unaware of group assignment"
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported
Incomplete outcome data (attrition bias) All outcomes	Low risk	3 dropouts, 5 withdrawn from study. Not stated from which arm losses occurred
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Unclear risk	Outcomes only reported in figures, not in tables or in the text

Brutsaert 2003

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	 Setting: Mexico. No further details Malaria endemicity: not stated Included: untrained* women, aged 18 years to 45 years (mean age 29 years), screened and found to have iron depletion (ferritin < 20 ng/mL) and be non-anaemic (haemoglobin > 120 g/L) Excluded: current pregnancy or pregnancy within the previous year, recent infectious illness or fever, haemolytic anaemia, asthma, musculoskeletal problems, recent history of eating disorders, smoking, excess alcohol consumption, recent use of recreational drugs, or consumption of prescription medications that would interfere with dietary

Brutsaert 2003 (Continued)

	iron absorption Dropouts: unclear. Reports that 20 women were selected for final study from 92 eligible women. Unclear as to how women were selected Sample size: total: 20; intervention: 10, control: 10
Interventions	Intervention: elemental iron 10 mg as ferrous sulphate Control: placebo Duration: 6 weeks
Outcomes	Haematology, iron indices, exercise performance
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated *The authors did not further define the term "untrained"

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported in paper, outcomes unlikely to be affected.
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Reports that 20 women were selected for fi- nal study from 92 eligible women. Unclear as to how women were selected (i.e. if drop outs affected numbers)
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Bryson 1968

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily iron with vitamin C versus vitamin C alone Date of study: not stated
Participants	 Setting: semi-skilled female factory workers in Stevenston, Scotland Malaria endemicity: not stated Included: aged 15 years to 19 years (mean age not reported) Excluded: receiving therapy from General Practioner (GP), haemoglobin < 9 g/dL, GP started iron therapy during the trial, those who reported ill effects due to the tablet Dropouts: 94 of 269 failed to take more than 2 months supply (total 34%) Sample size: total: 254; intervention: 134, control: 120
Interventions	Intervention: elemental iron (40 mg/d) as ferrous fumarate + vitamin C Control: vitamin C alone Duration: 3 months
Outcomes	Haemoglobin, side effects
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated, however Lederle Laboratories provided drugs Other notes: errors not reported for haemoglobin, therefore haemoglobin data not extracted

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Low risk	Manufacturer maintained allocation code
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Side effects being measured, thus blinding of outcome assessment would be important
Incomplete outcome data (attrition bias) All outcomes	High risk	269 enrolled, 175 completed study
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Charoenlarp 1988

Methods	 Design: two randomised controlled trials Randomisation: individual Trial: Trial 1: daily iron at 2 different doses with and without supervision versus placebo. Trial 2: daily iron at two different doses with and without folic acid versus placebo Date of study: Trial 1: 1977 to 1979, Trial 2: 1978 to 1980 TWO STUDIES: Study A: Non-pregnant women and men; data for women presented separately. Participants with haemoglobin E or B thalassaemia trait were excluded. Study performed between March 1977 and March 1979 Study C: Study performed between September 1978 and August 1980
Participants	 Setting: Trial 1: Rural area of Central Thailand 80 km north of Bangkok near Ayudhya. Trial 2: Northern Thailand; two villages 50 km south and 100 km south west of Chiang Mai Malaria endemicity: malaria is endemic to both trials Included: women of fertile age Trial 1: age range 15 years to 45 years (mean age not stated) Trial 2: age range 16 years to 45 years (mean age not stated) Excluded: Haemoglobin < 80, thalassaemia trait or disease, uncooperative Dropouts: Trial 1: 16% across all groups (reported as similar), Trial 2: reported at 36%, group status unclear Sample size: total: 863; intervention: 690, control: 173
Interventions	Intervention: 1. Trial 1: 5 groups: placebo, daily iron 120 mg supervised, daily iron 240 mg supervised, daily iron 240 mg + 5 mg folic acid supervised, daily iron 120 mg unsupervised 2. Trial 2: 4 groups: placebo, daily iron 120 mg, daily iron 240 mg, daily iron 240 mg plus 5 mg of folic acid Control: placebo Duration: 3 months
Outcomes	Anaemia, haemoglobin, iron status
Notes	Compliance: not stated Conflicts of interest: not stated. Funded by: World Health Organization (WHO), Belgian administration of co-opera- tion to development, Danish International Development Authority, and Swedish Inter- national Development Authority

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not stated
Allocation concealment (selection bias)	Unclear risk	Not stated

Charoenlarp 1988 (Continued)

Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo used
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Placebo used
Incomplete outcome data (attrition bias) All outcomes	High risk	Loss to follow-up: 16% in trial 1 and 36. 6% in trial 2
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Cooter 1978

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily vitamins including iron versus daily vitamins without iron Date of study: not stated
Participants	 Setting: university at Georgetown University (USA) Malaria endemicity: not stated Included: female varsity basketball players aged 18 years to 24 years (mean age not reported) Excluded: not stated Dropouts: not stated Sample size: total: 10; intervention: 5, control: 5
Interventions	Intervention: vitamin including iron (18 mg) as ferrous fumarate daily Control: vitamin without iron daily Duration: 4 months
Outcomes	Haemoglobin, iron indices
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated
Risk of bias	

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported

Cooter 1978 (Continued)

Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Biochemical indices unlikely to be influenced by assessors' knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	Low risk	No apparent attrition
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

DellaValle 2012

Methods	Design: randomised placebo-controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: 2008 to 2009	
Participants	 Setting: university in USA, no further details given Malaria endemicity: not stated Included: female college rowers (varsity and second year novice) > 18 years of age (age range not reported, mean age not reported) Excluded: smokers or anaemic Dropouts: 9; 6 in intervention, 3 in control Sample size: total: 40; intervention: 21, control: 19 	
Interventions	Intervention: 50 mg ferrous sulphate per capsule twice a day (i.e. 100 mg FeSO4, approximately 30 mg elemental iron daily) Control: placebo Duration: 6 weeks	
Outcomes	Haemoglobin, iron indices, peak exercise performance, perceived exercise quality	
Notes	Compliance: 60.3% of tablets taken iron arm, 75.6% in control arm (mean intake iron arm 64 tablets, control arm 80 tablets) Conflicts of interest: authors report no conflict of interest Funded by: authors report no financial disclosures Other notes: provided both endpoint and change from baseline data for all outcomes. Endpoint data included in meta-analysis	
Risk of bias		
Bias	Authors' judgement	Support for judgement

DellaValle 2012 (Continued)

Random sequence generation (selection bias)	Low risk	Randomisation was done by assigning each participant a random number, with even and odd numbers being assigned to either treatment group
Allocation concealment (selection bias)	Low risk	Each participant was randomly assigned to a treatment group by a research assistant who was not involved in data collection or contact with participants
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Each participant was randomly assigned to a treatment group by a research assistant who was not involved in data collection or contact with participants
Incomplete outcome data (attrition bias) All outcomes	Low risk	31 of 40 rowers finished the entire study protocol; 22% loss to follow-up: 6 in iron group, 3 in placebo group
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Edgerton 1979

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	Setting: female tea workers of Kandy area, Sri Lanka Malaria endemicity: not stated Included: age range 20 years to 60 years (mean age 35 years). Allocation stratified by economic area and matched by economic productivity and haemoglobin Excluded: not stated Dropouts: not stated Sample size: total: 199; intervention: 103, control: 96
Interventions	Intervention: ferrous sulphate 200 mg/d (elemental iron 67 mg) Control: placebo (calcium lactate) Duration: 7 weeks
Outcomes	Haematology, productivity, voluntary physical activity

Edgerton 1979 (Continued)

Notes	Compliance: not stated
	Conflicts of interest: not stated
	Funded by: B Williams Co., New York
	Other notes: physical activity only reported in figures without errors: not useable.
	Change in productivity data not reported with SE, therefore not extractable

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Measurement of productiv- ity may be influenced by knowledge of al- location arm
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not reported
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Eftekhari 2006

Methods	Design: randomised controlled trial Randomisation: individual Trial: two comparisons: daily iron with iodine versus iodine alone, daily iron versus no intervention Date of study: 2002 to 2003
Participants	 Setting: Province of Lar in Iran Malaria endemicity: not stated Included: adolescent, grades 1 to 4 in high school; age within the range of 14 years to 18 years (mean age 16 years), who were non-anaemic iron-deficient (ferritin < 12 ng/mL & transferrin saturation < 16%, haemoglobin > 120 g/L) Excluded: any systemic disease, abnormal serum albumin (normal range: 3.5 g/dl to 5. 5 g/dl), urinary iodine < 4100 mg/L or BMI < 19 kg/m² Dropouts: 9 of 103 girls failed on complete study (groups not described) Sample size: total: 94; iron + iodine 24, iron 23, iodine 25, control 22

Eftekhari 2006 (Continued)

Interventions	Intervention: 300 mg of ferrous sulphate (60 mg/day elemental iron) daily (5 days/ week), with or without single oral dose of 190 mg of iodine Control: single oral dose of 190 mg of iodine or no intervention Duration: 12 weeks
Outcomes	Haemoglobin, iron status, weight, height, albumin, TFT (not extracted)
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: Tehran University of Medical Science

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. However, only biochemical indices unlikely to be affected by knowl- edge of allocation
Incomplete outcome data (attrition bias) All outcomes	Low risk	103 individuals at baseline, on completion of study 9 were excluded (< 9%). No indi- cation as to which arms excluded partici- pants belonged
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Elwood 1966

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	Setting: women living in a community near a clinic in Wales Malaria endemicity: not stated Included: women attended for a general checkup: recruited if haemoglobin 100 g/L to 135 g/L, along with a 1:2 ratio of women with haemoglobin > 135 g/L. Age range 15

Elwood 1966 (Continued)

	years to 65 years (mean age not reported) Excluded: not stated Dropouts: 22 of 111 failed to complete study (group not stated) Sample size: total: 89; intervention: 40, control: 49
Interventions	Intervention: ferrous carbonate 200 mg daily Control: placebo Duration: 8 weeks
Outcomes	Haemoglobin, physical health, symptoms of anaemia (e.g. fatigue, concentration etc.)
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: trial drugs provided by Allen and Hanburys Other notes: not stated whether SD or SE used for error. Assumed to be SD

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported.Recording of symptoms could be influenced by knowledge of allo- cation
Incomplete outcome data (attrition bias) All outcomes	Low risk	111 enrolled, final data from 89
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Elwood 1970

Methods

Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated

Elwood 1970 (Continued)

Participants	 Setting: outpatient women living in a Welsh mining community Malaria endemicity: not stated Included: haemoglobin < 105 g/L; non-macrocytic anaemia (age range not reported, mean age not reported) Excluded: not stated Dropouts: 2 of 49 women enrolled failed to complete trial (group unstated) Sample size: total: 47; intervention: 26, control: 21
Interventions	Intervention: 150 mg ferrous carbonate daily Control: placebo Duration: 8 weeks
Outcomes	Haemoglobin, symptoms, cognitive outcomes
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated Other notes: errors presented as SEs (not SDs)

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not stated. However, knowledge of alloca- tion could influence subjective outcomes
Incomplete outcome data (attrition bias) All outcomes	Low risk	No loss to follow-up
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Flink 2006

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	 Setting: patients attending public dental clinic in Sala, Sweden Malaria endemicity: not stated. Included: unstimulated salivary flow rate of < 0.2 ml/min; ferritin > 10 ng/mL and < 30 mg/mL (females), < 50 mg/mL (males). Of 50 participants recruited, 46 were female. Age range 16 years to 46 years (mean age 34 years) Excluded: not stated Dropouts: 3 of 50 participants failed to complete trial (group unstated) Sample size: total: 47; intervention: 24, control: 23
Interventions	Intervention: elemental iron (approximately 40 mg) as ferrous fumarate daily Control: placebo Duration: 3 months
Outcomes	Iron status
Notes	Compliance: mean compliance during the intervention period was 82% (95% CI 76 to 90) for the placebo group and 71% (95% CI 61 to 82) for the iron group (i.e. resulting in an average daily dose of 85 mg of iron). There was no significant difference in compliance between intervention compared to control groups Conflicts of interest: not stated Funded by: grants from Vastmanland County, Sweden, the Swedish Patent Revenue Research Fund and the Swedish Dental Society

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Computer random number generator
Allocation concealment (selection bias)	Low risk	Identical containers, identity in numbered envelopes and not revealed until end of study
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. However, biochemical mea- sures unlikely to be affected by knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	Low risk	Loss to follow-up: 1 in iron arm, 2 in placebo arm

Flink 2006 (Continued)

Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Florencio 1981

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron with vitamin C versus placebo Date of study: not stated
Participants	 Setting: Manilla, Phillipines Malaria endemicity: not stated Included: garment workers working in a single factory. Minimum age 16 years (age range not reported, mean age not reported) Excluded: not stated Dropouts: 78 of 196 participants failed to complete trial (groups unstated) Sample size: total: 122; intervention: 81, control: 41
Interventions	Intervention: 525 mg ferrous sulphate with vitamin C Control: placebo Duration: 3 months
Outcomes	Haemoglobin, hematocrit, anaemia, work productivity
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo given
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Productivity could be af- fected by knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	High risk	Of 196 participants recruited, 78 dropped out

Florencio 1981 (Continued)

Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not reported

Fogelholm 1992

Methods	Design: randomised controlled trial Randomisation: individual. Randomisation stratified by menstrual status (regular/ir- regular) Trial: daily oral iron versus placebo Date of study: not stated
Participants	 Setting: sports teams in Finland (athletics, basketball, handball) Malaria endemicity: not stated Included: women from sport teams aged 17 years to 31 years (mean age not reported, median age 24 years), with subclinical iron depletion (ferritin < 25 mg/mL, haemoglobin > 120 g/L) Excluded: not stated Dropouts: 2 from intervention group, none from control group Sample size: total: 31; intervention: 14, control: 17
Interventions	Intervention: 100 mg elemental iron as ferrous sulphate Control: placebo Duration: 8 weeks
Outcomes	Haemoglobin, iron status, VO2 max
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: grant from the Ministry of Education (presumed of Finland)

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Random permutated blocks
Allocation concealment (selection bias)	Unclear risk	Not stated
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Exercise outcomes could be influenced by knowledge of allocation

Fogelholm 1992 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Low risk	No attrition
Selective reporting (reporting bias)	Unclear risk	HR and oxygen consumption data stated to be non significantly different between arms but data not shown. Lactate only shown in a figure
Other bias	Low risk	Not evident
Fogelholm 1994		
Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron at two doses (9 mg/27 mg per day) versus placebo Date of study: not stated	
Participants	 Setting: Helsinki, Finland Malaria endemicity: not stated Included: premenopausal women who were non-anaemic, iron depleted (haemoglobin > 120 g/L, ferritin < 20 mg/L). Age range not reported (mean age 38 years) Excluded: not stated Dropouts: 7 in placebo group, 6 in two iron groups Sample size: total: 72; intervention: 37, control: 35 	
Interventions	Intervention: two iron doses: one and three tablets as 8 mg iron fumarate with 1 mg porcine heme iron (3 mg elemental iron per capsule) Control: placebo Duration: 6 months	
Outcomes	Haemoglobin, iron status	
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: Cederroth International	
Risk of bias		
Bias	Authors' judgement	Support for judgement

Random sequence generation (selection bias)	Unclear risk	Method for sequence generation not stated
Allocation concealment (selection bias)	Unclear risk	Method for allocation concealment not stated

Fogelholm 1994 (Continued)

Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Biochemical measures only
Incomplete outcome data (attrition bias) All outcomes	Low risk	13 (16.7%) loss to follow-up: 7 placebo group, 2 Fe-9 group, and 4 Fe-27 group
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Unclear risk	Outcomes only reported in figures, not in tables or in the text

Gordeuk 1987

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral carbonyl iron versus ferrous sulphate versus placebo Date of study: not stated
Participants	 Setting: Ohio red cross blood service (USA) Malaria endemicity: not stated Included: Female, non-anaemic (haemoglobin > 125 g/L) blood donors aged 18 years to 40 years (mean age not reported); donated at least once previously Excluded: any other medical condition Dropouts: 24 of 75 lost to follow-up with incomplete results (groups unstated). Partial data available for 70 of 75 enrolled participants Sample size: total: 70; intervention: 47, control: 23
Interventions	Intervention: two intervention arms, extracted separately: carbonyl iron 600 mg three times daily; ferrous sulphate 300 mg three times daily Control: placebo Duration: 2 months
Outcomes	Haemoglobin, iron status, iron deficiency, side effects
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: Food and Drug Administration orphan drugs development grant Other notes: haematologic outcomes measured 7 weeks following cessation of therapy. Carbonyl iron and ferrous sulphate reported separately: placebo group divided into two because odd number in placebo arm (23) - assumed 11 for carbonyl iron, 12 for ferrous sulphate

Risk of bias

Gordeuk 1987 (Continued)

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. As side effects were recorded, blinding of outcome assessors is important
Incomplete outcome data (attrition bias) All outcomes	High risk	Of 75 at baseline, 24 lost to follow-up. Par- tial data available for 70 of 75 enrolled par- ticipants
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Gordeuk 1990

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	Setting: Ohio red cross blood service (USA) Malaria endemicity: not stated Included: female, non-anaemic (haemoglobin > 125 g/L) blood donors aged 18 years to 40 years (mean age not reported); donated at least once previously Excluded: any other medical condition Dropouts: 18 Sample size: total: 76; intervention: 40, control: 36
Interventions	Intervention: carbonyl iron daily (equivalent to 100 mg elemental iron) Control: placebo Duration: 56 days
Outcomes	Haemoglobin, iron status, side effects, anaemia
Notes	Compliance: 35% of iron arm consumed all tablets; 44% of placebo arm consumed all tablets Conflicts of interest: not stated Funded by: Food and Drug Administration orphan drugs development grant

Gordeuk 1990 (Continued)

Risk of bias

KISR OF DIAS		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. As side effects were recorded, blinding of outcome assessors is important
Incomplete outcome data (attrition bias) All outcomes	Low risk	24% loss to follow-up
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Gunaratna 2015

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron with folate versus folate alone versus multivitamin containing iron and folate (multivitamin group not extracted) Date of study: October 2010 to June 2011
Participants	 Setting: conducted in Ikwiriri and Kibiti, two rural wards in Rufiji District, Pwani Region, Tanzania Malaria endemicity: endemic Included: women between 15 years and 29 years of age (mean age 21 years), not pregnant, planning to remain in the study area for six months, and willing to provide written informed consent themselves or through a guardian if under 18 years of age Excluded: amenorrhoea, had given birth within the past six months, were already on vitamin supplements, or had any severe illness requiring hospitalisation during screening or enrolment Dropouts: 561 completed of 802 enrolled (70%) Sample size: total: 378, iron: 184, control: 194 (multivitamin and iron: 183 - not included)
Interventions	Intervention: 30 mg of elemental iron + 0.4 mg of folate Control: 0.4 mg of folate Duration: 6 months

Gunaratna 2015 (Continued)

Outcomes	Anaemia, malaria infection and microcytosis
Notes	Compliance: median compliance were 82% in control arm and 84% in iron arm Conflicts of interest: trial authors declare no conflict of interest Funded by: Harvard School of Public Health

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Computer-generated randomisation se- quence using blocks of size 15 created by a scientist
Allocation concealment (selection bias)	Low risk	States concealed
Blinding of participants and personnel (performance bias) All outcomes	Low risk	States double blinded
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not evident
Incomplete outcome data (attrition bias) All outcomes	Low risk	561 completed of 802 enrolled (70%)
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Heath 2001

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus dietary treatment versus placebo. Dietary group not extracted Date of study: not stated
Participants	 Setting: Dunedin area of New Zealand Malaria endemicity: not stated Included: women aged 18 years to 40 years (mean age 26 years) with mild iron deficiency (ferritin < 20 ng/mL) but haemoglobin > 120 g/L Excluded: pregnancy or lactation, irregular menstruation, health problems likely to influence iron status (for instance, gastrointestinal disease), medication likely to affect iron status, anorexia nervosa or bulimia, and veganism Dropouts: 8 failed to complete trial (groups reported but unclear). 10 excluded for other reasons Sample size: total: 35; intervention: 16, control: 19

Heath 2001 (Continued)

Interventions	Intervention: amino acid chelate (bis-glycino iron II) providing 50 mg of elemental iron with no change to diet Control: maltodextrin with no change in diet Duration: 16 weeks
Outcomes	Haemoglobin, ferritin (not extractable)
Notes	Compliance: 97% of tablets taken in iron group; not reported for placebo group Conflicts of interest: not stated Funded by: Health Research Council of New Zealand. Tablets provided by Albion Laboratories, Inc. (Clearfield, Utah) Other notes: no data extractable as no SDs given

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo provided
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Measurement of biochemi- cal outcomes not influenced by knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	Low risk	Of 75 at baseline, 8 patients excluded dur- ing study, further 10 patients withdrew from study (24% attrition), balanced be- tween arms
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Hinton 2000

Methods

Design: randomised placebo controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated

Hinton 2000 (Continued)

Participants	 Setting: local community in USA. No further details given Malaria endemicity: not stated Included: physically active, untrained* women aged between 18 years and 33 years (mean age 21 years) with non-anaemic iron deficiency (i.e. haemoglobin > 120 g/L and ferritin < 16 mg/L) Excluded: current pregnancy or pregnancy within the previous year, recent infectious illness or fever, haemolytic anaemia, asthma, musculoskeletal problems, recent history of eating disorders, smoking, excess alcohol consumption, recent use of recreational drugs, consumption of prescription medications that may interfere with dietary iron absorption, or participation in competitive athletics Dropouts: 16% groups not stated Sample size: total: 42; intervention: 22, control: 20
Interventions	Intervention: 50 mg ferrous sulphate (8 mg elemental iron) capsules Control: placebo Duration: 6 weeks
Outcomes	Haemoglobin, iron status, exercise performance, fat mass, height, weight
Notes	Compliance: 88.6% of all tablets taken in placebo group versus 91.4% in iron group Conflicts of interest: cost of publication defrayed in part of pay charges, thereby marked as advertisement Funded by: in part by Mead Johnson Research Fund and National Institute of Child Health and Human Development Training Grant HD-07331 *Women were eligible if they were identified as physically active but untrained; further details were not provided by the author

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Method of sequence allocation not de- scribed
Allocation concealment (selection bias)	Unclear risk	Method of allocation concealment not de- scribed
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Investigators blinded to allocation of par- ticipants
Incomplete outcome data (attrition bias) All outcomes	Low risk	16% dropped out
Selective reporting (reporting bias)	Low risk	Not evident

Hinton 2000 (Continued)

Other bias	Low risk	No evidence of other bias	
Hinton 2007			
Methods	Randomisation: individual	Trial: daily oral iron versus placebo	
Participants	munity via fliers and newspa Malaria endemicity: not sta Included: 17 women and 3 ipants were iron deficient (so mg/L; or transferrin receptor > 120 g/L for women; > 130 Excluded: current pregnance illness or fever, chronic infl problems, history of eating or medications that may interfe properties Dropouts: no reported drop	 Setting: recruited from University of Missouri Colombia (USA) and surrounding community via fliers and newspaper advertisements Malaria endemicity: not stated Included: 17 women and 3 men, aged 18 years to 41 years (mean age 28 years). Participants were iron deficient (serum ferritin < 16 mg/L; serum transferrin receptor > 48.0 mg/L; or transferrin receptor/log ferritin index > 44.5) and non-anaemic (haemoglobin > 120 g/L for women; > 130 g/L for men) Excluded: current pregnancy or pregnancy within the previous year, recent infectious illness or fever, chronic inflammatory diseases, haemolytic anaemia, musculoskeletal problems, history of eating disorders, smoking, or consumption of iron supplements or medications that may interfere with dietary iron absorption or that have anticoagulant properties Dropouts: no reported dropouts Sample size: total: 20; intervention: 10, control: 10 	
Interventions	Intervention: ferrous sulpha Control: placebo Duration: 6 weeks		
Outcomes	Haemoglobin, iron status, e	Haemoglobin, iron status, exercise performance, fat mass, height, weight	
Notes	placebo group 99 (±5.4)% c compliance between the two Conflicts of interest: trial a	Compliance: on average, participants in the iron group ingested 98 (±8.2)% and th placebo group 99 (±5.4)% of their supplements. There was no significant difference in compliance between the two groups Conflicts of interest: trial authors report no conflict of interest Funded by: no funding reported	

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Method for sequence generation not stated
Allocation concealment (selection bias)	Unclear risk	Method for allocation concealment not stated

Hinton 2007 (Continued)

Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Measurement of exercise per- formance may be influenced by knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	Low risk	No attrition
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	The study appears free of other sources of bias

Hoppe 2013

Methods	Design: randomised controlled study Randomisation: individual Trial: two doses of oral iron versus folate Date of study: 2010 and 2011 (two stages)	
Participants	 Setting: Swedish universities Malaria endemicity: not stated Included: women of childbearing age who were healthy, non-smoking without anaemia (haemoglobin < 120 g/L). Not pregnant/lactating and not exercising heavily or had donated blood less than 2 months prior. Age range not reported (mean age 24 years) Excluded: if any medication being taken or dietary supplements or underlying malabsorption or serious illness Dropouts: 3 dropped out (1 in intervention, 2 in control). 3 excluded due to infection Sample size: total: 36; intervention: 24, control: 12 	
Interventions	Intervention: two doses of iron: 35 mg of elemental iron and 60 mg of elemental iron (ferrous fumarate) Control: folate Duration: 12 weeks	
Outcomes	Haemoglobin, iron status, BMI and side effects	
Notes	Compliance: > 99% of tablets taken in all groups Conflicts of interest: not stated Funded by: Local Research and Development Council of Gothenburg and Southern Bohuslän, Sweden	
Risk of bias		
Bias	Authors' judgement	Support for judgement

Hoppe 2013 (Continued)

Random sequence generation (selection bias)	Unclear risk	Not stated
Allocation concealment (selection bias)	Unclear risk	Not stated
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo/folate
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not stated. Side effects reported and could be influenced.
Incomplete outcome data (attrition bias) All outcomes	Low risk	20% loss to follow-up (combining exclu- sion and dropout rates)
Selective reporting (reporting bias)	Low risk	No evidence
Other bias	Low risk	Not evident

Jayatissa 1999

Methods	Design: cluster randomised controlled trial Randomisation: by classroom Trial: daily iron with folic acid with vitamin C plus deworming versus weekly iron with folic acid with vitamin C plus deworming versus placebo plus deworming alone (weekly arm not extracted) Date of study: not stated
Participants	 Setting: randomly selected schools in Columbo, Sri Lanka Malaria endemicity: not stated Included: adolescent girls aged 10 years to 17 years (mean age 13 years), in 3 parallel classes in each school Excluded: chronic infectious diseases or cardiopathies, taken supplements or medications containing iron during the previous month, or had a haemoglobin level less than 10 g/ dL with a blood picture showing any other kind of anaemia Dropouts: 4.5% across all groups Sample size: total: 439; intervention: 222, control: 217
Interventions	Intervention: 60 mg elemental iron with 250 mcg folic acid, administered Monday to Friday, plus deworming Control: placebo plus deworming Duration: 8 weeks
Outcomes	Haemoglobin, iron status, anaemia

Jayatissa 1999 (Continued)

Notes	ICC: not reported
	Compliance: not stated
	Conflicts of interest: not stated
	Funded by: World Health Organization

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Biochemical indices unlikely to be influenced by assessor's knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	Low risk	690 enrolled, 659 completed
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	High risk	ICC not reported

Jensen 1991

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	Setting: Purdue University, Indiana, USA Malaria endemicity: not stated Included: women aged 18 years to 25 years (mean age 21 years) who were sedentary participants who did not regularly participate in an exercise programme. Willing to participate in an intensive 12-week exercise programme Excluded: not stated Dropouts: not stated Sample size: total: 13; intervention: 7, control: 6
Interventions	Intervention: 50 mg elemental iron in the form of ferrous sulphate Control: placebo Duration: 12 weeks

Jensen 1991 (Continued)

Outcomes	Haemoglobin, iron status, exercise performance, fat mass, height, weight
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: medication provided by SmithKline Consumer Products, Philadelphia, PA

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Knowledge of allocation could influence outcome assessment re- garding exercise performance
Incomplete outcome data (attrition bias) All outcomes	Low risk	No attrition reported
Selective reporting (reporting bias)	Low risk	Not reported
Other bias	Low risk	Not evident

Kanani 2000

Methods	Design: cluster randomised controlled trial Randomisation: by community Trial: daily oral iron versus placebo Date of study: not stated
Participants	Setting: India (Vadodora) Malaria endemicity: not stated Included: high school students aged 10 years to 18 years (mean age 12.4 years) in 3 low- income communities Excluded: not stated Dropouts: not reported Sample size: total: 203; intervention: 101, control: 102
Interventions	Intervention: elemental iron (60 mg) + folic acid (0.5 mg) daily Control: placebo Duration: 3 months

Kanani 2000 (Continued)

Outcomes	Haemoglobin, BMI, weight, hunger score
Notes	ICC: not provided Compliance: 90% of the girls consumed > 85 of the 90 tablets provided; not divided by iron/placebo Conflicts of interest: not stated Funded by: Office of Health and Nutrition, USAID, under terms of contract number HRN-C-00-93-00038-00, and the MotherCare Project, John Snow, Incorporated (JSI)

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	Appears to be a cluster randomised trial, randomisation by community Quote: "For feasibility reasons and to en- sure similar sample sizes, the two smaller communities were combined with respect to the intervention. Through random allo- cation, the larger community became the iron group and the two smaller ones be- came the control group." Sequence generation not presented in pa- per
Allocation concealment (selection bias)	Unclear risk	Allocation concealment method not de- scribed
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	High risk	Assessors may have known which group was intervention and which was control
Incomplete outcome data (attrition bias) All outcomes	Low risk	Baseline 210; follow-up 180 (loss to follow- up 14.3%)
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	High risk	ICC not reported

Kang 2004

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	Setting: Korean national women's soccer team Malaria endemicity: not stated Included: members aged 20 years to 28 years (mean age 23 years) Excluded: not stated Dropouts: not stated Sample size: total: 25; intervention: 11, control: 14
Interventions	Intervention: 40 mg elemental iron in liquid daily Control: placebo Duration: 1 month
Outcomes	Haemoglobin, iron status, antioxidants (not extracted)
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Sequence generation method not described
Allocation concealment (selection bias)	Unclear risk	Allocation concealment method not de- scribed
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Biochemical indices unlikely to be influenced by knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	Low risk	No attrition
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	The study appears free of other sources of bias

Kianfar 2000

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus weekly iron (in two forms) versus control. Weekly iron arm not extracted Date of study: 1996 to 1997
Participants	Setting: Iran Malaria endemicity: not stated Included: high school female students. Age range not reported (mean age 16 years) Excluded: cases with suspected thalassaemia (based on red cell indices) Dropouts: no apparent dropouts Sample size: total: 240; intervention: 92, control: 148
Interventions	Intervention: ferrous sulphate: 150 mg (50 mg elemental iron) daily Control: placebo Duration: 3 months
Outcomes	Haemoglobin, ferritin, anaemia
Notes	Compliance: "among anaemic and non-anaemic subjects was 70 to 90% on average" Conflicts of interest: not stated Funded by: not stated

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Method for sequence generation not stated
Allocation concealment (selection bias)	Unclear risk	Method for allocation concealment not stated
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Biochemical indices unlikely to be influenced by knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	Low risk	Not reported. Apparently no loss to follow- up
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	The study appears free of other sources of bias

Kiss 2015

Methods	Design: randomised control trial Randomisation: individual Trial: daily oral iron versus no intervention Date of study: April to December 2012
Participants	 Setting: 4 USA blood centres participating in the National Heart, Lung and Blood Institute (NHLBI) Recipient Epidemiology and Donor Evaluation Study-III (REDS-III) programme: American Red Cross Blood Services, Farmington, Connecticut; Blood Center of Wisconsin, Milwaukee; Blood Centers of the Pacific, San Francisco, California; and Institute for Transfusion Medicine, Pittsburgh, Pennsylvania Malaria endemicity: not reported Included: successful donation of a full (500 mL) whole blood unit on the day of enrolment and a history of 1 or more previous whole blood donations but no donations in the previous 4 months. Age range not reported (mean age 46 years) Excluded: baseline ferritin level exceeding 300 ng/mL Dropouts: 215 enrolled, 193 included in final analysis. 22 dropouts (10%) Sample size: total: 136, iron: 71, control: 65
Interventions	Intervention: 325 mg of ferrous gluconate (37.5 mg of elemental iron) daily Control: no intervention Duration: 24 weeks
Outcomes	Time to normalisation of haemoglobin (no extractable data)
Notes	Compliance: not reported Conflicts of interest: Dr Mask received a grant from Novo Nordisk and honoraria from Siemens. Reports no other conflicts of interests Funded by: National Heart, Lung and Blood Institute (of USA) Other notes: men also included. Female data presented separately

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Stratified randomisation to increase those with high risk of iron deficiency in iron group
Allocation concealment (selection bias)	Unclear risk	Not stated
Blinding of participants and personnel (performance bias) All outcomes	High risk	No placebo
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not evident

Kiss 2015 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Low risk	215 enrolled, 193 included in final analysis
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident
Klingshirn 1992		
Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated	
Participants	Setting: Columbia, South Carolina (USA) Malaria endemicity: not stated Included: female endurance runners traini Age range 22 years to 39 years (mean age 2 Excluded: not stated Dropouts: no apparent dropouts Sample size: total: 18; intervention: 9, con	ng at least 3 x per week, attending road races. 29 years)
Interventions	Intervention: elemental iron (50 mg) as ferrous sulphate (160 mg) daily Control: placebo Duration: 8 weeks	
Outcomes	Haemoglobin, iron status, exercise performance	
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: Society of Sigma Xi and CIBA Pharmaceuticals	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Assessment of exercise out- comes may be influenced by knowledge of allocation

Klingshirn 1992 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Low risk	One participant dropped out of study
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident
LaManca 1993		
Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated	
Participants	Setting: athletics clubs in Florida, USA Malaria endemicity: not stated Included: healthy women aged 18 years to 35 years (mean age 28 years) with ferritin < 20 ng/mL Excluded: not stated Dropouts: none reported Sample size: total: 20; intervention: 10, control: 10	
Interventions	Intervention: 100 mg elemental iron daily Control: placebo Duration: 8 weeks	
Outcomes	Iron indices, haemoglobin, hematocrit, exe	rcise performance
Notes	Compliance: iron 82% of tablets taken, placebo 85% of tablets taken Conflicts of interest: not stated Funded by: FSU President's Club fund and Sigma Xi. Tablets provided by SmithKline Laboratories	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported

Blinding of participants and personnel Low risk (performance bias) All outcomes

Daily iron supplementation for improving anaemia, iron status and health in menstruating women (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Placebo administered

LaManca 1993 (Continued)

Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Assessment of exercise out- comes may be influenced by knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	Low risk	No loss to follow-up
Selective reporting (reporting bias)	Unclear risk	Not evident
Other bias	Low risk	Not evident
Lanerolle 2000		
Methods	Design: cluster randomised controlled trial Randomisation: by school Trial: daily oral iron plus education versus Date of study: not stated	
Participants	Setting: rural and urban schools in Sri Lanka with low socioeconomic status Malaria endemicity: not stated Included: adolescent girls. Age range not reported (mean age 16 years) Excluded: not stated Dropouts: 15.3%, matched between arms Sample size: total: 565; intervention: 281, control: 284	
Interventions	Intervention: elemental iron 60 mg (as ferrous sulphate) plus education Control: education alone Duration: 10 weeks	
Outcomes	Haemoglobin, iron status, iron deficiency	
Notes	 ICC: not provided Compliance: in the urban area, 71% of participants in the iron-supplemented group and 77% of girls in the placebo group took more than 50% of the tablets provided; in the rural area, the percentages were 90% and 93%, respectively Conflicts of interest: not stated Funded by: financial support from UNICEF for the study in the urban area and from the OMNI (Opportunities for Micronutrient Interventions) project of the US Agency for International Development for the study in the rural area 	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported

Daily iron supplementation for improving anaemia, iron status and health in menstruating women (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Unclear risk

Allocation concealment (selection bias)

Not reported

Lanerolle 2000 (Continued)

Blinding of participants and personnel (performance bias) All outcomes	High risk	No placebo given (education alone)
Blinding of outcome assessment (detection bias) All outcomes	High risk	No placebo given. It would be possible for assessors to know which intervention arm participants belong to (although measure- ment of biochemical indices unlikely to be influenced)
Incomplete outcome data (attrition bias) All outcomes	Low risk	15.3% loss to follow-up, matched between arms
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	High risk	No ICC's reported

Larocque 2006

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated	
Participants	Setting: Thunder Bay area, Canada Malaria endemicity: not stated Included: grade 10 schoolgirls aged 14 yea depleted (i.e. ferritin < 20 ng/mL), non-ana Excluded: not stated Dropouts: 10 out of 31 (32.2%) Sample size: total: 21; intervention: 12, co	
Interventions	Intervention: ferrous gluconate 100 mg da Control: placebo Duration: 8 weeks	ily (approximately 12 mg elemental iron)
Outcomes	6	otor Free Visual Perception Test, Digit span, :: Facilitation and Inhibition, Trail Making
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: intervention provided by Jamie	eson Pharmaceuticals
Risk of bias		
Bias	Authors' judgement	Support for judgement

Larocque 2006 (Continued)

Random sequence generation (selection bias)	High risk	Participants lined up in random order and were allocated to therapy/placebo accord- ing to order in queue
Allocation concealment (selection bias)	Low risk	Code to numbered bottles kept in sealed envelopes, unknown until conclusion of study
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	No knowledge of allocation due to allo- cation being kept in sealed envelope until conclusion of study
Incomplete outcome data (attrition bias) All outcomes	High risk	31 enrolled, 21 at final analysis. 32.2 % attrition
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	The study appears free of other sources of bias

Leonard 2014

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron (two doses) versus placebo Date of study: 2010 to 2013
Participants	 Setting: women recruited via flyer through the Hunter Medical Research Institute (Australia) Malaria endemicity: not stated Included: women aged 18 years to 35 years (mean age 26 years) with BMI between 18 kg/m² and 30 kg/m² and English speaking Excluded: iron deficient in last 12 months, taking iron, chronic medical condition or pregnant Dropouts: 12 out of 36 lost to follow-up Sample size: total: 24; intervention: 16, control: 8
Interventions	Intervention: 60 mg or 80 mg elemental iron as ferrous sulphate Control: placebo Duration: 16 weeks
Outcomes	Haemoglobin, iron status, side effects and cognitive outcomes

Leonard 2014 (Continued)

Notes	Compliance: on average 90.4% of capsules taken
	Conflicts of interest: authors declare no conflict of interest
	Funded by: Australian Post-Graduate Award, Meat and Livestock Australia and the
	School of Health Sciences at the University of Newcastle

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Random number generator
Allocation concealment (selection bias)	Low risk	Reports concealment
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Blinded
Blinding of outcome assessment (detection bias) All outcomes	Low risk	No evidence
Incomplete outcome data (attrition bias) All outcomes	High risk	> 30% loss in many groups
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Li 1994

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: 1989 to 1991
Participants	 Setting: cotton workers in Beijing, China Malaria endemicity: not stated Included: women aged 19 years to 44 years (mean age 30 years) with iron deficiency (haemoglobin > 120 g/L, ferritin < 12 ng/mL, FEP > 0.62), or iron-deficiency anaemia (haemoglobin 120 g/L + iron deficiency) Excluded: not stated Dropouts: 3 of 83 participants failed to complete study Sample size: total: 80; intervention: 40, control: 40
Interventions	Intervention: variable dosage of iron depending on anaemia status. Used pills containing 60 mg ferrous sulphate. Mild Iron-deficiency anaemia or iron deficiency without anaemia given one pill per day; moderate iron-deficiency anaemia given 2 pills per day (i.e. 60

Li 1994 (Continued)

	mg and 120 mg doses, i.e. elemental iron 20 mg and 40 mg respectively) Control: placebo Duration: 12 weeks
Outcomes	Haematology, iron indices, productivity/production efficiency, exercise performance
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: Nestlé foundation, Laussanne, Switzerland

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo given
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Blinding of outcome assess- ment could influence evaluation of work productivity
Incomplete outcome data (attrition bias) All outcomes	Low risk	3 lost to follow-up
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Lyle 1992

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron (two groups) plus exercise programme versus placebo plus exercise programme versus no intervention versus low fat muscle plus exercise programme. Only iron and placebo groups extracted Date of study: not stated
Participants	 Setting: Purdue University College students (USA) Malaria endemicity: not stated Included: Caucasian females who had not participated in exercise programme. Age range not reported (mean age 19 years) Excluded: smokers, on oral contraceptive pill, taking iron supplements or who had

Lyle 1992 (Continued)

	irregular menstrual periods Dropouts: 28% dropout rate (groups unstated) Sample size: total: 34; intervention: 20, control: 14
Interventions	Intervention: two doses: 50 mg elemental iron as ferrous sulphate or 10 mg elemental iron as ferrous sulphate. Also received low iron diet and exercise programme Control: exercise alone Duration: 4 weeks
Outcomes	Exercise performance
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: iron supplements donated by SmithKline Beecham, Parsippany, NJ

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not stated
Allocation concealment (selection bias)	Unclear risk	Not stated
Blinding of participants and personnel (performance bias) All outcomes	High risk	Diets not blinded
Blinding of outcome assessment (detection bias) All outcomes	High risk	Diets not blinded
Incomplete outcome data (attrition bias) All outcomes	High risk	72% completed protocol but not stated from which group dropouts occurred
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Machado 2011

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: 2005 to 2006
Participants	Setting: clinic in Brazil Malaria endemicity: not stated

Machado 2011 (Continued)

	 Included: non-pregnant women, aged between 20 years and 49 years (mean age not reported), attending a clinic (Centro Integrado de Saúde Amaury de Medeiros; CISAM). Must have had a telephone for follow-up contact Excluded: excluded if had gastrointestinal disorders or haemoglobin > 15 g/dL or < 11 g/dL Dropouts: 26% dropout rate Sample size: total: 539; intervention: unclear, control: unclear
Interventions	Intervention: 60 mg of elemental iron as ferrous sulphate Control: placebo Duration: 8 weeks
Outcomes	Side effects
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated Other notes: unable to extract data as also had iron tablets twice a week group and results were combined

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Random numbers handed out
Allocation concealment (selection bias)	Low risk	Reports concealment
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Blinded
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not evident
Incomplete outcome data (attrition bias) All outcomes	Low risk	26% loss to follow-up
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Magazanik 1991

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	 Setting: Israel physical training programme Malaria endemicity: not stated Included: women aged 19 years who were non-smokers, menstruating regularly. Age range not reported (mean age 19 years) Excluded: not stated Dropouts: no loss to follow-up reported Sample size: total: 28; intervention: 13, control: 15
Interventions	Intervention: ferrous sulphate 160 mg (elemental iron about 50 mg) daily Control: placebo Duration: 7 weeks
Outcomes	Haematology, iron indices, VO ₂ max
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: Israeli Sports Authority

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo given
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Evaluation of exercise perfor- mance could be influenced by knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	Low risk	No loss to follow-up
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Maghsudlu 2008

Methods	Design: randomised controlled trial Randomisation: individual Trial: oral iron three times a day versus placebo Date of study: not stated
Participants	 Setting: Kermanshah and Golestan blood transfusion services, Iran Malaria endemicity: not stated Included: women attending blood donation. Age range not reported (mean age 28.7 years) Excluded: pregnancy, medical condition such as hereditary haemochromatosis chronic gastrointestinal disorder or intestinal cancer or polyps Dropouts: 207 out of 417 (50%) failed to return for follow-up visit Sample size: total: 367, iron: 185, control: 182
Interventions	Intervention: 150 mg of ferrous sulphate three times a day Control: placebo Duration: 1 week
Outcomes	Haemoglobin, iron status, side effects
Notes	Compliance: 75.2% of tablets taken across all groups Conflicts of interest: not stated Funded by: Iranian blood transfusion organisation

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Method not stated
Allocation concealment (selection bias)	Unclear risk	Not stated
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Unclear if double blinded
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Unclear if double blinded. Side effects re- ported and may be influenced
Incomplete outcome data (attrition bias) All outcomes	High risk	50% dropout rate
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	No other source of bias identified

Marks 2014

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: study performed between March 2009 and October 2010
Participants	 Setting: Australian Red Cross Blood Service Malaria endemicity: not stated Included: premenopausal female blood donors with one successful whole blood donation in the past 2 years, eligibility to donate in accordance with Australian Red Cross Blood Service guidelines (including haemoglobin ≥ 120 g/L), willingness to use an agreed method of contraception for the duration of the study, ability to attend a second visit at 12 weeks, ability to provide written informed consent and a successful whole blood donation on the day of enrolment. Age range not reported (mean age 30 years) Excluded: participants with red blood cell abnormalities or potential allergies to constituents of the placebo or carbonyl iron. Participants with medications that potentially interact with iron or mask or exacerbate gastrointestinal abnormalities by iron supplementation Dropouts: 12/141 in intervention group, 13/141 in control group (8.8% total) Sample size: total: 257; intervention: 129, control: 128
Interventions	Intervention: carbonyl iron containing 45 mg elemental iron Control: placebo Duration: 12 weeks
Outcomes	Haemoglobin, ferritin, side effects and eligibility to donate blood
Notes	 Compliance: in the carbonyl iron group, 84.4% of the participants were treatment compliant compared to 88.7% of the participants in the placebo group (compliance as per authors) Conflicts of interest: authors report no conflict of interest Funded by: authors report no funding sources Other notes: trial authors contacted regarding breakdown of side effects and responded

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Random number generator, block ran- domisation with fixed block lengths
Allocation concealment (selection bias)	Unclear risk	Not stated
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo given
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Placebo given

Marks 2014 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Low risk	8% loss to follow-up, balanced between arms
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident
McClung 2009		
Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: 2007	
Participants	Setting: military recruits in the USA, undergoing 8 to 9 weeks of basic combat training Malaria endemicity: not stated Included: female, age range not reported (mean age 20 years) Excluded: iron-deficiency anaemia Dropouts: 22% loss of follow-up (groups unstated) Sample size: total: 171; intervention: 86, control: 85	
Interventions	Intervention: 100 mg ferrous sulphate, found to have a mean elemental iron content of 15 mg Control: placebo Duration: 8 weeks	
Outcomes	Haemoglobin, iron status, fatigue, exercise performance, mood	
Notes	Compliance: overall compliance in the placebo group was 94% (4378 of 4675 total capsules); compliance in the iron-treated group was 93% (4391 of 4730 total capsules) Conflicts of interest: authors declare no conflict of interest Funded by: United States Army Medical Research and Materiel Command	
Risk of bias		
Bias	Authors' judgement	Support for judgement

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Method for sequence generation not stated
Allocation concealment (selection bias)	Unclear risk	Method for allocation concealment not stated
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo given

McClung 2009 (Continued)

Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Assessments of mood and ex- ercise performance could be influenced by knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	Low risk	22% loss of follow-up; from 219 participants at baseline to 171 participants at fol- low-up
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	The study appears free of other sources of bias

Mujica-Coopman 2015

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo versu extracted) Date of study: not stated	s daily oral iron with zinc. (Zinc arm not
Participants	or breast feeding at time	upplements for 6 months, or were pregnant otal of 87 across all groups. 1 control, 0 iron,
Interventions	Intervention: 30 mg of elemental iron daily as ferrous sulphate Control: placebo Duration: 88 days	
Outcomes	Haemoglogin, iron status and zinc status, a	naemia, zinc deficiency
Notes	Compliance: reports no difference in comp Conflicts of interest: not stated Funded by: Fondo Nacional de Desarrollo C 1130075	pliance across groups (no further details) Cientifico y Tecnologico Chile Grant number
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not stated

Mujica-Coopman 2015 (Continued)

Allocation concealment (selection bias)	Unclear risk	Not stated
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Reports being double blinded
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not evident
Incomplete outcome data (attrition bias) All outcomes	Low risk	7 out of 87 dropped out
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	No other source of bias identified

Murray-Kolb 2007

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: 1999 to 2002	
Participants	versity in State College in the USA Malaria endemicity: not stated Included: women aged 18 years to 35 year	lth problems, not speaking English as the pollow-up)
Interventions	Intervention: 160 mg ferrous sulphate con Control: placebo Duration: 16 weeks	taining 60 mg elemental iron
Outcomes	Haemoglobin, iron status, anxiety and psyc	chological scores
Notes	Compliance: 95% (determine by pill coun Conflicts of interest: authors declare no cc Funded by: USDA NRICGP 99-35200-70 Other notes: cognitive endpoint data report tractable	onflict of interest
Risk of bias		
Bias	Authors' judgement	Support for judgement

Murray-Kolb 2007 (Continued)

Random sequence generation (selection bias)	Low risk	Stratified randomisation performed by us- ing random permuted blocks
Allocation concealment (selection bias)	Low risk	Bottles coded preventing disclosure of allo- cated arm
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Blinded as intervention and control could not be discerned; bottles coded
Incomplete outcome data (attrition bias) All outcomes	Low risk	26% loss to follow-up; 152 enrolled, 113 completed study
Selective reporting (reporting bias)	High risk	Endpoint data for several key cognitive out- comes not reported in study. Only shown on figures without SE/SD/CIs to enable ex- traction
Other bias	Low risk	The study appears free of other sources of bias

Newhouse 1989

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	 Setting: Canada Malaria endemicity: not stated Included: recreational runners undertaking at least 120 minutes (and at least three times per week) of exercise. Participants had latent iron deficiency: ferritin < 20 ng/mL, haemoglobin > 120 g/L. Age range 15 years to 40 years (mean age not reported) Excluded: Aspirin, PR blood loss, blood donation, urinary blood loss, recent fever, use of oral contraceptive pill Dropouts: 10 out of 47 failed to complete study (groups unstated) Sample size: total: 37; intervention: 19, control: 18
Interventions	Intervention: 200 mg elemental iron daily as ferrous sulphate Control: placebo Duration: 8 weeks
Outcomes	Haemoglobin, iron status, exercise performance

Newhouse 1989 (Continued)

Notes	Compliance: authors state "same in both groups and over 75% as obtained by pill
	counts"
	Conflicts of interest: not stated
	Funded by: Ciga-Geigy Pharmaceuticals of Canada
	Other notes: reports 40 completed study but only data for 37 available

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo given
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Knowledge of allocation could influence assessment of exercise per- formance
Incomplete outcome data (attrition bias) All outcomes	Low risk	47 enrolled. 37 completed study
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Pereira 2014

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	 Setting: King's College, London, United Kingdom. Malaria endemicity: not stated Included: 20 healthy participants, 7 men and 13 women aged 18 to 65 years (mean age 32 years) Excluded: chronic disease, pregnancy or lactation Dropouts: reports no loss to follow-up Sample size: total: 13; intervention: 7, control: 6
Interventions	Intervention: ferrous sulphate 200 mg (65 mg of elemental iron), twice a day Control: placebo Duration: 7 days

Pereira 2014 (Continued)

Outcomes	Side effects
Notes	Compliance: not stated Conflicts of interest: authors declare no conflict of interest Funded by: United Kingdom Medical Research Council Other notes: data for women only, provided by authors via email

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Random sequence generation
Allocation concealment (selection bias)	Low risk	Reported allocation concealment
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo
Blinding of outcome assessment (detection bias) All outcomes	Low risk	SEs unlikely to be affected
Incomplete outcome data (attrition bias) All outcomes	Low risk	No losses to follow-up
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Prosser 2010

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo versus dietary advice. Dietary advice group not extracted Date of study: 1997 to 1998
Participants	 Setting: Greater Dunedin area, New Zealand Malaria endemicity: not stated Included: women aged 18 years to 40 years (mean age not reported) with mild iron deficiency (serum ferritin < 20 mg/L; haemoglobin > 120 g/L in the absence of infection) and consumption of a non-vegan Western-style diet Excluded: anaemia, pregnancy or lactation, and health problems (for example, eating disorders) or medication Dropouts: 30.6% attrition reported (6/23 iron group, 9/26 control) Sample size: total: 34; intervention: 17, control: 17

Prosser 2010 (Continued)

Interventions	Intervention: 50 mg elemental iron in the form of an amino acid chelate ('FerroChel') Control: placebo Duration: 16 weeks
Outcomes	Zinc levels
Notes	Compliance: 97% in iron group, 94% in placebo group Conflicts of interest: authors report no conflict of interest Funded by: not stated

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Throwing dice
Allocation concealment (selection bias)	Low risk	Sequentially numbered, sealed envelopes containing allocation
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Quote: "Blinding of all the other research staff was maintained until completion of the study"
Incomplete outcome data (attrition bias) All outcomes	Low risk	20.4% attrition reported
Selective reporting (reporting bias)	High risk	Data only provided in tables
Other bias	Low risk	The study appears to be free of other sources of bias

Radjen 2011

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	Setting: Belgrade (Serbia) Malaria endemicity: not stated Included: female elite volleyball players aged 16 years to 25 years (mean age not reported) , otherwise healthy, normal menstrual periods Excluded: not stated

Radjen 2011 (Continued)

	Dropouts: dropout rates not reported Sample size: total: 37; intervention: 19, control: 18
Interventions	Intervention: ferrous sulphate 200 mg daily (approximately 50 mg elemental iron) Control: placebo Duration: 8 weeks
Outcomes	Haemoglobin, iron status, exercise performance, height, body fat, weight
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Knowledge of allocation could influence assessment of exercise per- formance
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not reported
Selective reporting (reporting bias)	Unclear risk	Not reported
Other bias	Low risk	Not evident

Rajaram 1995

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo versus meat and exercise versus control. Only iron and placebo extracted Date of study: not stated
Participants	Setting: Purdue University, Indiana (USA) Malaria endemicity: not stated Included: female college students with sedentary life style, not smoking, not on contra-

Rajaram 1995 (Continued)

	ceptive pill or iron tablets. Age range not reported (mean age 19 years) Excluded: not stated Dropouts: 62 of 78 completed trial (20% total loss to follow-up - groups not stated) Sample size: total: 29; intervention: 16, control: 13
Interventions	Intervention: ferrous sulphate 50 mg plus low iron diet plus exercise Control: placebo plus exercise and normal diet Duration: 24 weeks
Outcomes	Exercise performance
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: National Livestock and Meat Board

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported. Based on haemoglobin
Allocation concealment (selection bias)	High risk	Inadequate
Blinding of participants and personnel (performance bias) All outcomes	High risk	No placebo
Blinding of outcome assessment (detection bias) All outcomes	High risk	No placebo
Incomplete outcome data (attrition bias) All outcomes	Low risk	20% loss to follow-up; 78 enrolled, 62 at follow-up
Selective reporting (reporting bias)	High risk	Haemoglobin and transferrin saturation re- ported in text but not table. No data pro- vided for these outcomes
Other bias	Low risk	Not evident

Rowland 1988

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	 Setting: high school cross country teams (USA) Malaria endemicity: not stated Included: female, adolescent, iron deficient (ferritin < 20 ng/mL), non-anaemic (haemoglobin > 120 g/L). Age range not reported (mean age not reported) Excluded: not stated Dropouts: reports no dropouts Sample size: total: 14; intervention: 7, control: 7
Interventions	Intervention: 325 mg elemental iron plus 4 weeks' exercise training Control: placebo plus exercise training Duration: 4 weeks
Outcomes	Haematology, iron indices, exercise performance
Notes	Compliance: 75% of iron and 83% of control pills taken Conflicts of interest: not stated Funded by: grant from Sports Therapy for Athletic Rehabilitation and Treatment, Springfield, Mass

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Knowledge of allocation could influence assessment of exercise per- formance
Incomplete outcome data (attrition bias) All outcomes	Low risk	No attrition
Selective reporting (reporting bias)	Low risk	Not reported
Other bias	Low risk	Not evident

Rybo 1985

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: 1968 to 1969
Participants	 Setting: Gothenberg, Sweden Malaria endemicity: not stated Included: 38-year-old women identified on a previous cross-sectional study. Must have had iron deficiency based on absence of stainable iron on sternal bone marrow aspirate. All participants aged 38 years Excluded: not stated Dropouts: 24 of 113 failed to complete trial (21% total loss to follow-up - groups unstated) Sample size: total: 89; intervention: 45, control: 44
Interventions	Intervention: ferrous succinate, 37 mg three times daily for a median of 68 days Control: placebo three times daily Duration: variable
Outcomes	Haemoglobin, iron status, side effects
Notes	Compliance: median intake was 155 tablets in 68 days Conflicts of interest: not stated Funded by: not stated Other notes: variable follow-up and duration of treatment

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not stated
Allocation concealment (selection bias)	Unclear risk	Not stated
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Measurement of biochem- ical indices unlikely to be influenced by knowledge of allocation by assessor
Incomplete outcome data (attrition bias) All outcomes	Low risk	89 of 113 women completed study; 21.4% attrition
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Røsvik 2010

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus no intervention Date of study: not stated
Participants	Setting: blood donors in Norway Malaria endemicity: not stated Included: at least one previous blood donation, haemoglobin > 12.5 g/dl (women), serum ferritin > 20mg L. Age range 18 years to 69 years (mean age 43 years) Excluded: not stated Dropouts: 20% in intervention group, 18% in control group Sample size: total: 161; intervention: 82, control: 79
Interventions	Intervention: 100 mg standard Niferex ferroglycin sulphate complex tablet daily, fol- lowing donation Control: no intervention Duration: 8 days
Outcomes	Haemoglobin, iron status
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: grant from Western Norway Regional Health Authority Other notes: both males and females recruited, analysis presented separately for each sex. Male data not extracted

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Sequence generation not described in study
Allocation concealment (selection bias)	Unclear risk	Allocation concealment not described in study
Blinding of participants and personnel (performance bias) All outcomes	High risk	No placebo given to control participants
Blinding of outcome assessment (detection bias) All outcomes	High risk	No placebo given to control participants
Incomplete outcome data (attrition bias) All outcomes	Low risk	20% loss to follow-up among female par- ticipants
Selective reporting (reporting bias)	Low risk	Not evident

Røsvik 2010 (Continued)

Other bias	Low risk	The study appears to be free of other source of bias	
Shah 2002			
Methods	Randomisation: individual Trial: daily oral iron versus w	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus weekly iron versus control. Weekly iron group not extracted Date of study: 1998 to 1999	
Participants	sea level Malaria endemicity: not stat Included: healthy adolescent pometry and demography. An Excluded: any chronic illnes long-term allopathic or indig Dropouts: 6 of 148; 4 iron, 2	 Setting: government girls' school in Dharan, Nepal, an urban foothill town 305 m above sea level Malaria endemicity: not stated Included: healthy adolescent girls attending a girls' school, matched for age, anthropometry and demography. Age range 11 years to 18 years (mean age 15 years) Excluded: any chronic illnesses (e.g. asthma, rheumatic heart disease), receiving any long-term allopathic or indigenous drug treatments, those with recent hospitalisation Dropouts: 6 of 148; 4 iron, 2 control Sample size: total: 142; intervention: 70, control: 72 	
Interventions	Intervention: 350 mg of ferr 100 days Control: no intervention Duration: 14 weeks	Control: no intervention	
Outcomes	Haematocrit, anaemia	Haematocrit, anaemia	
Notes	Compliance: not stated Conflicts of interest: not sta Funded by: the Research Cor	ited nmittee of B.P. Koirala Institute of Health Sciences, Dharan	
Risk of bias			

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Sequence generation not described in study
Allocation concealment (selection bias)	Unclear risk	Allocation concealment method not de- scribed in study
Blinding of participants and personnel (performance bias) All outcomes	High risk	No placebo in control arm
Blinding of outcome assessment (detection bias) All outcomes	High risk	No placebo in control arm

Shah 2002 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Low risk	Attrition: 4 iron, 2 control
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	The study appears to be free of other source of bias
Swain 2007		
Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus electrolytic iron versus reduced iron versus bakery-grade ferrous sulphate versus placebo. Only daily oral iron and placebo groups extracted Date of study: not stated	
Participants	 Setting: USA community. No further details given Malaria endemicity: not stated Included: healthy women of child-bearing age. All women were healthy, menstruating, neither pregnant nor breast-feeding, and were not using medication (except possibly hormonal contraceptives used for > 6 months). Age range 21 years to 51 years (mean 40 years) Excluded: any other medication Dropouts: 3 of 24; 3 intervention, 0 control Sample size: total: 21; intervention: 9, control: 12 	
Interventions	Intervention: 5 mg iron as heme iron supplement Control: placebo Duration: 12 weeks	
Outcomes	Iron status	
Notes	Compliance: 97% of capsules consumed Conflicts of interest: not stated Funded by: Sharing Science and Technology to aid in the improvement of Nutrition, Washington DC	
Risk of bias		

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Sequence generation not described in study
Allocation concealment (selection bias)	Unclear risk	Allocation concealment not described in study

Swain 2007 (Continued)

Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Outcomes unlikely to be in- fluenced
.		
Incomplete outcome data (attrition bias) All outcomes	Low risk	4 participants dropped out from study, not clear from which arm
1	Low risk Low risk	

Taniguchi 1991

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron with vitamin C plus exercise versus placebo with vitamin C and exercise versus daily oral iron with vitamin C (no exercise) versus vitamin C (no exercise) Date of study: not stated	
Participants	 Setting: colleges in Japan Malaria endemicity: not stated Included: female college students aged 18 years to 22 years (mean age not reported). Iron deficiency (ferritin < 6 ng/mL) not anaemic (haemoglobin > 120 g/L) Excluded: not stated Dropouts: not stated Sample size: total: 54; intervention: 27, control: 27 	
Interventions	Intervention: ferric ammonium citrate: 6 mg (approximately 1 mg of elemental iron) + vitamin C ± exercise Control: vitamin C ± exercise Duration: 9 weeks	
Outcomes	Haemoglobin, iron status, exercise performance	
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated	
Risk of bias		
Bias	Authors' judgement	Support for judgement

Taniguchi 1991 (Continued)

Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo (iron-free vitamin C) administered to control participants
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. May have influenced mea- surement of exercise outcomes
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not indicated in report
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Verdon 2003

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: 1997 to 2000	
Participants	Setting: primary care practices in Switzerland Malaria endemicity: not stated Included: women aged 18 years to 55 years (mean age 35 years) presenting with fatigue without anaemia (haemoglobin > 117) or other obvious physical or psychiatric cause for fatigue or chronic fatigue syndrome Excluded: not stated Dropouts: 4 in each arm Sample size: total: 144; intervention: 75, control: 69	
Interventions	Intervention: ferrous sulphate (80 mg/day of elemental iron) Control: placebo Duration: one month	
Outcomes	Iron status, fatigue, anxiety, depression	
Notes	Compliance: 95% iron arm versus 98% placebo arm, P value = 0.25 Conflicts of interest: FV and BF received financial support from Robapharm for producing a preliminary report of the study Funded by: Robapharm. The sponsor was not involved in the analysis of the results or in writing or correcting the manuscript	

Verdon 2003 (Continued)

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Randomisation took place at an indepen- dent pharmacy, according to a pre-estab- lished list
Allocation concealment (selection bias)	Low risk	Drug package was coded with a unique number according to the randomisation schedule
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Codes were held by the pharmacist and re- mained unbroken until the analyses were completed
Incomplete outcome data (attrition bias) All outcomes	Low risk	Loss to follow-up: 4 in each arm
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	The study appears to be free of other source of bias

Viteri 1999

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus weekly iron versus placebo. Weekly arm not extracted Date of study: not stated
Participants	 Setting: University of California, Berkeley USA Malaria endemicity: not stated Included: healthy, menstruating women > 18 years of age who responded to public notices. Age range 18 years to 44 years (mean age 22 years) Excluded: blood donation during the previous 6 months, pregnancy, pregnancy terminated during the previous year, lactation, menorrhagia, having a chronic condition interfering with normal iron metabolism, currently taking or having taken therapeutic iron in the previous 6 months, and predicted impossibility to comply with the iron protocol Dropouts: 39% dropout across all groups with losses equal across all groups Sample size: Total: 81; intervention: 37, control: 44

Viteri 1999 (Continued)

Interventions	Intervention: iron (60 mg as ferrous sulphate; 20 mg elemental iron) + folate (250 mcg) Control: folate alone Duration: 3 months
Outcomes	Iron status, haemoglobin, anaemia
Notes	Compliance: 88% or more ingested over 90% of all tablets; not reported by intervention group Conflicts of interest: not stated Funded by: partially supported by a grant from the International Nutrition Foundation for Developing Countries (INFDC) and by a Research Grant from the Agricultural Research Station, University of California

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Sequence generation not described in the study
Allocation concealment (selection bias)	Unclear risk	Allocation concealment not described in the study
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebos administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Biochemical indices unlikely to be influenced by assessor knowledge of allocation
Incomplete outcome data (attrition bias) All outcomes	High risk	39% attrition
Selective reporting (reporting bias)	Unclear risk	No evidence of selective reporting bias
Other bias	Low risk	The study appears free of other bias

Waldvogel 2012

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: November 2008 to September 2011
Participants	Setting: Switzerland Red Cross Blood Service Malaria endemicity: not stated Included: female blood donors aged 18 years to 50 years (mean age 31 years), 1 week

Waldvogel 2012 (Continued)

	post-donation, with haemoglobin > 120 g/L, ferritin < 30ng/mL Excluded: psychiatric conditions or diseases that rendered the participant unable to give consent; thyroid, hepatic, rheumatic, kidney, cardiopulmonary, or intestinal disease; acute or chronic inflammation; diabetes; haemochromatosis; pregnancy; medical treat- ment that could alter iron absorption and any iron supplementation Dropouts: 4 in each group Sample size: total: 145; intervention: 74, control: 71
Interventions	Intervention: iron 80 mg/day as ferrous sulphate (FeSO4; Tardyferon, Robapharm, Boulogne, France) Control: placebo Duration: 4 weeks
Outcomes	Haemoglobin, iron status, quality of life, exercise performance, side effects
Notes	Compliance: intervention arm took tablets for a mean 26.3 (of 28) days; control arm took tablets for a mean 26.5 (of 28) days Conflicts of interest: one author (BF) gave lectures to both Pierre Fabre Medicament and Vifor Pharma companies that may have interest in work. All other authors had no conflict of interest Funded by: not stated

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Simple random allocation sequence with- out restriction was generated by an inde- pendent pharmacy according to a pre-es- tablished computer-generated list
Allocation concealment (selection bias)	Low risk	Each drug package was identified with a unique number according to the randomi- sation schedule and given to the nurse in charge of the participant
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	The code was held by the pharmacist and remained unbroken until the end of the trial
Incomplete outcome data (attrition bias) All outcomes	Low risk	< 20% attrition, similar in both arms
Selective reporting (reporting bias)	Low risk	Not evident

Waldvogel 2012 (Continued)

Other bias	Low risk	Not evident	
Walsh 1989			
Methods	Randomisation: individua	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated	
Participants	Malaria endemicity: not s Included: female competit Excluded: not stated Dropouts: no apparent los	Setting: unclear although researchers from Launceston, Tasmania Malaria endemicity: not stated Included: female competitive swimmers. Age range not reported (mean age 15 years) Excluded: not stated Dropouts: no apparent loss to follow-up Sample size: total: 20; intervention: 10, control: 10	
Interventions	Intervention: iron supplen Control: placebo (gelatin) Duration: 12 weeks		
Outcomes	Haemoglobin, iron status,	Haemoglobin, iron status, exercise performance	
Notes	Funded by: not stated Other notes: VO ₂ max re	 Conflicts of interest: not stated Funded by: not stated Other notes: VO₂ max recorded but not reported in the paper for the iron arm (i.e. placebo arm reported, iron arm not reported). Thus, VO₂ max data not extractable. 	

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Exercise performance may have been influenced
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not reported

Walsh 1989 (Continued)

Selective reporting (reporting bias)	Low risk	All outcomes reported
Other bias	Low risk	Not evident
Wang 2012		
Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated	
Participants	Setting: Shanghai Malaria endemicity: not stated Included: women of childbearing age, aged 21 years to 45 years (mean age not reported) with anaemia Excluded: pregnancy Dropouts: dropout rates not stated Sample size: total: 69; intervention: 34, control: 35	
Interventions	Intervention: ferric pyrophosphate and ferrous fumarate (8 mg elemental iron) daily Control: placebo Duration: 6 months	
Outcomes	Haemoglobin, iron status, anaemia	
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated Other notes: written In Mandarin	

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not stated
Allocation concealment (selection bias)	Unclear risk	Not stated
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo used
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not stated. Unlikely that biochemical out- comes affected

Wang 2012 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not stated		
Selective reporting (reporting bias)	Unclear risk	Not stated		
Other bias	Low risk	Not stated		
Yadrick 1989				
Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated			
Participants	Setting: Oklahoma (USA) Malaria endemicity: not stated Included: female volunteers aged 25 years to 40 years (mean age not reported). Partici- pants in good health, not using medications, including the oral contraceptive pill Excluded: not stated Dropouts: dropout rates not stated Sample size: total: 18; intervention: 9, control: 9			
Interventions	Intervention: 25 mg iron + 25 mg zinc Control: 25 mg zinc alone Duration: 10 weeks			
Outcomes	Haemoglobin, iron status, zinc, ceruloplasmin			
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated Other notes: sample sizes for each arm not specifically provided: stated that half the participants allocated to each arm; assume 9 participants per arm			

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Allocation matched by baseline ferritin and erythrocyte superoxide dismutase. Ran- dom sequence generation not described in study
Allocation concealment (selection bias)	Unclear risk	Allocation concealment not described in study

Yadrick 1989 (Continued)

Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo (zinc alone) provided
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Should not influence bio- chemical outcomes
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not stated
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	The study appears free of other bias

Yoshida 1990

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated	
Participants	 Setting: Japanese institution Malaria endemicity: not stated Included: female endurance (distance) athletes, undergoing a training programme. Age range not stated (mean age 19 years) Excluded: not stated Dropouts: study reports no dropouts Sample size: total: 12; intervention: 6, control: 6 	
Interventions	Intervention: ferrous sodium citrate 200 mg + multivitamin (containing vitamin C, B6 and folic acid) thrice daily Control: multivitamin alone without iron Duration: 8 weeks	
Outcomes	Haemoglobin, iron status, exercise performance	
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: not stated Other notes: data not presented in a table - data extracted from hand-drawn bar graphs (including SDs)	
Risk of bias		
Bias	Authors' judgement	Support for judgement

Yoshida 1990 (Continued)

Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo given
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Detection bias could influ- ence measurement of exercise performance
Incomplete outcome data (attrition bias) All outcomes	Low risk	No losses to follow-up
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Zaman 2013

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus diet versus placebo. Diet group not extracted Date of study: not stated
Participants	Setting: women recruited through advertisements at the Univeristy of Sydney, Australia Malaria endemicity: not stated Included: women aged 18 years to 35 years (mean age 25 years) and not vegetarian, pregnant, lactating, long-term illness, hypertension, diabetes, or who consumed nutri- tional supplements Excluded: not stated Dropouts: 10 of 54 withdrew (4 intervention, 6 in control) Sample size: total: 44; intervention: 22, control: 22
Interventions	Intervention: ferrous gluconate containing 37.4 mg of elemental iron and vitamin C Control: cellulose placebo Duration: 12 weeks
Outcomes	Iron status, haemoglobin, quality of life scores, zinc, B12 levels
Notes	Compliance: not stated Conflicts of interest: not stated Funded by: a grant-in-aid from the Pork CRC and University of Sydney internal research funds

Risk of bias

Zaman 2013 (Continued)

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	Computer-generated random number generation
Allocation concealment (selection bias)	Low risk	Reports blinded
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Reports blinded
Incomplete outcome data (attrition bias) All outcomes	Low risk	Describes losses as 6 in control and 4 in treatment group
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

Zavaleta 2000

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus weekly iron versus placebo Date of study: August to December 1996
Participants	 Setting: school located in a shanty town of Lima, Peru Malaria endemicity: not stated Included: high school students aged 12 years to 18 years (mean age 15 years), living in community for 6 months before the study, healthy, nulliparous, menstruating regularly in the last 3 months, had not taken any multivitamin-mineral supplement in the last 6 months and a haemoglobin > 80 g/L Excluded: not stated Dropouts: 16 out of 312 lost to follow-up Sample size: total: 198; intervention: 101, control: 97
Interventions	Intervention: ferrous sulphate 60 mg/d (20 mg elemental iron) administered Monday to Friday (i.e. 5 days per week) Control: placebo Duration: 17 weeks
Outcomes	Haemoglobin, anaemia

Zavaleta 2000 (Continued)

Notes	Compliance: girls took 94% of the expected dose of 85 pills, and the median consumption was 80 tablets in the three groups
	Conflicts of interest: not stated
	Funded by: partially by Office of Health and Nutrition, USAID, under the terms of
	contract number (HRN-C-00-93-00038-00), and the MotherCare Project, John Snow,
	Incorporated (JSI)
	Other notes: change in prevalence reported as % (thus actual n/N calculated from sample
	sizes). No SDs provided for follow-up haemoglobin: imputed based on SDs of overall
	haemoglobin

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Sequence generation not described in study
Allocation concealment (selection bias)	Unclear risk	Allocation concealment not described in study
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Low risk	Not reported. Unlikely to affect laboratory outcomes
Incomplete outcome data (attrition bias) All outcomes	Low risk	312 participants at baseline. 16 dropped out of study
Selective reporting (reporting bias)	Low risk	No evidence of selective reporting bias
Other bias	Low risk	The study appears free of other bias

Zhu 1998

Methods	Design: randomised controlled trial Randomisation: individual Trial: daily oral iron versus placebo Date of study: not stated
Participants	 Setting: Ithaca (Cornell University, USA) Malaria endemicity: not stated Included: women aged 19 years to 36 years (mean age 36 years) with haemoglobin > 120 g/L and ferritin < 16 ng/mL Excluded: current pregnancy or pregnancy within the past year, infectious illness in the past month, fever in the past week, haemolytic anaemia, asthma, musculoskeletal

Zhu 1998 (Continued)

	problems, smoking, excess alcohol consumption (more than seven glasses of an alcoholic beverage per week), recent history of eating disorders, and use of prescription medications that potentially interfere with dietary iron absorption Dropouts: 2 of 39 (1 in each arm) Sample Size: total: 37; intervention: 20, control: 17
Interventions	Intervention: 135 mg elemental iron daily (45 mg thrice daily) as ferrous sulphate Control: placebo Duration: 8 weeks
Outcomes	Haemoglobin, iron status, exercise performance, fat mass, weight, lactate
Notes	Compliance: on average, the placebo group consumed 144 ± 23 capsules (87.3 \pm 9.5% of the total prescription) and the iron-supplemented group consumed 145 ± 29 capsules (87.5 \pm 16.5% of the total prescription); no significant difference between these arms Conflicts of interest: not stated Funded by: United States Department of Agriculture Grant (9500850) and by a Graduate Research Grant from the Division of Nutritional Sciences, Cornell University

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	Not reported
Allocation concealment (selection bias)	Unclear risk	Not reported
Blinding of participants and personnel (performance bias) All outcomes	Low risk	Placebo administered
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Not reported. Unlikely to affect biochem- ical/laboratory indices but could affect as- sessor's measurement of exercise perfor- mance
Incomplete outcome data (attrition bias) All outcomes	Low risk	39 enrolled. 2 lost to follow-up, 1 in each arm
Selective reporting (reporting bias)	Low risk	Not evident
Other bias	Low risk	Not evident

BMI - body mass index CI(s) - confidence interval(s) GP - general practitioner Fe - iron

FEP - free erythrocyte protoporphyrin
HR - heart rate
ICC - intraclass correlation coefficient
PR blood loss - bleeding in any part of the gastrointestinal tract
SD - standard deviation
SE - standard error
TFT - thyroid function test
UNICEF - United Nations International Children's Emergency Fund

VO2 max - maximal oxygen consumption

Characteristics of excluded studies [ordered by study ID]

Study	Reason for exclusion					
Brigham 1993	Randomised controlled cross-over trial; data not presented for outcomes at the end of the first parallel comparison					
Cable 1988	Study in blood donors; ongoing donations (blood losses) during study					
Powell 1991	Randomised controlled cross-over trial; data not presented for outcomes at the end of the first parallel comparison					
Powers 1988	Data for men and women not disaggregated					
Schoene 1983	Randomised controlled cross-over trial; data not presented for outcomes at the end of the first parallel comparison					
Simon 1984	Study in blood donors; ongoing donations (blood losses) during study					

Characteristics of studies awaiting assessment [ordered by study ID]

Blot 1980

Methods	Randomised controlled trial					
Participants	Blood donors					
Interventions	Iron supplementation - women and men					
Outcomes	Unclear					
Notes	Unable to obtain text					

Böttiger 1971

Methods	No abstract, no details available
Participants	
Interventions	
Outcomes	
Notes	

Charoenlarp 1981

Methods	No abstract, no details available
Participants	
Interventions	
Outcomes	
Notes	

Greene 1995

Methods	Apparently a randomised controlled trial
Participants	Male and female adolescents aged 11 years to 16 years
Interventions	Iron versus placebo
Outcomes	Raven's Progressive Matrices (RPM): iron supplementation did not significantly improve RPM compared with placebo in females. IQ measured and not reported
Notes	

Isager 1974

Methods	No abstract, no details available
Participants	
Interventions	
Outcomes	
Notes	

Izak 1973

Methods	No abstract, no details available
Participants	
Interventions	
Outcomes	
Notes	

Parkinson 1981

Methods	No abstract, no details available
Participants	
Interventions	
Outcomes	
Notes	

IQ - intelligence quotient.

Characteristics of ongoing studies [ordered by study ID]

IRCT201409082365N9

Trial name or title	The effects of vitamin D or iron-vitamin supplementation on bone metabolism and inflammation in 18-year to 40-year women
Methods	Randomisation: randomised Blinding: double blinded Placebo: used Assignment: parallel Purpose: prevention
Participants	Sample size: 90 Inclusion criteria: 1. Healthy 2. Non-smoker 3. Non-pregnant 4. Non-lactating 5. Body mass index 18.5 to 29.9 kg/m² 6. Ferritin less than 30 ng/ml 7. Haemoglobin less than 12 g/dl

IRCT201409082365N9 (Continued)

	 25-hydroxyvitamin D less than 30 ng/ml Exclusion criteria: Amenorthea Menopause Minor thalassaemia Haemochromatosis Inflammatory bowel diseases Crohn's disease Gastric ulcer Coeliac disease Gastrointestinal bleeding diseases Renal diseases Renal diseases Inflammation during past three months Iron or vitamin D supplement use during past three months 					
Interventions	 Intervention 1: Intervention group participants will be prescribed two tablets (one 1000 international unit vitamin D plus one 27 mg elemental iron every day). They will be instructed to take the tablets separately Intervention 2: Control group participants will be prescribed two tablets (one 1000 international unit vitamin D plus one placebo every day). They will be instructed to take the tablets separately 					
Outcomes	Haemoglobin, ferritin, serum iron					
Starting date	2011					
Contact information	Dr Mohammadreza Vafa Nutrition and Health Group, Faculty of Health, Iran University of Medical Sciences, Hemmat highway, Tehran, Iran					
Notes	Recruitment closed late 2014. Data not published or publicly available at time of closing of data extraction for this review. Pre-specified outcomes listed do not include any of the primary outcomes of this review for which few data are presently available. Author not contacted as given haematologic and iron outcomes only and relatively small sample size compared with sample size in the meta-analyses. This study was judged unlikely to produce major alterations to the findings					

IRCT: Iranian Registry of Clinical Trials.

DATA AND ANALYSES

Comparison 1. Anaemia

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Anaemia at end of therapy (total)	10	3273	Risk Ratio (M-H, Random, 95% CI)	0.39 [0.25, 0.60]
2 Anaemia at end of therapy (sensitivity analysis)	1		Risk Ratio (M-H, Random, 95% CI)	Totals not selected
3 Anaemia at end of therapy (cointervention)	10	3273	Risk Ratio (M-H, Random, 95% CI)	0.39 [0.25, 0.60]
3.1 Iron alone	8	2775	Risk Ratio (M-H, Random, 95% CI)	0.57 [0.45, 0.74]
3.2 Iron + vitamin C versus vitamin C	2	498	Risk Ratio (M-H, Random, 95% CI)	0.10 [0.06, 0.15]
3.3 Iron + cointervention versus cointervention	0	0	Risk Ratio (M-H, Random, 95% CI)	0.0 [0.0, 0.0]
4 Anaemia at end of therapy (age)	10	3273	Risk Ratio (M-H, Random, 95% CI)	0.39 [0.25, 0.60]
4.1 12 to 18 years of age	4	2169	Risk Ratio (M-H, Random, 95% CI)	0.32 [0.11, 0.93]
4.2 50 to 55 years of age	0	0	Risk Ratio (M-H, Random, 95% CI)	$0.0 \; [0.0, 0.0]$
4.3 Mixed/unstated	6	1104	Risk Ratio (M-H, Random, 95% CI)	0.51 [0.33, 0.78]
5 Anaemia at end of therapy (baseline Hb)	10	3273	Risk Ratio (M-H, Random, 95% CI)	0.39 [0.25, 0.60]
5.1 Anaemic	1	69	Risk Ratio (M-H, Random, 95% CI)	0.65 [0.47, 0.90]
5.2 Non-anaemic	0	0	Risk Ratio (M-H, Random, 95% CI)	$0.0 \; [0.0, 0.0]$
5.3 Mixed/unstated	9	3204	Risk Ratio (M-H, Random, 95% CI)	0.36 [0.22, 0.59]
6 Anaemia at end of therapy (iron status)	10	3273	Risk Ratio (M-H, Random, 95% CI)	0.39 [0.25, 0.60]
6.1 Iron deficient	1	69	Risk Ratio (M-H, Random, 95% CI)	0.65 [0.47, 0.90]
6.2 Not iron deficient	0	0	Risk Ratio (M-H, Random, 95% CI)	0.0 [0.0, 0.0]
6.3 Mixed/unstated	9	3204	Risk Ratio (M-H, Random, 95% CI)	0.36 [0.22, 0.59]
7 Anaemia at end of therapy (iron-deficiency anaemia)	10	3273	Risk Ratio (M-H, Random, 95% CI)	0.39 [0.25, 0.60]
7.1 Iron-deficiency anaemia	1	69	Risk Ratio (M-H, Random, 95% CI)	0.65 [0.47, 0.90]
7.2 Iron deficient, not anaemic	0	0	Risk Ratio (M-H, Random, 95% CI)	0.0 [0.0, 0.0]
7.3 Not iron deficient, not anaemic	0	0	Risk Ratio (M-H, Random, 95% CI)	0.0 [0.0, 0.0]
7.4 Mixed/unstated	9	3204	Risk Ratio (M-H, Random, 95% CI)	0.36 [0.22, 0.59]
8 Anaemia at end of therapy (dose)	10	3273	Risk Ratio (M-H, Random, 95% CI)	0.39 [0.25, 0.60]
8.1 < 30 mg	3	348	Risk Ratio (M-H, Random, 95% CI)	0.57 [0.37, 0.88]
8.2 31 mg to 60 mg	2	807	Risk Ratio (M-H, Random, 95% CI)	0.30 [0.03, 3.45]
8.3 61 mg to 100 mg	2	1466	Risk Ratio (M-H, Random, 95% CI)	0.44 [0.16, 1.25]
8.4 > 100 mg	3	652	Risk Ratio (M-H, Random, 95% CI)	0.34 [0.14, 0.82]
9 Anaemia at end of therapy (duration)	10	3273	Risk Ratio (M-H, Random, 95% CI)	0.39 [0.25, 0.60]
9.1 < 30 days (1 month)	0	0	Risk Ratio (M-H, Random, 95% CI)	$0.0 \ [0.0, 0.0]$
9.2 1 to 3 months	5	1106	Risk Ratio (M-H, Random, 95% CI)	0.20 [0.06, 0.64]
9.3 > 3 months	5	2167	Risk Ratio (M-H, Random, 95% CI)	0.63 [0.48, 0.82]

10 Anaemia at end of therapy	9	3192	Risk Ratio (M-H, Random, 95% CI)	0.40 [0.26, 0.62]
(type of iron)				
10.1 Ferrous sulphate	4	838	Risk Ratio (M-H, Random, 95% CI)	0.20 [0.09, 0.48]
10.2 Ferrous fumurate	1	69	Risk Ratio (M-H, Random, 95% CI)	0.65 [0.47, 0.90]
10.3 Other	4	2285	Risk Ratio (M-H, Random, 95% CI)	0.66 [0.50, 0.87]

Comparison 2. Haemoglobin

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Haemoglobin (total)	51	6861	Mean Difference (IV, Random, 95% CI)	5.30 [4.14, 6.45]
2 Haemoglobin (sensitivity analysis)	6	581	Mean Difference (IV, Random, 95% CI)	5.08 [2.99, 7.17]
3 Haemoglobin (cointervention)	51	6861	Mean Difference (IV, Random, 95% CI)	5.49 [4.35, 6.63]
3.1 Iron alone	44	6117	Mean Difference (IV, Random, 95% CI)	5.39 [4.22, 6.55]
3.2 Iron + vitamin C versus vitamin C	4	655	Mean Difference (IV, Random, 95% CI)	6.59 [1.36, 11.82]
3.3 Iron + cointervention versus cointervention	4	89	Mean Difference (IV, Random, 95% CI)	3.80 [-6.41, 14.01]
4 Haemoglobin (age)	51	6861	Mean Difference (IV, Random, 95% CI)	5.30 [4.14, 6.45]
4.1 12 to 18 years of age	10	3220	Mean Difference (IV, Random, 95% CI)	6.99 [3.85, 10.13]
4.2 50 to 55 years of age	0	0	Mean Difference (IV, Random, 95% CI)	$0.0 \ [0.0, \ 0.0]$
4.3 Mixed/unstated	41	3641	Mean Difference (IV, Random, 95% CI)	4.69 [3.55, 5.83]
5 Haemoglobin (baseline Hb)	51	6885	Mean Difference (IV, Random, 95% CI)	5.30 [4.11, 6.48]
5.1 Anaemic	8	558	Mean Difference (IV, Random, 95% CI)	8.67 [5.16, 12.18]
5.2 Non-anaemic	25	2120	Mean Difference (IV, Random, 95% CI)	3.11 [1.67, 4.54]
5.3 Mixed/unstated	25	4207	Mean Difference (IV, Random, 95% CI)	6.30 [4.52, 8.08]
6 Haemoglobin (iron status)	51	6841	Mean Difference (IV, Random, 95% CI)	5.15 [4.00, 6.30]
6.1 Iron deficient	21	1124	Mean Difference (IV, Random, 95% CI)	6.92 [4.76, 9.09]
6.2 Not iron deficient	5	421	Mean Difference (IV, Random, 95% CI)	0.84 [-2.26, 3.95]
6.3 Mixed/unstated	28	5296	Mean Difference (IV, Random, 95% CI)	4.92 [3.49, 6.35]
7 Haemoglobin (iron-deficiency anaemia)	51	6811	Mean Difference (IV, Random, 95% CI)	5.44 [4.31, 6.56]
7.1 Iron-deficiency anaemia	4	154	Mean Difference (IV, Random, 95% CI)	9.01 [4.64, 13.37]
7.2 Iron deficient, not anaemic	15	586	Mean Difference (IV, Random, 95% CI)	5.15 [3.30, 6.99]
7.3 Not iron deficient, not anaemic	3	278	Mean Difference (IV, Random, 95% CI)	2.10 [-1.77, 5.97]
7.4 Mixed/unstated	33	5793	Mean Difference (IV, Random, 95% CI)	5.59 [4.15, 7.03]
8 Haemoglobin (dose)	51	6861	Mean Difference (IV, Random, 95% CI)	5.26 [4.12, 6.41]
8.1 < 30 mg	14	872	Mean Difference (IV, Random, 95% CI)	4.56 [2.50, 6.63]
8.2 31 to 60 mg	19	2600	Mean Difference (IV, Random, 95% CI)	4.93 [2.20, 7.66]
8.3 61 mg to 100 mg	9	1897	Mean Difference (IV, Random, 95% CI)	6.87 [4.24, 9.49]
8.4 > 100 mg	10	1492	Mean Difference (IV, Random, 95% CI)	4.85 [3.03, 6.67]
9 Haemoglobin (duration)	51	6861	Mean Difference (IV, Random, 95% CI)	5.30 [4.14, 6.45]
9.1 < 30 days (1 month)	6	765	Mean Difference (IV, Random, 95% CI)	2.60 [0.28, 4.91]
9.2 1 to 3 months	37	4171	Mean Difference (IV, Random, 95% CI)	6.14 [4.70, 7.58]
9.3 > 3 months	8	1925	Mean Difference (IV, Random, 95% CI)	3.84 [0.94, 6.75]
10 Haemoglobin (type of iron)	47	6542	Mean Difference (IV, Random, 95% CI)	5.63 [4.44, 6.82]

10.1 Ferrous sulphate	27	3167	Mean Difference (IV, Random, 95% CI)	5.56 [3.74, 7.38]
10.2 Ferrous fumurate	2	79	Mean Difference (IV, Random, 95% CI)	6.66 [-4.66, 17.97]
10.3 Other/not stated	19	3296	Mean Difference (IV, Random, 95% CI)	5.71 [3.93, 7.49]

Comparison 3. Iron deficiency

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Iron deficiency at end of therapy (total)	7	1088	Risk Ratio (M-H, Random, 95% CI)	0.62 [0.50, 0.76]
2 Iron deficiency at end of therapy (sensitivity analysis)	1		Risk Ratio (M-H, Random, 95% CI)	Totals not selected

Comparison 4. Iron-deficiency anaemia

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Iron-deficiency anaemia (total)	1		Risk Ratio (M-H, Random, 95% CI)	Totals not selected
2 Microcytic anaemia (Total)	1		Risk Ratio (M-H, Random, 95% CI)	Totals not selected

Comparison 5. Side effects

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Any side effect (total)	7	901	Risk Ratio (M-H, Random, 95% CI)	2.14 [0.94, 4.86]
2 Any side effect (sensitivity analysis)	3	415	Risk Ratio (M-H, Random, 95% CI)	1.59 [0.66, 3.81]
3 Any side effect (dose)	7	901	Risk Ratio (M-H, Random, 95% CI)	2.04 [0.93, 4.48]
3.1 < 30 mg	0	0	Risk Ratio (M-H, Random, 95% CI)	$0.0 \ [0.0, \ 0.0]$
3.2 31 mg to 60 mg	3	305	Risk Ratio (M-H, Random, 95% CI)	1.01 [0.93, 1.10]
3.3 61 mg to 100 mg	2	157	Risk Ratio (M-H, Random, 95% CI)	2.61 [1.44, 4.75]
3.4 > 100 mg	3	439	Risk Ratio (M-H, Random, 95% CI)	2.15 [1.24, 3.73]
4 Gastrointestinal side effects (total)	5	521	Risk Ratio (M-H, Random, 95% CI)	1.99 [1.26, 3.12]
5 Gastrointestinal side effects (sensitivity analysis)	3	415	Risk Ratio (M-H, Random, 95% CI)	1.91 [0.96, 3.80]
6 Gastrointestinal side effects (dose)	5	521	Risk Ratio (M-H, Random, 95% CI)	1.99 [1.26, 3.12]
6.1 < 30 mg	0	0	Risk Ratio (M-H, Random, 95% CI)	$0.0 \; [0.0, 0.0]$
6.2 31 mg to 60 mg	2	293	Risk Ratio (M-H, Random, 95% CI)	1.23 [0.84, 1.81]
6.3 61 mg to 100 mg	1	145	Risk Ratio (M-H, Random, 95% CI)	3.00 [1.45, 6.20]

6.4 > 100 mg	2	83	Risk Ratio (M-H, Random, 95% CI)	2.42 [1.45, 4.05]
7 Loose stools/diarrhoea (total)	6	604	Risk Ratio (M-H, Random, 95% CI)	2.13 [1.10, 4.11]
8 Hard stools/constipation (total)9 Hard stools/constipation	8	1036	Risk Ratio (M-H, Random, 95% CI)	2.07 [1.35, 3.17]
(sensitivity analysis)	4	480	Risk Ratio (M-H, Random, 95% CI)	2.14 [1.04, 4.38]
10 Abdominal pain (total) 11 Nausea (total)	7	1190 1214	Risk Ratio (M-H, Random, 95% CI) Risk Ratio (M-H, Random, 95% CI)	1.55 [0.99, 2.41]
12 Change in stool colour (total) 13 Headache (total)	8 4	359 526	Risk Ratio (M-H, Random, 95% CI) Risk Ratio (M-H, Random, 95% CI) Risk Ratio (M-H, Random, 95% CI)	1.19 [0.78, 1.82] 6.92 [3.83, 12.52] 0.98 [0.58, 1.66]

Comparison 6. Iron status

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Ferritin in ng/ml (total)	42	3881	Mean Difference (IV, Random, 95% CI)	10.27 [8.90, 11.65]
2 Ferritin in ng/ml (cointervention)	42	3881	Mean Difference (IV, Random, 95% CI)	9.97 [8.70, 11.25]
2.1 Iron alone	37	3265	Mean Difference (IV, Random, 95% CI)	10.05 [8.55, 11.54]
2.2 Iron + vitamin C versus vitamin C	3	537	Mean Difference (IV, Random, 95% CI)	18.10 [-7.79, 44.00]
2.3 Iron + cointervention versus cointervention	3	79	Mean Difference (IV, Random, 95% CI)	6.81 [6.36, 7.26]
3 Ferritin in ng/ml (age)	42	3881	Mean Difference (IV, Random, 95% CI)	10.27 [8.90, 11.65]
3.1 12 to 18 years of age	7	1430	Mean Difference (IV, Random, 95% CI)	14.19 [9.70, 18.68]
3.2 50 to 55 years of age	0	0	Mean Difference (IV, Random, 95% CI)	$0.0 \; [0.0, 0.0]$
3.3 Mixed/unstated	35	2451	Mean Difference (IV, Random, 95% CI)	9.76 [7.89, 11.63]
4 Ferritin in ng/ml (baseline Hb)	42	3874	Mean Difference (IV, Random, 95% CI)	10.65 [9.31, 11.99]
4.1 Anaemic	4	202	Mean Difference (IV, Random, 95% CI)	13.74 [6.32, 21.16]
4.2 Non anaemic	24	1532	Mean Difference (IV, Random, 95% CI)	10.40 [7.90, 12.89]
4.3 Mixed/unstated	18	2140	Mean Difference (IV, Random, 95% CI)	11.36 [8.67, 14.05]
5 Ferritin in ng/ml (iron status)	42	3861	Mean Difference (IV, Random, 95% CI)	10.13 [8.81, 11.45]
5.1 Iron deficient	20	1065	Mean Difference (IV, Random, 95% CI)	8.40 [6.31, 10.49]
5.2 Not iron deficient	5	297	Mean Difference (IV, Random, 95% CI)	13.38 [6.74, 20.01]
5.3 Mixed/unstated	20	2499	Mean Difference (IV, Random, 95% CI)	12.88 [9.99, 15.78]
6 Ferritin in ng/ml (iron-deficiency anaemia)	42	3831	Mean Difference (IV, Random, 95% CI)	10.31 [8.99, 11.63]
6.1 Iron-deficiency anaemia	3	85	Mean Difference (IV, Random, 95% CI)	11.27 [3.26, 19.29]
6.2 Iron deficient, not anaemic	16	633	Mean Difference (IV, Random, 95% CI)	10.07 [6.77, 13.38]
6.3 Not iron deficient, not anaemic	2	117	Mean Difference (IV, Random, 95% CI)	12.27 [1.00, 23.54]
6.4 Mixed/unstated	25	2996	Mean Difference (IV, Random, 95% CI)	9.99 [8.38, 11.61]
7 Ferritin in ng/ml (dose)	42	3881	Mean Difference (IV, Random, 95% CI)	10.16 [8.79, 11.52]
7.1 < 30 mg	10	397	Mean Difference (IV, Random, 95% CI)	6.47 [3.18, 9.75]
7.2 31 mg to 60 mg	19	2262	Mean Difference (IV, Random, 95% CI)	12.36 [9.50, 15.22]
7.3 61 mg to 100 mg	6	381	Mean Difference (IV, Random, 95% CI)	10.14 [5.20, 15.08]
7.4 > 100 mg	8	841	Mean Difference (IV, Random, 95% CI)	13.50 [8.15, 18.86]
8 Ferritin in ng/ml (duration)	42	3881	Mean Difference (IV, Random, 95% CI)	10.27 [8.90, 11.65]
8.1 < 30 days (1 month)	7	794	Mean Difference (IV, Random, 95% CI)	7.60 [4.64, 10.57]

8.2 1 to 3 months	31	2829	Mean Difference (IV, Random, 95% CI)	12.17 [9.81, 14.53]
8.3 > 3 months	4	258	Mean Difference (IV, Random, 95% CI)	7.85 [1.31, 14.38]
9 Ferritin in ng/ml (type of iron)	42	3917	Mean Difference (IV, Random, 95% CI)	10.19 [8.84, 11.55]
9.1 Ferrous sulphate	27	2474	Mean Difference (IV, Random, 95% CI)	9.73 [8.32, 11.14]
9.2 Ferrous fumurate	1	47	Mean Difference (IV, Random, 95% CI)	9.60 [1.05, 18.15]
9.3 Other/not stated	16	1396	Mean Difference (IV, Random, 95% CI)	13.34 [8.61, 18.08]
10 Transferrin saturation (total)	23	1637	Mean Difference (IV, Random, 95% CI)	5.98 [3.93, 8.02]
11 Soluble transferrin receptor (mg/L) (total)	11	579	Std. Mean Difference (IV, Random, 95% CI)	-0.32 [-0.49, -0.16]
12 Total iron binding capacity (total)	19	960	Std. Mean Difference (IV, Random, 95% CI)	-0.64 [-1.38, 0.09]
13 Serum iron (total)	17	902	Std. Mean Difference (IV, Random, 95% CI)	0.47 [0.19, 0.74]
14 Erythrocyte protophyrin (ug/g Hb) (total)	1		Mean Difference (IV, Random, 95% CI)	Totals not selected

Comparison 7. Exercise performance - peak (maximal)

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Absolute VO ₂ max (L/min) (total)	8	276	Mean Difference (IV, Random, 95% CI)	0.11 [0.02, 0.20]
2 Relative VO ₂ max ml/kg/min (total)	15	407	Mean Difference (IV, Random, 95% CI)	2.36 [0.55, 4.17]
3 Peak respiratory exchange ratio (RER) (total)	4	112	Mean Difference (IV, Random, 95% CI)	0.01 [-0.02, 0.03]
4 Maximum heart rate (total)	5	126	Mean Difference (IV, Random, 95% CI)	1.77 [-0.79, 4.33]
5 Lactate at longest point (total)	4	106	Mean Difference (IV, Random, 95% CI)	-0.00 [-0.72, 0.72]

Comparison 8. Exercise performance - submaximal

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Percentage VO ₂ peak (total)	5	126	Mean Difference (IV, Random, 95% CI)	-3.34 [-6.17, -0.51]
2 Heart rate (total)	6	212	Mean Difference (IV, Random, 95% CI)	-4.72 [-8.64, -0.80]
3 Energy consumption (kJ/min) (total)	2	61	Mean Difference (IV, Random, 95% CI)	-0.08 [-0.52, 0.36]
4 Respiratory exchange ratio (RER) (total)	5	136	Mean Difference (IV, Random, 95% CI)	-0.01 [-0.02, 0.01]
5 Achieved workload (total)	3	99	Mean Difference (IV, Random, 95% CI)	-4.70 [-16.37, 6.97]
6 Time to exhaustion (total)	2	38	Mean Difference (IV, Random, 95% CI)	3.46 [-6.42, 13.34]

Comparison 9. Anthropometric

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Height (cm) (total)	4	302	Mean Difference (IV, Random, 95% CI)	-0.32 [-2.25, 1.61]
2 Weight (kg) (total)	8	593	Mean Difference (IV, Random, 95% CI)	0.76 [-0.41, 1.92]
3 Weight (kg) (sensitivity analysis)	7	390	Mean Difference (IV, Random, 95% CI)	0.24 [-1.13, 1.60]
4 Body mass index (total)	6	520	Mean Difference (IV, Random, 95% CI)	0.53 [0.10, 0.96]
5 Body mass index (sensitivity analysis)	5	317	Mean Difference (IV, Random, 95% CI)	0.52 [-0.04, 1.07]

Comparison 10. Serum/plasma zinc

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Zinc levels (total)	4	151	Mean Difference (IV, Random, 95% CI)	-0.65 [-2.70, 1.40]

Comparison 11. Productivity

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Productivity	3	446	Std. Mean Difference (IV, Random, 95% CI)	0.07 [-0.12, 0.26]

Comparison 12. Malaria

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Malaria prevalence at end of therapy (Total)	1		Risk Ratio (M-H, Random, 95% CI)	Totals not selected

Analysis I.I. Comparison I Anaemia, Outcome I Anaemia at end of therapy (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: I Anaemia

Outcome: I Anaemia at end of therapy (total)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,955 Cl
Agarwal 2003	251/699	347/691	•	12.9 %	0.72 [0.63, 0.81]
Charoenlarp 1988	92/350	38/101	-	12.2 %	0.70 [0.51, 0.95]
Florencio 1981	2/39	11/20	_	5.4 %	0.09 [0.02, 0.38]
Gordeuk 1990	8/40	29/36		10.1 %	0.25 [0.13, 0.47]
Gunaratna 2015	85/184	97/184	-	12.7 %	0.88 [0.71, 1.08]
Jayatissa 1999	19/222	188/217	+	11.5 %	0.10 [0.06, 0.15]
Shah 2002	4/70	47/72	+	11.1 %	0.31 [0.19, 0.50]
Viteri 1999	0/37	5/44		1.9 %	0.11 [0.01, 1.88]
Wang 2012	19/34	30/35	-	12.1 %	0.65 [0.47, 0.90]
Zavaleta 2000	11/101	22/97	-	9.9 %	0.48 [0.25, 0.94]
Total (95% CI)	1776	1497	•	100.0 %	0.39 [0.25, 0.60]
otal events: 501 (Iron), 814	1 (Control)				
Heterogeneity: $Tau^2 = 0.37$		= 9 (P<0.00001); l ² =9	3%		
est for overall effect: $Z = 4$	1.30 (P = 0.000017)				
est for subgroup difference	es: Not applicable				

0.01 0.1 I 10 100 Favours iron Favours control

Analysis 1.2. Comparison I Anaemia, Outcome 2 Anaemia at end of therapy (sensitivity analysis).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: I Anaemia

Outcome: 2 Anaemia at end of therapy (sensitivity analysis)

Study or subgroup	Iron	Control	Risk Ratio M- H.Random,95%	Risk Ratio M- H,Random,95%
	n/N	n/N	Cl	Cl
Gunaratna 2015	85/184	97/184	-	0.88 [0.71, 1.08]
			0.01 0.1 1 10 100	
			Favours iron Favours control	

Analysis I.3. Comparison I Anaemia, Outcome 3 Anaemia at end of therapy (cointervention).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: I Anaemia

Outcome: 3 Anaemia at end of therapy (cointervention)

Iron	Control	Risk Ratio	Weight	Risk Ratio M-
n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
251/699	347/691	•	12.9 %	0.72 [0.63, 0.81]
92/350	38/101	+	12.2 %	0.70 [0.51, 0.95]
8/40	29/36		10.1 %	0.25 [0.13, 0.47]
85/184	97/184	•	12.7 %	0.88 [0.71, 1.08]
14/70	47/72	+	11.1 %	0.31 [0.19, 0.50]
0/37	5/44		1.9 %	0.11 [0.01, 1.88]
19/34	30/35	+	12.1 %	0.65 [0.47, 0.90]
11/101	22/97		9.9 %	0.48 [0.25, 0.94]
1515	1260	•	83.0 %	0.57 [0.45, 0.74]
	n/N 251/699 92/350 8/40 85/184 14/70 0/37 19/34 11/101	n/N n/N 251/699 347/691 92/350 38/101 8/40 29/36 85/184 97/184 14/70 47/72 0/37 5/44 19/34 30/35 11/101 22/97	M- H,Random,95% C 251/699 347/691 92/350 38/101 8/40 29/36 85/184 97/184 14/70 47/72 0/37 5/44 19/34 30/35 11/101 22/97 1515 1260	M- H,Random,95% Cl M- Cl 251/699 347/691 I2.9 % 92/350 38/101 I2.2 % 8/40 29/36 I0.1 % 85/184 97/184 I2.7 % 14/70 47/72 I1.1 % 0/37 5/44 99 % 11/101 22/97 99 % 1515 1260 83.0 %

(Continued ...)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	(Continued) Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Total events: 480 (Iron), 615 (Con	itrol)				
Heterogeneity: $Tau^2 = 0.08$; Chi ²	= 28.83, df = 7 ($P = 0.000 6); ^2 = 76\%$			
Test for overall effect: $Z = 4.35$ (P	= 0.000013)				
2 Iron + vitamin C versus vitamin	С				
Florencio 1981	2/39	11/20		5.4 %	0.09 [0.02, 0.38]
Jayatissa 1999	19/222	188/217	+	11.5 %	0.10 [0.06, 0.15]
Subtotal (95% CI)	261	237	•	17.0 %	0.10 [0.06, 0.15]
Total events: 21 (Iron), 199 (Contr	rol)				
Heterogeneity: $Tau^2 = 0.0$; $Chi^2 =$	0.01, df = 1 (P =	= 0.94); l ² =0.0%			
Test for overall effect: $Z = 10.98$ (P < 0.00001)				
3 Iron + cointervention versus coi	intervention				
Subtotal (95% CI)	0	0			Not estimable
Total events: 0 (Iron), 0 (Control)					
Heterogeneity: not applicable					
Test for overall effect: not applicab	ble				
Total (95% CI)	1776	1497	•	100.0 %	0.39 [0.25, 0.60]
Total events: 501 (Iron), 814 (Con	itrol)				
Heterogeneity: $Tau^2 = 0.37$; Chi ²	= 124.24, df = 9	(P<0.00001); I ² =93%			
Test for overall effect: $Z = 4.30$ (P	= 0.000017)				
Test for subgroup differences: Chi ²	² = 51.20, df = 1	(P = 0.00), I ² =98%			
		C	0.01 0.1 1 10 100		
			Favours iron Favours control		

Analysis I.4. Comparison I Anaemia, Outcome 4 Anaemia at end of therapy (age).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: I Anaemia

Outcome: 4 Anaemia at end of therapy (age)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,9 Cl
2 to 8 years of age					
Agarwal 2003	251/699	347/691	-	12.9 %	0.72 [0.63, 0.81]
Jayatissa 1999	19/222	188/217	-	11.5 %	0.10 [0.06, 0.15]
Shah 2002	14/70	47/72	-	11.1 %	0.31 [0.19, 0.50]
Zavaleta 2000	11/101	22/97		9.9 %	0.48 [0.25, 0.94]
Subtotal (95% CI)	1092	1077	-	45.5 %	0.32 [0.11, 0.93]
Total events: 295 (Iron), 604 (C	Control)				
Heterogeneity: $Tau^2 = 1.13$; Ch	ni² = 93.5 I, df = 3 (P<0.00001); I ² =97%			
Test for overall effect: $Z = 2.09$	(P = 0.037)				
2 50 to 55 years of age					
Subtotal (95% CI)	0	0			Not estimable
Total events: 0 (Iron), 0 (Contr	ol)				
Heterogeneity: not applicable					
Test for overall effect: not appli	cable				
3 Mixed/unstated	00/050	201101		10.0.07	
Charoenlarp 1988	92/350	38/101	-8-	12.2 %	0.70 [0.51, 0.95]
Florencio 1981	2/39	11/20		5.4 %	0.09 [0.02, 0.38]
Gordeuk 1990	8/40	29/36		10.1 %	0.25 [0.13, 0.47]
Gunaratna 2015	85/184	97/184	-	12.7 %	0.88 [0.71, 1.08]
Viteri 1999	0/37	5/44		1.9 %	0.11 [0.01, 1.88]
Wang 2012	19/34	30/35	-	12.1 %	0.65 [0.47, 0.90]
Subtotal (95% CI)	684	420	•	54.5 %	0.51 [0.33, 0.78]
Total events: 206 (Iron), 210 (C	Control)				
Heterogeneity: $Tau^2 = 0.18$; Ch	ni ² = 25.34, df = 5 ($P = 0.00012$; $I^2 = 80\%$			
Test for overall effect: $Z = 3.06$,				
Total (95% CI)	1776	1497	•	100.0 %	0.39 [0.25, 0.60]
Total events: 501 (Iron), 814 (C	,				
Heterogeneity: $Tau^2 = 0.37$; Ch		(P<0.00001); I ² =93%			
Test for overall effect: $Z = 4.30$. ,	$(D - 0.42)$ $1^{2} - 0.007$			
	_nı~ = 0.63, dt = 1 ((P = 0.43), I ² =0.0%			

Analysis I.5. Comparison I Anaemia, Outcome 5 Anaemia at end of therapy (baseline Hb).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: I Anaemia

Outcome: 5 Anaemia at end of therapy (baseline Hb)

I Anaemic IRandom,95% Vang 2012 19/34 30/35 12.1 % 0.65 Subtocal (95% CI) 34 35 12.1 % 0.65 [0. Total events: 19 (ron), 30 (Control) Heterogeneity: not applicable 12.1 % 0.65 [0. Test for overall effect: Z = 2.56 (P = 0.011) 2 Not Not 2 Non-anaemic Subtocal (95% CI) 0 0 Not Subtocal (95% CI) 0 0 Not Not Total events: 0 (ron), 0 (Control) Heterogeneity: not applicable Test for overall effect: not applicable Not Test for overall effect: not applicable Test for overall effect: not applicable 12.9 % 0.72 3 Mixed/Unstated Agarwal 2003 251/699 347/691 12.2 % 0.70 Florencio 1981 2/39 11/20 54.4 % 0.09 0.72 Gordeuk 1990 8/40 29/36 10.1 % 0.25 0.72 0.78 0.72 Gunaratna 2015 85/184 97/184 12.7 % 0.88 0.40 0.4	Risk Ratio M-	Weight	Risk Ratio M-	Iron Control		Study or subgroup		
I Anaemic Wang 2012 19/34 30/35 12.1 % 0.65 Subtotal (95% CI) 34 35 12.1 % 0.65 [0. Total events: 19 (tron), 30 (Control) Heterogeneity: not applicable 12.1 % 0.65 [0. Test for overall effect: $Z = 2.56$ ($P = 0.011$) 2.1 % 0.65 [0. 0.65 [0. Subtotal (95% CI) 0 0 0 Not Total events: 0 (tron), 0 (Control) Heterogeneity: not applicable Not Not Test for overall effect: not applicable 38/001 12.2 % 0.70 Charoenlarp 1988 92/350 38/101 12.2 % 0.70 Florencio 1981 2/39 11/20 5.4 % 0.09 Gordeuk 1990 8/40 29/36 10.1 % 0.25 Gunaratna 2015 85/184 97/184 12.7 % 0.88 Jayatissa 1999 19/222 18/8/17 11.1 % 0.31 Viteri 1999 0/37 5/44 5/4 1.9 % 0.11 Zavaleta 2000 11/101 22/97 9.9 % 0.48 87.9 % 0.36 [0.	H,Random, C			H,Random,95%	n/N	n/N		
Wang 2012 19/34 30/35 12.1 % 0.65 Subtotal (95% CI) 34 35 12.1 % 0.65 [0. Total events: 19 (Iron), 30 (Control) Heterogeneity: not applicable Not Not Subtotal (95% CI) 0 0 0 Not Total events: 0 (Iron), 0 (Control) 0 0 Not Heterogeneity: not applicable Est for overall effect: and applicable 12.1 % 0.65 [0. Total events: 0 (Iron), 0 (Control) 0 0 0 Not Heterogeneity: not applicable 251/699 347/691 12.9 % Not Total events: 0 (Iron), 0 (Control) Heterogeneity: not applicable 12.9 % 0.72 Charcenlarp 1988 92/350 38/101 12.2 % 0.70 Florencio 1981 2/39 11/20 54 % 0.09 0.18 0.25 Gunaratna 2015 85/184 97/184 97/184 12.7 % 0.88 0.11 Zavaleta 2000 11/101 22/97 9.9 % 0.48 87.9 % 0.36 [0. 11 Zavaleta 2000 11/101 22/97 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>l Anaemic</td>							l Anaemic	
Total events: 19 (Iron), 30 (Control) Heterogeneity: not applicable Test for overall effect: $Z = 2.56$ ($P = 0.011$) 2 Non-anaemic Subtotal (95% CL) 0 Total events: 0 (Iron), 0 (Control) Heterogeneity: not applicable Test for overall effect: not applicable Test for overall effect: not applicable Test for overall effect: not applicable Agarwal 2003 251/699 3 Mixed/Unstated Agarwal 2003 251/699 9 Bixed/Unstated Agarwal 2003 251/699 9 Gordeuk 1990 8/40 29/36 - Gunaratna 2015 85/184 9/1222 188/217 10.1 % 0.31 Viteri 1999 0/37 5/44 1.9 % 11.1 % 0.31 Viteri 1999 0/37 5/44 1.9 % 121 1462 87.9 % 0.36 [0. Total events: 482 (Iron), 784 (Control) Heterogeneity: Tau ² = 0.43; Chi ² = 1.402, cfi = 8 (P<0.00001); I ² = 94% Test for overall effect: Z = 4.10 (P = 0.000042)	.65 [0.47, 0.90]		12.1 %	-	30/35	19/34		
Heterogeneity: not applicable Test for overall effect: $Z = 2.56 (P = 0.011)$ 2. Non-anaemic Subtotal (95% CI) 0 0 0 Total events: 0 (fron), 0 (Control) Heterogeneity: not applicable Test for overall effect: not applicable Test for overall effect: not applicable Agarwal 2003 251/699 347/691 12.2 % 0.72 Charoenlarp 1988 92/350 38/101 12.2 % 0.70 Florencio 1981 2/39 11/20 $$ 54 % 0.09 Gordeuk 1990 8/40 29/36 $$ 10.1 % 0.25 Gunaratna 2015 85/184 97/184 12.7 % 0.88 Jayatissa 1999 19/222 188/217 $$ 11.5 % 0.10 Shah 2002 14/70 47/72 $$ 11.1 % 0.31 Viteri 1999 0/37 5/44 1.9 % 0.11 Zavaleta 2000 11/101 22/97 $$ 99 % 0.48 Subtotal (95% CI) 1742 1462 $-$ 87.9 % 0.36 [0. Total events: 482 (fron), 784 (Control) Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); l ² = 94% Test for overall effect: Z = 4.10 (P = 0.000042)	0.47, 0.90]	0.65	12.1 %	•	35	34	Subtotal (95% CI)	
Test for overall effect: $Z = 2.56 (P = 0.011)$ 2 Non-anaemic Subtotal (95% CI) 0 0 0 Total events: 0 (Iron), 0 (Control) Heterogeneity: not applicable Test for overall effect: not applicable 3 Mixed/unstated Agarwal 2003 251/699 347/691 1 12.2 % 0.72 Charoenlarp 1988 92/350 38/101 12.2 % 0.70 Florencio 1981 2/39 11/20 Florencio 1981 2/39 11/20 Gordeuk 1990 8/40 29/36 Gunaratna 2015 85/184 97/184 12.7 % 0.88 Jayatissa 1999 19/222 188/217 Shah 2002 14/70 47/72 Not Subtotal (95% CI) 1742 1462 - Subtotal (95% CI) 1745 - Subtotal (95% CI) 174 - Subtotal (95% CI) 174						itrol)	Total events: 19 (Iron), 30 (Cor	
22 Non-anaemic Subtocal (95% CI) 0 0 Not Subtocal (95% CI) 0 0 0 Not Total events: 0 (Iron), 0 (Control) Heterogeneity: not applicable Image: Subtocal (95% CI) 10 12.9 % 0.72 Agarwal 2003 25 1/699 347/691 12.9 % 0.72 Charoenlarp 1988 92/350 38/101 12.2 % 0.70 Florencio 1981 2/39 11/20 54.4 % 0.09 Gordeuk 1990 8/40 29/36 - 10.1 % 0.25 Gunaratna 2015 85/184 97/184 12.7 % 0.88 Jayatissa 1999 19/222 188/217 - 11.5 % 0.10 Shah 2002 14/70 47/72 - 11.1 % 0.31 Viteri 1999 0/37 5/44 1.9 % 0.11 Zavaleta 2000 11/101 22/97 - 9.9 % 0.36 [0. Subtocal (95% CI) 1742 1462 - 87.9 % 0.36 [0. Total events: 482 (Iron), 784 (Control) Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001)							Heterogeneity: not applicable	
Subtotal (95% CI) 0 0 Not Total events: 0 (Iron), 0 (Control) Integration (Iron), 0 (Control) Integration (Iron), 0 (Control) Integration (Iron), 0 (Control) Heterogeneity: not applicable Integration (Iron), 0 (Control) Integration (Iron), 0 (Control) Integration (Iron), 0 (Control) 3 Mixed/Unstated Agarwal 2003 251/699 347/691 Integration (Iron), 0 (Control) Garoenlarp 1988 92/350 38/101 Integration (Iron), 0 (Control) Integration (Iron), 0 (Control) Florencio 1981 2/39 Int/20 Int/20 Int/20 Int/20 Gordeuk 1990 8/40 29/36 Int/20						(P = 0.011)		
Catal events: 0 (Iron), 0 (Control) Image: Catal events: 0 (Iron), 0 (Control) Heterogeneity: not applicable Image: Catal events: 0 (Iron), 0 (Control) Iste development is the origination of the origination		_				_		
Heterogeneity: not applicable Test for overall effect: not applicable 3 Mixed/unstated Agarwal 2003 251/699 347/691 12.9 % 0.72 Charoenlarp 1988 92/350 38/101 12.2 % 0.70 Florencio 1981 2/39 11/20 $$ 5.4 % 0.09 Gordeuk 1990 8/40 29/36 $$ 10.1 % 0.25 Gunaratna 2015 85/184 97/184 12.7 % 0.88 Jayatissa 1999 19/222 188/217 $$ 11.5 % 0.10 Shah 2002 14/70 47/72 $$ 11.1 % 0.31 Viteri 1999 0/37 5/44 $$ 1.9 % 0.11 Zavaleta 2000 111/101 22/97 $$ 9.9 % 0.48 Subtotal (95% CI) 1742 1462 $+$ 87.9 % 0.36 [0. Total events: 482 (Iron), 784 (Control) Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); l ² = 94% Test for overall effect: Z = 4.10 (P = 0.000042)	ot estimable	ſ			0	-		
Test for overall effect: not applicable 3 Mixed/unstated Agarwal 2003 251/699 347/691 12.9 % 0.72 Charoenlarp 1988 92/350 38/101 12.2 % 0.70 Florencio 1981 2/39 11/20 12.2 % 0.70 Gordeuk 1990 8/40 29/36 10.1 % 0.25 Gunaratna 2015 85/184 97/184 12.7 % 0.88 Jayatissa 1999 19/222 188/217 11.5 % 0.10 Shah 2002 14/70 47/72 11.1 % 0.31 Viteri 1999 0/37 5/44 1.9 % 0.11 Zavaleta 2000 11/101 22/97 9.9 % 0.48 Subtocal (95% CI) 1742 1462 87.9 % 0.36 [0. Total events: 482 (Iron), 784 (Control) Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); I ² = 94% 87.9 % 0.36 [0.						0)		
A Mixed/unstated Agarwal 2003 $251/699$ $347/691$ 12.9% 0.72 Charoenlarp 198892/350 $38/101$ 12.2% 0.72 Florencio 1981 $2/39$ $11/20$ 5.4% 0.09 Gordeuk 1990 $8/40$ $29/36$ $$ 10.1% 0.25 Gunaratna 2015 $85/184$ $97/184$ $ 12.7 \%$ 0.88 Jayatissa 1999 $19/222$ $188/217$ $ 11.5 \%$ 0.10 Shah 2002 $14/70$ $47/72$ $ 11.1 \%$ 0.31 Viteri 1999 $0/37$ $5/44$ $ 9.9 \%$ 0.48 Subtoral (95% CI) 1742 1462 $ 87.9 \%$ $0.36 [0.72)$ Total events: 482 (Iron), 784 (Control) $Heterogeneity: Tau2 = 0.43; Chi2 = 124.02, df = 8 (P<0.00001); l2 = 94\%$ $ 87.9 \%$ $0.36 [0.72)$ Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); l ² = 94\% $ -$						mble		
Agarwal 2003 $251/699$ $347/691$ 12.9% 0.72 Charoenlarp 1988 $92/350$ $38/101$ 12.2% 0.70 Florencio 1981 $2/39$ $11/20$ 54% 0.09 Gordeuk 1990 $8/40$ $29/36$ $$ 10.1% 0.25 Gunaratna 2015 $85/184$ $97/184$ $ 12.7 \%$ 0.88 Jayatissa 1999 $19/222$ $188/217$ $ 11.5 \%$ 0.10 Shah 2002 $14/70$ $47/72$ $ 11.1 \%$ 0.31 Viteri 1999 $0/37$ $5/44$ $ 9.9 \%$ 0.48 Subtoral (95% CI) 1742 1462 $ 87.9 \%$ 0.36 [0.Total events: 482 (Iron), 784 (Control) $+$ $+$ 87.9% 0.36 [0.Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); l ² = 94\% $ 87.9 \%$ 0.36 [0.						LaDie		
Florencio 1981 $2/39$ $11/20$ \bullet 5.4% 0.09 Gordeuk 1990 $8/40$ $29/36$ \bullet 10.1% 0.25 Gunaratna 2015 $85/184$ $97/184$ 12.7% 0.88 Jayatissa 1999 $19/222$ $188/217$ \bullet 11.5% 0.10 Shah 2002 $14/70$ $47/72$ \bullet 11.1% 0.31 Viteri 1999 $0/37$ $5/44$ \bullet 9.9% 0.11 Zavaleta 2000 $11/101$ $22/97$ \bullet 87.9% 0.36 [0.75% Subtotal (95% CI) 1742 1462 \bullet 87.9% 0.36 [0.75% Total events: 482 (Iron), 784 (Control)Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); l ² = 94% \bullet 87.9% 0.36 [0.75%	.72 [0.63, 0.81]		12.9 %	-	347/691	251/699		
Gordeuk 1990 $8/40$ $29/36$ 10.1% 0.25 Gunaratna 2015 $85/184$ $97/184$ 12.7% 0.88 Jayatissa 1999 $19/222$ $188/217$ - 11.5% 0.10 Shah 2002 $14/70$ $47/72$ - 11.1% 0.31 Viteri 1999 $0/37$ $5/44$ - 1.9% 0.11 Zavaleta 2000 $11/101$ $22/97$ - 9.9% 0.48 Subtotal (95% CI) 1742 1462 \bullet 87.9% 0.36 [0.75% Total events: 482 (Iron), 784 (Control)Heterogeneity: Tau ² = 0.43 ; Chi ² = 124.02 , df = 8 (P<0.00001); l ² = 94% Test for overall effect: $Z = 4.10$ (P = 0.000042)	.70 [0.51, 0.95]		12.2 %	•	38/101	92/350	Charoenlarp 1988	
Gunaratna 2015 $85/184$ $97/184$ 12.7 % 0.88 Jayatissa 1999 $19/222$ $188/217$ - 11.5 % 0.10 Shah 2002 $14/70$ $47/72$ - 11.1 % 0.31 Viteri 1999 $0/37$ $5/44$ - 9.9 % 0.11 Zavaleta 2000 $11/101$ $22/97$ - 9.9 % 0.48 Subtotal (95% CI) 1742 1462 - 87.9 % 0.36 [0. Total events: 482 (Iron), 784 (Control) - - 87.9 % 0.36 [0. Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); l ² = 94% - 87.9 % 0.36 [0.	.09 [0.02, 0.38]		5.4 %	_ 	11/20	2/39	Florencio 1981	
Jayatissa 199919/222188/217+11.5 %0.10Shah 200214/7047/72+11.1 %0.31Viteri 19990/375/441.9 %0.11Zavaleta 200011/10122/97+9.9 %0.48Subtotal (95% CI)17421462 \bullet 87.9 %0.36 [0.Total events:482 (Iron), 784 (Control)Heterogeneity:Tau² = 0.43; Chi² = 124.02, df = 8 (P<0.00001); I² = 94%	.25 [0.13, 0.47]		10.1 %		29/36	8/40	Gordeuk 1990	
Shah 2002 $14/70$ $47/72$ \bullet 11.1% 0.31 Viteri 1999 $0/37$ $5/44$ 1.9% 0.11 Zavaleta 2000 $11/101$ $22/97$ \bullet 9.9% 0.48 Subtotal (95% CI) 1742 1462 \bullet 87.9% 0.36 [0.11 Total events: 482 (Iron), 784 (Control) Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); l ² = 94% Test for overall effect: Z = 4.10 (P = 0.000042)	.88 [0.71, 1.08]		12.7 %	-	97/184	85/184	Gunaratna 2015	
Viteri 1999 0/37 5/44 1.9 % 0.11 Zavaleta 2000 11/101 22/97 ► 9.9 % 0.48 Subtotal (95% CI) 1742 1462 ● 87.9 % 0.36 [0. Total events: 482 (Iron), 784 (Control) Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); I ² =94% Total events: 48.0 (Iron overall effect: Z = 4.10 (P = 0.000042)	.10 [0.06, 0.15]		11.5 %	+	188/217	19/222	Jayatissa 1999	
Zavaleta 2000 I I/101 22/97 ● 9.9 % 0.48 Subtotal (95% CI) 1742 1462 ● 87.9 % 0.36 [0. Total events: 482 (Iron), 784 (Control) 87.9 % 0.36 [0. Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); I ² = 94% 7 1462 1462	.31 [0.19, 0.50]		11.1 %	+	47/72	14/70	Shah 2002	
Subtotal (95% CI) 1742 1462 € 87.9 % 0.36 [0. Total events: 482 (Iron), 784 (Control) Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); I ² =94% Total events: 48.0 (P = 0.000042)	. [0.0 , .88]		1.9 %		5/44	0/37	Viteri 1999	
Total events: 482 (Iron), 784 (Control) Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); I ² =94% Test for overall effect: $Z = 4.10$ (P = 0.000042)	.48 [0.25, 0.94]		9.9 %		22/97	/ 0	Zavaleta 2000	
Heterogeneity: Tau ² = 0.43; Chi ² = 124.02, df = 8 (P<0.00001); l ² =94% Test for overall effect: $Z = 4.10$ (P = 0.000042)	0.22, 0.59]	0.36	87.9 %	•	1462	1742	Subtotal (95% CI)	
Test for overall effect: $Z = 4.10$ (P = 0.000042)						,	. , .	
					(P<0.00001); I ² =94%		0 ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.05 0.001	0.20	100.0.0/	•	1/07	,		
Tetel a vento FOL (here) OLA (Constant)	0.25, 0.60]	0.39	100.0 %	•	149/		. ,	
Total events: 501 (Iron), 814 (Control) Heterogeneity: Tau ² = 0.37; Chi ² = 124.24, df = 9 (P<0.00001); I ² =93%					(P<0.00001): 12 -93%	,		
Test for overall effect: $Z = 4.30$ (P = 0.000017)					(1 <0.00001), 1 =7578			
Test for subgroup differences: $Chi^2 = 3.93$, df = 1 (P = 0.05), l ² =75%					$(P = 0.05), ^2 = 7.5\%$	` '		

Analysis I.6. Comparison I Anaemia, Outcome 6 Anaemia at end of therapy (iron status).

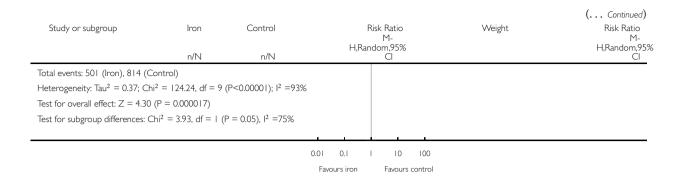
Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: I Anaemia

Outcome: 6 Anaemia at end of therapy (iron status)

			M	Risk Ratio Weight M-	
	n/N	n/N	H,Random,95% Cl		M- H,Random, C
l Iron deficient					
Wang 2012	19/34	30/35	-=-	12.1 %	0.65 [0.47, 0.90]
Subtotal (95% CI)	34	35	•	12.1 %	0.65 [0.47, 0.90]
Total events: 19 (Iron), 30 (Contro	ol)				
Heterogeneity: not applicable					
Test for overall effect: $Z = 2.56$ (P	P = 0.011)				
2 Not iron deficient					
Subtotal (95% CI)	0	0			Not estimable
Total events: 0 (Iron), 0 (Control)					
Heterogeneity: not applicable					
Test for overall effect: not applicat	ole				
3 Mixed/unstated	251/(00	247//01	_	12.0.00	
Agarwal 2003	251/699	347/691		12.9 %	0.72 [0.63, 0.81]
Charoenlarp 1988	92/350	38/101	+	12.2 %	0.70 [0.51, 0.95
Florencio 1981	2/39	11/20		5.4 %	0.09 [0.02, 0.38
Gordeuk 1990	8/40	29/36		10.1 %	0.25 [0.13, 0.47
Gunaratna 2015	85/184	97/184	-	12.7 %	0.88 [0.71, 1.08
Jayatissa 1999	19/222	188/217	+	11.5 %	0.10 [0.06, 0.15]
Shah 2002	14/70	47/72	-	11.1 %	0.31 [0.19, 0.50]
Viteri 1999	0/37	5/44		1.9 %	0.11 [0.01, 1.88]
Zavaleta 2000	11/101	22/97		9.9 %	0.48 [0.25, 0.94
Subtotal (95% CI)	1742	1462	•	87.9 %	0.36 [0.22, 0.59]
Total events: 482 (Iron), 784 (Cor	ntrol)				
Heterogeneity: Tau ² = 0.43; Chi ²	= 124.02, df = 8	(P<0.00001); I ² =94%			
Test for overall effect: $Z = 4.10$ (P	P = 0.000042)				
Total (95% CI)	1776	1497	•	100.0 %	0.39 [0.25, 0.60]
Total events: 501 (Iron), 814 (Cor	,				
Heterogeneity: Tau ² = 0.37; Chi ²		(P<0.00001); I ² =93%			
Test for overall effect: $Z = 4.30$ (P	,				
Test for subgroup differences: Chi	² = 3.93, df = 1	$P = 0.05$), $I^2 = 75\%$			

Analysis 1.7. Comparison I Anaemia, Outcome 7 Anaemia at end of therapy (iron-deficiency anaemia).


Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: I Anaemia

Outcome: 7 Anaemia at end of therapy (iron-deficiency anaemia)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,S Cl
I Iron-deficiency anaemia					
Wang 2012	19/34	30/35	-	12.1 %	0.65 [0.47, 0.90]
Subtotal (95% CI)	34	35	•	12.1 %	0.65 [0.47, 0.90]
Total events: 19 (Iron), 30 (Cor	ntrol)				
Heterogeneity: not applicable					
Test for overall effect: Z = 2.56	5 (P = 0.011)				
2 Iron deficient, not anaemic					
Subtotal (95% CI)	0	0			Not estimable
Total events: 0 (Iron), 0 (Contr	ol)				
Heterogeneity: not applicable					
Test for overall effect: not appli					
3 Not iron deficient, not anaen		0			Not estimable
Subtotal (95% CI)	0	0			INOT estimable
Total events: 0 (Iron), 0 (Contr Heterogeneity: not applicable	01)				
Test for overall effect: not appli	icabla				
4 Mixed/unstated	Cable				
Agarwal 2003	251/699	347/691	-	12.9 %	0.72 [0.63, 0.81]
Charoenlarp 1988	92/350	38/101	-	12.2 %	0.70 [0.51, 0.95]
Florencio 1981	2/39	11/20	_ -	5.4 %	0.09 [0.02, 0.38]
Gordeuk 1990	8/40	29/36		10.1 %	0.25 [0.13, 0.47]
Gunaratna 2015	85/184	97/184	-	12.7 %	0.88 [0.71, 1.08]
Jayatissa 1999	19/222	188/217	-	11.5 %	0.10 [0.06, 0.15]
Shah 2002	14/70	47/72	+	11.1 %	0.31 [0.19, 0.50]
Viteri 1999	0/37	5/44	·	1.9 %	0.11 [0.01, 1.88]
Zavaleta 2000	11/101	22/97		9.9 %	0.48 [0.25, 0.94]
Subtotal (95% CI)	1742	1462	•	87.9 %	0.36 [0.22, 0.59]
Total events: 482 (Iron), 784 (C Heterogeneity: Tau ² = 0.43; Ch	,	(P<0.00001); I ² =94%			
Test for overall effect: $Z = 4.10$	· /				_
Total (95% CI)	1776	1497	•	100.0 %	0.39 [0.25, 0.60]

(Continued . . .)

Analysis I.8. Comparison I Anaemia, Outcome 8 Anaemia at end of therapy (dose).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: I Anaemia

Outcome: 8 Anaemia at end of therapy (dose)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
< 30 mg					
Viteri 1999	0/37	5/44		1.9 %	0.11 [0.01, 1.88]
Wang 2012	19/34	30/35	+	12.1 %	0.65 [0.47, 0.90]
Zavaleta 2000	11/101	22/97		9.9 %	0.48 [0.25, 0.94]
Subtotal (95% CI)	172	176	•	24.0 %	0.57 [0.37, 0.88]
Total events: 30 (Iron), 57 (Cor	ntrol)				
Heterogeneity: $Tau^2 = 0.05$; Ch	,	$r = 0.26$ $r^{2} = 25\%$			
0 ,		- 0.20), 1 -2378			
Test for overall effect: $Z = 2.52$	(P = 0.012)				
2 31 mg to 60 mg					
Gunaratna 2015	85/184	97/184	•	12.7 %	0.88 [0.71, 1.08]
Jayatissa 1999	19/222	188/217	+	11.5 %	0.10 [0.06, 0.15]
Subtotal (95% CI)	406	401		24.2 %	0.30 [0.03, 3.45]
Total events: 104 (Iron), 285 (C	Control)				
Heterogeneity: Tau ² = 3.11; Ch	$hi^2 = 104.45$, df = 1	$(P < 0.0000); ^2 = 9$	9%		
Test for overall effect: Z = 0.97					
	(1 0.55)				
			0.01 0.1 1 10 100		
			Favours iron Favours control		

(Continued . . .)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	(Continued) Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,955 Cl
3 61 mg to 100 mg					
Agarwal 2003	251/699	347/691	•	12.9 %	0.72 [0.63, 0.81]
Gordeuk 1990	8/40	29/36		10.1 %	0.25 [0.13, 0.47]
Subtotal (95% CI)	739	727	•	23.0 %	0.44 [0.16, 1.25]
Total events: 259 (Iron), 376 (C	Control)				
Heterogeneity: $Tau^2 = 0.5I$; Ch	$hi^2 = 10.17, df = 1$ ($P = 0.001$; $I^2 = 90\%$			
Test for overall effect: $Z = 1.54$	(P = 0.12)				
4 > 100 mg					
Charoenlarp 1988	92/350	38/101	•	12.2 %	0.70 [0.51, 0.95]
Florencio 1981	2/39	11/20	_ 	5.4 %	0.09 [0.02, 0.38]
Shah 2002	14/70	47/72	-	11.1 %	0.31 [0.19, 0.50]
Subtotal (95% CI)	459	193	•	28.8 %	0.34 [0.14, 0.82]
Total events: 108 (Iron), 96 (Co	ontrol)				
Heterogeneity: $Tau^2 = 0.48$; Ch	$hi^2 = 14.25, df = 2$ ($P = 0.00080$; $I^2 = 86\%$			
Test for overall effect: $Z = 2.40$	P = 0.017				
Total (95% CI)	1776	1497	•	100.0 %	0.39 [0.25, 0.60]
Total events: 501 (Iron), 814 (C	Control)				
Heterogeneity: $Tau^2 = 0.37$; Ch	$hi^2 = 124.24, df = 9$	(P<0.00001); I ² =93%			
Test for overall effect: $Z = 4.30$	P = 0.000017				
Test for subgroup differences: ($Chi^2 = 1.34, df = 3$	$(P = 0.72), ^2 = 0.0\%$			
		() · · · · · · · · · · · · · · · · · ·			
		0.0	01 0.1 1 10 100		

0.01 0.1 1 10 100 Favours iron Favours control

Analysis I.9. Comparison I Anaemia, Outcome 9 Anaemia at end of therapy (duration).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: I Anaemia

Outcome: 9 Anaemia at end of therapy (duration)

		Control		Risk Ratio Weight M-			
	n/N	n/N	H,Random,95% Cl		M· H,Random,' C		
I < 30 days (1 month) Subtotal (95% CI) Total events: 0 (Iron), 0 (Control) Heterogeneity: not applicable Test for overall effect: not applicabl 2 I to 3 months	O Ie	0			Not estimable		
Charoenlarp 1988	92/350	38/101	-	12.2 %	0.70 [0.51, 0.95]		
Florencio 1981	2/39	11/20	_ _	5.4 %	0.09 [0.02, 0.38]		
Gordeuk 1990	8/40	29/36	-	10.1 %	0.25 [0.13, 0.47]		
Jayatissa 1999	19/222	188/217	+	11.5 %	0.10 [0.06, 0.15]		
Viteri 1999	0/37	5/44		1.9 %	0.11 [0.01, 1.88]		
Subtotal (95% CI)	688	418	-	41.2 %	0.20 [0.06, 0.64]		
Heterogeneity: $Tau^2 = 1.44$; $Chi^2 =$ Test for overall effect: $Z = 2.71$ (P	= 66.57, df = 4 (P<0.00001); I ² =94%					
Total events: 121 (Iron), 271 (Cont Heterogeneity: Tau ² = 1.44; Chi ² = Test for overall effect: Z = 2.71 (P	= 66.57, df = 4 (P<0.00001); I ² =94%					
Heterogeneity: Tau ² = 1.44; Chi ² = Test for overall effect: Z = 2.71 (P 3 > 3 months Agarwal 2003	= 66.57, df = 4 (= 0.0067) 251/699	347/691		12.9 %	-		
Heterogeneity: $Tau^2 = 1.44$; $Chi^2 =$ Test for overall effect: $Z = 2.71$ (P 3 > 3 months	= 66.57, df = 4 (= 0.0067)			12.9 %	-		
Heterogeneity: Tau ² = 1.44; Chi ² = Test for overall effect: Z = 2.71 (P 3 > 3 months Agarwal 2003	= 66.57, df = 4 (= 0.0067) 251/699	347/691	•		0.88 [0.71, 1.08]		
Heterogeneity: Tau ² = 1.44; Chi ² = Test for overall effect: Z = 2.71 (P 3 > 3 months Agarwal 2003 Gunaratna 2015	251/699 85/184	347/691 97/184	•	12.7 %	0.88 [0.71, 1.08]		
Heterogeneity: Tau ² = 1.44; Chi ² = Test for overall effect: Z = 2.71 (P 3 > 3 months Agarwal 2003 Gunaratna 2015 Shah 2002	= 66.57, df = 4 (= 0.0067) 251/699 85/184 14/70	347/691 97/184 47/72	•	12.7 % 11.1 %	0.72 [0.63, 0.81] 0.88 [0.71, 1.08] 0.31 [0.19, 0.50] 0.65 [0.47, 0.90] 0.48 [0.25, 0.94]		
Heterogeneity: Tau ² = 1.44; Chi ² = Test for overall effect: Z = 2.71 (P 3 > 3 months Agarwal 2003 Gunaratna 2015 Shah 2002 Wang 2012 Zavaleta 2000 Subtotal (95% CI)	= 66.57, df = 4 (= 0.0067) 251/699 85/184 14/70 19/34 11/101 1088	347/691 97/184 47/72 30/35	• • • • •	12.7 % 11.1 % 12.1 %	0.88 [0.71, 1.08 0.31 [0.19, 0.50 0.65 [0.47, 0.90 0.48 [0.25, 0.94		
Heterogeneity: Tau ² = 1.44; Chi ² = Test for overall effect: Z = 2.71 (P 3 > 3 months Agarwal 2003 Gunaratna 2015 Shah 2002 Wang 2012 Zavaleta 2000	= 66.57, df = 4 (= 0.0067) 251/699 85/184 14/70 19/34 11/101 1088 trol) = 16.69, df = 4 (347/691 97/184 47/72 30/35 22/97 1079	• • • • • • • • • • • • • • • • • • • •	12.7 % 11.1 % 12.1 % 9.9 %	0.88 [0.71, 1.08 0.31 [0.19, 0.50 0.65 [0.47, 0.90 0.48 [0.25, 0.94		
Heterogeneity: Tau ² = 1.44; Chi ² = Test for overall effect: Z = 2.71 (P 3 > 3 months Agarwal 2003 Gunaratna 2015 Shah 2002 Wang 2012 Zavaleta 2000 Subtotal (95% CI) Total events: 380 (Iron), 543 (Cont Heterogeneity: Tau ² = 0.06; Chi ² =	= 66.57, df = 4 (= 0.0067) 251/699 85/184 14/70 19/34 11/101 1088 trol) = 16.69, df = 4 (347/691 97/184 47/72 30/35 22/97 1079	•	12.7 % 11.1 % 12.1 % 9.9 %	0.88 [0.71, 1.08 0.31 [0.19, 0.50 0.65 [0.47, 0.90		

Analysis 1.10. Comparison I Anaemia, Outcome 10 Anaemia at end of therapy (type of iron).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: I Anaemia

Outcome: 10 Anaemia at end of therapy (type of iron)

Study or subgroup	Iron	control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,S Cl
I Ferrous sulphate					
Florencio 1981	2/39	11/20		5.5 %	0.09 [0.02, 0.38]
Jayatissa 1999	19/222	188/217	-	11.8 %	0.10 [0.06, 0.15]
Shah 2002	14/70	47/72	-	11.3 %	0.31 [0.19, 0.50
Zavaleta 2000	/ 0	22/97		10.1 %	0.48 [0.25, 0.94]
Subtotal (95% CI)	432	406	•	38.7 %	0.20 [0.09, 0.48]
Total events: 46 (Iron), 268 (cc Heterogeneity: Tau ² = 0.61; C Test for overall effect: $Z = 3.65$ 2 Ferrous fumurate	chi ² = 21.78, df = 3	$(P = 0.00007); I^2 = 86)$	%		
Wang 2012	19/34	30/35	-	12.4 %	0.65 [0.47, 0.90]
Subtotal (95% CI) Total events: 19 (Iron), 30 (cor Heterogeneity: not applicable Test for overall effect: $Z = 2.56$,	35	•	12.4 %	0.65 [0.47, 0.90
3 Other Agarwal 2003	251/699	347/691	-	13.2 %	0.72 [0.63, 0.81
Charoenlarp 1988	92/350	38/101	-	12.5 %	0.70 [0.51, 0.95
Gordeuk 1990	8/40	29/36	-	10.3 %	0.25 [0.13, 0.47
Gunaratna 2015	85/184	97/184	-	12.9 %	0.88 [0.71, 1.08
Subtotal (95% CI)	1273	1012	•	48.9 %	0.66 [0.50, 0.87]
Total events: 436 (Iron), 511 (Heterogeneity: Tau ² = 0.05; C Test for overall effect: Z = 2.92	control) $chi^2 = 14.18$, df = 3				
Total (95% CI) Total events: 501 (Iron), 809 (c Heterogeneity: Tau ² = 0.36; C Test for overall effect: $Z = 4.15$ Test for subgroup differences: 0	chi ² = 122.26, df = 8 5 (P = 0.000033)	. ,	*	100.0 %	0.40 [0.26, 0.62]
Test for subgroup differences: (````	(P = 0.03), I ² =71%	0.01 0.1 1 10 10 Favours iron Favours contr		

Analysis 2.1. Comparison 2 Haemoglobin, Outcome I Haemoglobin (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 2 Haemoglobin

Outcome: I Haemoglobin (total)

Mear Difference IV,Random,95% C	Weight	Mean Difference IV,Random,95% Cl	Mean(SD)	Control N	Mean(SD)	lron N	Study or subgroup
7.00 [5.79, 8.21	2.9 %	+	116 (12)	691	23 ()	699	Agarwal 2003
6.80 [-0.29, 3.89	1.4 %		184.9 (22.3)	65	191.7 (18.8)	65	Berger 1997
3.00 [-10.04, 16.04	0.6 %		126 (16.97)	12	129 (16.84)	4	Binkoski 2004
-1.00 [-5.74, 3.74	2.0 %	<u> </u>	136.8 (8.6)	24	135.8 (8.3)	25	Booth 2014
8.00 [4.55, 11.45	2.3 %		127 (7)	36	135 (8)	37	Bruner 1996
5.00 [-3.76, 13.76	1.1 %		134 (12.65)	10	139 (6.32)	10	Brutsaert 2003
5.29 [2.96, 7.62	2.6 %		122.89 (14.06)	173	28. 8 (.8)	517	Charoenlarp 1988
0.75 [-6.93, 8.43	1.3 %	<u> </u>	130 (4.7)	5	130.75 (7.4)	5	Cooter 1978
-1.00 [-5.96, 3.96	1.9 %		134 (8)	16	133 (6)	15	DellaValle 2012
12.12 [7.45, 16.79	2.0 %		114.45 (20.17)	96	126.57 (12.7)	113	Edgerton 1979
3.50 [.67, 5.33	2.8 %		129 (3.94)	47	142.5 (5.04)	47	Eftekhari 2006
5.60 [5.04, 6.16	2.9 %	+	-1.6 (1.1)	49	4 (1.5)	40	Elwood 1966
8.80 [6.60, 11.00	2.7 %		120 (5.6)	37	128.8 (5.8)	81	Florencio 1981
.00 [2.82, 9.18	1.2 %		128 (10.8)	17	139 (12.15)	14	Fogelholm 1992
7.54 [0.89, 14.19	1.5 %		34 (4.47)	35	141.54 (14.32)	37	Fogelholm 1994
-1.00 [-7.83, 5.83	1.5 %		126 (13.07)	19	125 (10.34)	34	Gordeuk 1987
8.00 [4.12, 11.88	2.2 %		123 (9)	35	131 (8)	40	Gordeuk 1990
4.40 [-2.66, .46	1.4 %	- 	30.8 (3.07)	19	135.2 (9.38)	22	Hinton 2000
5.00 [-3.34, 3.34	1.2 %		131 (9)	10	136 (10)	10	Hinton 2007
4.83 [-4.70, 14.36	1.0 %		133 (13.5)	12	24	137.8333333 (14.25)	Hoppe 2013
1.00 [-0.88, 2.88	2.7 %	+	3 ()	217	132 (9)	222	Jayatissa 1999
1.00 [-4.29, 6.29	1.8 %	_ 	138 (6)	6	139 (3)	7	Jensen 1991
17.88 [15.21, 20.55	2.6 %		108.22 (10.38)	89	126.1 (7.63)	91	Kanani 2000
-1.00 [-9.23, 7.23	1.2 %		123 (12)	14	122 (9)	П	Kang 2004
5.40 [3.49, 7.31	2.7 %		2 (8.22)	148	7.4 (6.76)	92	Kianfar 2000

-20 -10 0 10 20

Favours control Favours iron

(Continued ...)

			C		Mean		(Continu Mea
Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Difference IV,Random,95% CI	Weight	Difference IV,Random,95% (
Klingshim 1992	9	143.6 (12.8)	9	42.3 (.)		0.8 %	1.30 [-9.77, 12.37
LaManca 1993	10	141 (6.32)	10	129 (12.64)		1.1 %	12.00 [3.24, 20.76
Lanerolle 2000	281	135.42 (10.42)	284	131.95 (10.95)		2.8 %	3.47 [1.71, 5.23
Larocque 2006	12	137.5 (7.41)	9	136.56 (7.53)		1.5 %	0.94 [-5.52, 7.40
Leonard 2014	16	135 (3.53)	8	131.6 (3.9)		2.4 %	3.40 [0.19, 6.61
Li 1994	40	127 (12)	40	3 (4)		1.7 %	14.00 [8.29, 19.71
Maghsudlu 2008	185	132.9 (8)	182	131.9 (8)		2.8 %	1.00 [-0.64, 2.64
Marks 2014	129	134.6 (8.7)	128	130 (9.9)		2.7 %	4.60 [2.32, 6.88
McClung 2009	85	130 (9)	86	28 ()	+	2.5 %	2.00 [-1.01, 5.01
Mujica-Coopman 2015	28	152 (9)	27	149 (7)		2.1 %	3.00 [-1.25, 7.25
Murray-Kolb 2007	56	129.92 (10.04)	57	132.29 (12.42)		2.1 %	-2.37 [-6.53, 1.79
Newhouse 1989	19	135 (5)	18	131 (5)	_+_	2.4 %	4.00 [0.78, 7.22
Radjen 2011	19	124.78 (7.94)	18	110.61 (5.49)		2.1 %	14.17 [9.79, 18.5.
Rowland 1988	7	134 (3)	7	127 (4)		2.3 %	7.00 [3.30, 10.70
Rybo 1985	45	137 (9)	44	133 (10)		2.2 %	4.00 [0.04, 7.9
R svik 2010	82	129 (6)	79	128 (7)		2.7 %	1.00 [-1.02, 3.03
Taniguchi 1991	27	2 ()	27	108 (12.5)		1.6 %	3.00 [6.72, 9.2
Viteri 1999	37	137.5 (9.2)	44	35.8 (.8)	_ 	2.0 %	1.70 [-2.88, 6.2)
Waldvogel 2012	74	135 (6.7)	71	130 (5.3)		2.7 %	5.00 [3.04, 6.9
Walsh 1989	10	136 (6)	10	129 (6)		1.8 %	7.00 [1.74, 12.2
Wang 2012	34	6.8 (6)	35	104.5 (12.9)		1.4 %	12.30 [5.43, 19.1]
Yadrick 1989	9	151 (6)	9	148 (15)		0.9 %	3.00 [-7.55, 3.55
Yoshida 1990	6	133 (6)	6	137 (7)		1.3 %	-4.00 [-11.38, 3.38
Zaman 2013	22	132.6 (7.4)	22	127.5 (8)		2.0 %	5.10 [0.55, 9.6
Zavaleta 2000	101	129.47 (9.4)	97	125.19 (11)		2.5 %	4.28 [1.42, 7.14
Zhu 1998	20	136.3 (8)	17	132.2 (7.6)		1.9 %	4.10 [-0.93, 9.1]
otal (95% CI)	3635		3226		•	100.0 %	5.30 [4.14, 6.45
eterogeneity: Tau ² = 11.74; Chi ² st for overall effect: Z = 8.98 (P st for subgroup differences: Not	< 0.00001)	50 (P<0.00001);	I ² =86%				

-20 -10 0 10 20 Favours control Favours iron

Analysis 2.2. Comparison 2 Haemoglobin, Outcome 2 Haemoglobin (sensitivity analysis).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 2 Haemoglobin

Outcome: 2 Haemoglobin (sensitivity analysis)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Bruner 1996	37	135 (8)	36	127 (7)		18.0 %	8.00 [4.55, 11.45]
DellaValle 2012	15	133 (6)	16	134 (8)		11.8 %	-1.00 [-5.96, 3.96]
Fogelholm 1992	4	139 (12.15)	17	128 (10.8)		5.5 %	.00 [2.82, 9.18]
Marks 2014	129	134.6 (8.7)	128	130 (9.9)	+	24.8 %	4.60 [2.32, 6.88]
Waldvogel 2012	74	135 (6.7)	71	130 (5.3)	+	26.8 %	5.00 [3.04, 6.96]
Zaman 2013	22	132.6 (7.4)	22	127.5 (8)		13.2 %	5.10 [0.55, 9.65]
Total (95% CI)	291		290		•	100.0 %	5.08 [2.99, 7.17]
Heterogeneity: Tau ² =	3.24; Chi ² =	= 10.72, df = 5 (P =	0.06); l ² =53	%			
Test for overall effect: Z	<u>z</u> = 4.76 (P	< 0.00001)					
Test for subgroup differ	rences: Not	applicable					
						L	
					-20 -10 0 10 2	0	

Favours control Favours iron

Analysis 2.3. Comparison 2 Haemoglobin, Outcome 3 Haemoglobin (cointervention).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 2 Haemoglobin

Outcome: 3 Haemoglobin (cointervention)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	N	Mean(SD)	N	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Iron alone Agarwal 2003	699	123 (11)	691	116 (12)		2.8 %	7.00 [5.79, 8.21]
Berger 1997	65	191.7 (18.8)	65	184.9 (22.3)	+	1.4 %	6.80 [-0.29, 3.89]
Binkoski 2004	14	129 (16.84)	12	126 (16.97)		0.6 %	3.00 [-10.04, 16.04]
Booth 2014	25	135.8 (8.3)	24	136.8 (8.6)	+	1.9 %	-1.00 [-5.74, 3.74]
Bruner 1996	37	135 (8)	36	127 (7)	+	2.3 %	8.00 [4.55, 11.45]
Brutsaert 2003	10	139 (6.32)	10	134 (12.65)	+-	1.1 %	5.00 [-3.76, 3.76]
Charoenlarp 1988	517	128.18 (11.81)	173	122.89 (14.06)	÷	2.6 %	5.29 [2.96, 7.62]
DellaValle 2012	15	133 (6)	16	134 (8)	+	1.9 %	-1.00 [-5.96, 3.96]
Edgerton 1979	113	126.57 (12.7)	96	114.45 (20.17)	+	2.0 %	2. 2 [7.45, 6.79]
Eftekhari 2006	23	142 (6)	22	129 (3)	+	2.5 %	3.00 [0.25, 5.75]
Elwood 1966	40	4 (1.5)	49	-1.6 (1.1)		2.9 %	5.60 [5.04, 6.16]
Fogelholm 1992	14	139 (12.15)	17	128 (10.8)		1.2 %	.00 [2.82, 9.18]
Fogelholm 1994	37	141.54 (14.32)	35	34 (4.47)	+	1.5 %	7.54 [0.89, 14.19]
Gordeuk 1987	34	125 (10.34)	19	126 (13.07)	+	1.4 %	-1.00 [-7.83, 5.83]
Gordeuk 1990	40	131 (8)	35	123 (9)	+	2.2 %	8.00 [4.12, 11.88]
Hinton 2000	22	135.2 (9.38)	19	130.8 (13.07)	+	1.4 %	4.40 [-2.66, .46]
Hinton 2007	10	136 (10)	10	131 (9)		1.1 %	5.00 [-3.34, 3.34]
Hoppe 2013	137.8333333 (14.25)	24	12	33 (3.5)	+-	1.0 %	4.83 [-4.70, 14.36]
Jensen 1991	7	139 (3)	6	138 (6)	+	1.8 %	1.00 [-4.29, 6.29]
Kanani 2000	91	126.1 (7.63)	89	108.22 (10.38)	+	2.5 %	17.88 [15.21, 20.55]
Kang 2004	11	122 (9)	14	123 (12)	+	1.2 %	-1.00 [-9.23, 7.23]
Kianfar 2000	92	7.4 (6.76)	148	2 (8.22)	+	2.7 %	5.40 [3.49, 7.31]
Klingshim 1992	9	143.6 (12.8)	9	42.3 (.)	+	0.8 %	1.30 [-9.77, 12.37]
LaManca 1993	10	141 (6.32)	10	129 (12.64)		1.1 %	12.00 [3.24, 20.76]

-100 -50 0 50 100

Favours control Favours iron

(Continued ...)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
, , ,	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI	0	IV,Random,95% CI
Lanerolle 2000	281	135.42 (10.42)	284	131.95 (10.95)	+	2.7 %	3.47 [1.71, 5.23]
Larocque 2006	12	37.5 (7.41)	9	136.56 (7.53)	+	1.5 %	0.94 [-5.52, 7.40]
Leonard 2014	16	135 (3.53)	8	131.6 (3.9)	+	2.4 %	3.40 [0.19, 6.61]
Li 1994	40	127 (12)	40	113 (14)	+	1.7 %	4.00 [8.29, 9.7]
Maghsudlu 2008	185	132.9 (8)	182	131.9 (8)	ł	2.7 %	1.00 [-0.64, 2.64]
Marks 2014	129	134.6 (8.7)	128	130 (9.9)	+	2.6 %	4.60 [2.32, 6.88]
McClung 2009	85	130 (9)	86	28 ()	+	2.4 %	2.00 [-1.01, 5.01]
Mujica-Coopman 2015	28	152 (9)	27	149 (7)	+	2.1 %	3.00 [-1.25, 7.25]
Murray-Kolb 2007	56	129.92 (10.04)	57	32.29 (2.42)	+	2.1 %	-2.37 [-6.53, 1.79]
Newhouse 1989	19	135 (5)	18	131 (5)	+	2.4 %	4.00 [0.78, 7.22]
Radjen 2011	19	124.78 (7.94)	18	110.61 (5.49)	+	2.0 %	14.17 [9.79, 18.55]
Rowland 1988	7	134 (3)	7	127 (4)	+	2.2 %	7.00 [3.30, 10.70]
Rybo 1985	45	137 (9)	44	133 (10)	+	2.1 %	4.00 [0.04, 7.96]
R svik 2010	82	129 (6)	79	128 (7)	+	2.7 %	1.00 [-1.02, 3.02]
Viteri 1999	37	137.5 (9.2)	44	35.8 (.8)	+	2.0 %	1.70 [-2.88, 6.28]
Waldvogel 2012	74	135 (6.7)	71	130 (5.3)	+	2.7 %	5.00 [3.04, 6.96]
Walsh 1989	10	136 (6)	10	129 (6)	+	1.8 %	7.00 [1.74, 12.26]
Wang 2012	34	6.8 (6)	35	104.5 (12.9)		1.4 %	12.30 [5.43, 19.17]
Zavaleta 2000	101	129.47 (9.4)	97	125.19 (11)	+	2.5 %	4.28 [1.42, 7.14]
Zhu 1998	20	136.3 (8)	17	132.2 (7.6)	+	1.9 %	4.10 [-0.93, 9.13]
Subtotal (95% CI)	3239		2878		•	85.2 %	5.39 [4.22, 6.55]
Heterogeneity: $Tau^2 = 9.89$; $Chi^2 = 2$ Test for overall effect: $Z = 9.08$ (P < 2 Iron + vitamin C versus vitamin C		43 (P<0.00001);	² =84%				
Florencio 1981	81	128.8 (5.8)	37	120 (5.6)	•	2.6 %	8.80 [6.60, 11.00]
Jayatissa 1999	222	132 (9)	217	3 ()	+	2.7 %	1.00 [-0.88, 2.88]
Taniguchi 1991	27	2 ()	27	108 (12.5)	+	1.5 %	3.00 [6.72, 9.28]
Zaman 2013	22	132.6 (7.4)	22	127.5 (8)	+	2.0 %	5.10 [0.55, 9.65]
Subtotal (95% CI)	352		303		•	8.8 %	6.59 [1.36, 11.82]
Heterogeneity: Tau ² = 24.46; Chi ² = Test for overall effect: $Z = 2.47$ (P = 3 Iron + cointervention versus cointer	34.88, df = 3 0.013)	3 (P<0.00001); I ²					
Cooter 1978	5	30.75 (7.4)	5	130 (4.7)	+	1.3 %	0.75 [-6.93, 8.43]

-50 0 50 100 Favours control Favours iron

(Continued ...)

(... Continued)

Daily iron supplementation for improving anaemia, iron status and health in menstruating women (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

136

							(Continued)
Study or subgroup	Iron	(Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% Cl		IV,Random,95% CI
Eftekhari 2006	24	143 (4)	25	129 (5)	+	2.5 %	4.00 [.47, 6.53]
Yadrick 1989	9	151 (6)	9	148 (15)	+	0.8 %	3.00 [-7.55, 3.55]
Yoshida 1990	6	133 (6)	6	137 (7)	-+	1.3 %	-4.00 [-11.38, 3.38]
Subtotal (95% CI)	44		45		•	5.9 %	3.80 [-6.41, 14.01]
Heterogeneity: Tau ² = 94.31; Chi	² = 30.27, df = 3 ((P<0.00001); I ² =	=90%				
Test for overall effect: $Z = 0.73$ (F	P = 0.47)						
Total (95% CI)	3635		3226		•	100.0 %	5.49 [4.35, 6.63]
Heterogeneity: $Tau^2 = 11.65$; Chi	² = 355.09, df = 5	I (P<0.00001); I	² =86%				
Test for overall effect: $Z = 9.44$ (F	P < 0.0000⊺)						
Test for subgroup differences: Chi	$i^2 = 0.29$, df = 2 (F	$P = 0.86$), $ ^2 = 0.0$)%				

-100 -50 0 50 100

Favours control Favours iron

Analysis 2.4. Comparison 2 Haemoglobin, Outcome 4 Haemoglobin (age).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 2 Haemoglobin

Outcome: 4 Haemoglobin (age)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Mean Difference IV,Random,95% CI	Weight	Mean Difference IV,Random,95% CI
12 to 18 years of age	IN	r rear(JD)		1 (Carl(5D)			14,14,14,16011,7576 C
Agarwal 2003	699	123 (11)	691	116 (12)	•	2.9 %	7.00 [5.79, 8.21]
Bruner 1996	37	135 (8)	36	127 (7)	+	2.3 %	8.00 [4.55, 11.45]
Eftekhari 2006	47	142.5 (5.04)	47	129 (3.94)	•	2.8 %	3.50 [.67, 5.33]
Jayatissa 1999	222	132 (9)	217	3 ()	÷	2.7 %	1.00 [-0.88, 2.88]
Kanani 2000	91	126.1 (7.63)	89	108.22 (10.38)	+	2.6 %	7.88 [5.2 , 20.55]
Kianfar 2000	92	7.4 (6.76)	148	2 (8.22)	*	2.7 %	5.40 [3.49, 7.31]
Lanerolle 2000	281	35.42 (0.42)	284	131.95 (10.95)	٠	2.8 %	3.47 [1.71, 5.23]
Larocque 2006	12	137.5 (7.41)	9	136.56 (7.53)	+	1.5 %	0.94 [-5.52, 7.40]
Walsh 1989	10	136 (6)	10	129 (6)	+	1.8 %	7.00 [1.74, 12.26]
Zavaleta 2000	101	129.47 (9.4)	97	125.19 (11)	+	2.5 %	4.28 [1.42, 7.14]
Subtotal (95% CI)	1592		1628		•	24.7 %	6.99 [3.85, 10.13]
2 50 to 55 years of age Subtotal (95% CI) Heterogeneity: not applicable	0		0				Not estimable
Heterogeneity: not applicable Test for overall effect: not applicable							
3 Mixed/unstated							
Berger 1997	65	191.7 (18.8)	65	184.9 (22.3)	+	1.4 %	6.80 [-0.29, 3.89]
				. ,			
Binkoski 2004	14	129 (16.84)	12	126 (16.97)		0.6 %	3.00 [-10.04, 16.04]
Binkoski 2004 Booth 2014	14 25	129 (16.84) 135.8 (8.3)	12 24	126 (16.97)	+		L .
		~ /		· · /		0.6 %	-1.00 [-5.74, 3.74]
Booth 2014	25 10	135.8 (8.3)	24	36.8 (8.6) 34 (12.65)		0.6 % 2.0 %	-1.00 [-5.74, 3.74] 5.00 [-3.76, 13.76]
Booth 2014 Brutsaert 2003	25 10	35.8 (8.3) 39 (6.32)	24 10	36.8 (8.6) 34 (12.65)		0.6 % 2.0 % 1.1 %	-1.00 [-5.74, 3.74] 5.00 [-3.76, 13.76] 5.29 [2.96, 7.62]
Booth 2014 Brutsaert 2003 Charoenlarp 1988	25 10 517	35.8 (8.3) 39 (6.32) 28.18 (1.81)	24 10 173	136.8 (8.6) 134 (12.65) 122.89 (14.06)		0.6 % 2.0 % 1.1 % 2.6 %	-1.00 [-5.74, 3.74] 5.00 [-3.76, 13.76] 5.29 [2.96, 7.62] 0.75 [-6.93, 8.43]
Booth 2014 Brutsaert 2003 Charoenlarp 1988 Cooter 1978	25 10 517 5	135.8 (8.3) 139 (6.32) 128.18 (11.81) 130.75 (7.4)	24 10 173 5	136.8 (8.6) 134 (12.65) 122.89 (14.06) 130 (4.7) 134 (8)		0.6 % 2.0 % 1.1 % 2.6 % 1.3 %	3.00 [-10.04, 16.04] -1.00 [-5.74, 3.74] 5.00 [-3.76, 13.76] 5.29 [2.96, 7.62] 0.75 [-6.93, 8.43] -1.00 [-5.96, 3.96] 12.12 [7.45, 16.79]

-100 -50 0 50 100

Favours control Favours iron

(Continued ...)

(... Continued)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Mean Difference IV,Random,95% CI	Weight	Mear Difference IV,Random,95% C
Florencio 1981	81	128.8 (5.8)	37	120 (5.6)	+	2.7 %	8.80 [6.60, 11.00
Fogelholm 1992	14	139 (12.15)	17	128 (10.8)	-	1.2 %	.00 [2.82, 9.18
Fogelholm 1994	37	141.54 (14.32)	35	34 (4.47)	+	1.5 %	7.54 [0.89, 14.19
Gordeuk 1987	34	125 (10.34)	19	26 (3.07)	+	1.5 %	-1.00 [-7.83, 5.83
Gordeuk 1990	40	3 (8)	35	123 (9)	+	2.2 %	8.00 [4.12, 11.88
Hinton 2000	22	135.2 (9.38)	19	30.8 (3.07)	+	1.4 %	4.40 [-2.66, .46
Hinton 2007	10	136 (10)	10	3 (9)	+-	1.2 %	5.00 [-3.34, 3.34
Hoppe 2013	137.8333333 (14.25)	24	12	133 (13.5)	+-	1.0 %	4.83 [-4.70, 14.36
lensen 1991	7	139 (3)	6	138 (6)	+	1.8 %	1.00 [-4.29, 6.29
Kang 2004	11	122 (9)	14	123 (12)	+	1.2 %	-1.00 [-9.23, 7.23
Klingshim 1992	9	43.6 (2.8)	9	42.3 (.)	+	0.8 %	1.30 [-9.77, 12.37
LaManca 1993	10	141 (6.32)	10	29 (2.64)		1.1 %	2.00 [3.24, 20.76
Leonard 2014	16	135 (3.53)	8	131.6 (3.9)	+	2.4 %	3.40 [0.19, 6.61
Li 1994	40	127 (12)	40	3 (4)	+	1.7 %	4.00 [8.29, 9.7
Maghsudlu 2008	185	132.9 (8)	182	131.9 (8)	+	2.8 %	1.00 [-0.64, 2.64
Marks 2014	129	134.6 (8.7)	128	130 (9.9)	+	2.7 %	4.60 [2.32, 6.88
McClung 2009	85	130 (9)	86	28 ()	÷	2.5 %	2.00 [-1.01, 5.01
Mujica-Coopman 2015	28	152 (9)	27	149 (7)	+	2.1 %	3.00 [-1.25, 7.25
Murray-Kolb 2007	56	129.92 (10.04)	57	32.29 (2.42)	-	2.1 %	-2.37 [-6.53, 1.79
Newhouse 1989	19	135 (5)	18	3 (5)	•	2.4 %	4.00 [0.78, 7.22
Radjen 2011	19	124.78 (7.94)	18	110.61 (5.49)	+	2.1 %	4. 7 [9.79, 8.55
Rowland 1988	7	134 (3)	7	127 (4)	+	2.3 %	7.00 [3.30, 10.70
Rybo 1985	45	137 (9)	44	133 (10)	+	2.2 %	4.00 [0.04, 7.96
R svik 2010	82	129 (6)	79	128 (7)	+	2.7 %	1.00 [-1.02, 3.02
Taniguchi 1991	27	2 ()	27	108 (12.5)	+	1.6 %	3.00 [6.72, 9.28
Viteri 1999	37	137.5 (9.2)	44	35.8 (.8)	+	2.0 %	1.70 [-2.88, 6.28
Waldvogel 2012	74	135 (6.7)	71	130 (5.3)	•	2.7 %	5.00 [3.04, 6.96
Wang 2012	34	116.8 (16)	35	104.5 (12.9)	+	1.4 %	2.30 [5.43, 9.17
Yadrick 1989	9	151 (6)	9	148 (15)	+	0.9 %	3.00 [-7.55, 3.55
Yoshida 1990	6	133 (6)	6	137 (7)	-	1.3 %	-4.00 [-11.38, 3.38
Zaman 2013	22	132.6 (7.4)	22	127.5 (8)	+	2.0 %	5.10 [0.55, 9.65

Favours control Favours iron

(Continued . . .)

(... Continued)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)		Mean Difference ndom.95% Cl	Weight	Mean Difference IV.Random,95% Cl
Zhu 1998	20	136.3 (8)	17	132.2 (7.6)		+	1.9 %	4.10 [-0.93, 9.13]
Subtotal (95% CI)	2043		1598				75.3 %	4.69 [3.55, 5.83]
Heterogeneity: Tau ² = 7.27; Chi^2	= 155.67, df = 40	(P<0.00001); I ²	=74%					
Test for overall effect: $Z = 8.07$ (I	P < 0.00001)							
Total (95% CI)	3635		3226			+	100.0 %	5.30 [4.14, 6.45]
Heterogeneity: $Tau^2 = 11.74$; Ch	i ² = 356.76, df = 5	0 (P<0.00001); I	² =86%					
Test for overall effect: $Z = 8.98$ (I	P < 0.00001)							
Test for subgroup differences: Ch	i ² = 1.81, df = 1 (F	$P = 0.18$), $ ^2 = 45$	%					
							1	
				-100	-50	0 50	100	

-100 -50 0 50 100

Favours control Favours iron

Analysis 2.5. Comparison 2 Haemoglobin, Outcome 5 Haemoglobin (baseline Hb).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 2 Haemoglobin

Outcome: 5 Haemoglobin (baseline Hb)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference	
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI	
l Anaemic								
Florencio 1981	39	126.7 (6.8)	20	114.9 (5.8)	+	2.1 %	.80 [8.48, 5. 2]	
Kianfar 2000	45	12(1)	74	4 (8)	+	2.3 %	8.00 [6.15, 9.85]	
Lanerolle 2000	51	129.3 (13.26)	57	9.86 (.86)	+	1.8 %	9.44 [4.67, 14.21]	
McClung 2009	18	122 (12)	17	116 (13)		1.1 %	6.00 [-2.30, 14.30]	
Murray-Kolb 2007	56	129.92 (10.04)	57	32.29 (2.42)	+	1.9 %	-2.37 [-6.53, 1.79]	
Radjen 2011	10	120.8 (7.77)	10	108.4 (3.92)	+	1.6 %	12.40 [7.01, 17.79]	
Wang 2012	34	116.8 (16)	35	104.5 (12.9)		1.4 %	12.30 [5.43, 19.17]	
Zavaleta 2000	20	123.7 (9.4)	15	0.4 ()	+	1.3 %	3.30 [6.37, 20.23]	
				- (00 -50 0 50 10	00		

Favours control Favours iron

(Continued ...)

(... Continued)

Study or subgroup	Iron	Control			Mean Difference	Weight	Mea Difference	
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI	10 5 67	IV,Random,95% (
Subtotal (95% CI)	273	(D. (0.0000)) /2	285		•	13.5 %	8.67 [5.16, 12.18	
Heterogeneity: Tau ² = 18.64; C Test for overall effect: Z = 4.84		(P<0.00001); I ²	=80%					
2 Non-anaemic	(
Binkoski 2004	14	129 (16.84)	12	26 (6.97)		0.6 %	3.00 [-10.04, 16.04	
Booth 2014	25	135.8 (8.3)	24	136.8 (8.6)	+	1.8 %	-1.00 [-5.74, 3.74	
Bruner 1996	37	135 (8)	36	127 (7)	+	2.1 %	8.00 [4.55, 11.45	
Brutsaert 2003	10	139 (6.32)	10	34 (2.65)	+-	1.1 %	5.00 [-3.76, 13.76	
DellaValle 2012	15	133 (6)	16	134 (8)	+	1.7 %	-1.00 [-5.96, 3.96	
Florencio 1981	42	120.8 (4.8)	17	126 (5.4)	+	2.2 %	-5.20 [-8.15, -2.25	
Fogelholm 1992	14	39 (2. 5)	17	128 (10.8)	-	1.1 %	.00 [2.82, 9. 8	
Hinton 2000	22	I 35.2 (9.38)	19	30.8 (3.07)	+	1.3 %	4.40 [-2.66, .46	
Hinton 2007	10	136 (10)	10	3 (9)	+	1.1 %	5.00 [-3.34, 13.34	
Hoppe 2013 137	7.8333333 (14.25)	24	12	133 (13.5)		1.0 %	4.83 [-4.70, 14.36	
Jensen 1991	7	139 (3)	6	138 (6)	+	1.7 %	1.00 [-4.29, 6.29	
Kianfar 2000	47	3 (7)	74	0 (8)	*	2.2 %	3.00 [0.29, 5.7	
Klingshim 1992	9	143.6 (12.8)	9	42.3 (.)	+	0.8 %	1.30 [-9.77, 12.3]	
Lanerolle 2000	230	136.8 (9.15)	227	134.93 (8.37)		2.4 %	1.87 [0.26, 3.48	
Leonard 2014	16	135 (3.53)	8	131.6 (3.9)	+-	2.1 %	3.40 [0.19, 6.6	
Maghsudlu 2008	185	132.9 (8)	182	131.9 (8)	-	2.4 %	I.00 [-0.64, 2.6·	
McClung 2009	65	131 (6.5)	65	131.14 (7.28)	-	2.3 %	-0.14 [-2.51, 2.2]	
Murray-Kolb 2007	17	125 (9)	13	2 (9)	+	1.4 %	4.00 [-2.50, 10.50	
Newhouse 1989	19	135 (5)	18	131 (5)	+	2.1 %	4.00 [0.78, 7.2]	
Radjen 201 I	9	129.22 (5.67)	8	3.38 (6. 4)	+	1.6 %	15.84 [10.20, 21.4	
Rowland 1988	7	134 (3)	7	127 (4)	+	2.0 %	7.00 [3.30, 10.70	
R svik 2010	82	129 (6)	79	128 (7)	-	2.3 %	1.00 [-1.02, 3.03	
Waldvogel 2012	74	135 (6.7)	71	130 (5.3)	*	2.3 %	5.00 [3.04, 6.9	
Zavaleta 2000	81	130.9 (9.4)	82	127.9 (11)	*	2.1 %	3.00 [-0.14, 6.14	
Zhu 1998	20	136.3 (8)	17	132.2 (7.6)	+	1.7 %	4.10 [-0.93, 9.1	
Subtotal (95% CI)	1081		1039		,	43.2 %	3.11 [1.67, 4.54	
Heterogeneity: Tau ² = 7.87; Cł est for overall effect: Z = 4.24 Mixed/unstated		(P<0.00001); I ²	=74%				-	

(Continued . . .)

(... Continued)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mea Differenc
	N	Mean(SD)	N	Mean(SD)	IV,Random,95% CI		IV,Random,95% (
Agarwal 2003	699	23 ()	691	116 (12)	+	2.4 %	7.00 [5.79, 8.21
Berger 1997	65	191.7 (18.8)	65	184.9 (22.3)	+	1.3 %	6.80 [-0.29, 13.89
Charoenlarp 1988	517	28. 8 (.8)	173	22.89 (4.06)	+	2.3 %	5.29 [2.96, 7.62
Cooter 1978	5	130.75 (7.4)	5	130 (4.7)	+	1.2 %	0.75 [-6.93, 8.43
Edgerton 1979	113	126.57 (12.7)	96	114.45 (20.17)	+	1.8 %	12.12 [7.45, 16.79
Eftekhari 2006	47	142.5 (5.04)	47	129 (3.94)	•	2.3 %	3.50 [.67, 5.33
Elwood 1966	40	4 (1.5)	49	-1.6 (1.1)	•	2.5 %	5.60 [5.04, 6.16
Fogelholm 1994	37	141.54 (14.32)	35	134 (14.47)		1.4 %	7.54 [0.89, 14.19
Gordeuk 1987	34	125 (10.34)	19	126 (13.07)	+	1.4 %	-1.00 [-7.83, 5.83
Gordeuk 1990	40	3 (8)	35	123 (9)	+	2.0 %	8.00 [4.12, 11.88
Jayatissa 1999	222	132 (9)	217	3 ()	-	2.3 %	1.00 [-0.88, 2.88
Kanani 2000	91	126.1 (7.63)	89	108.22 (10.38)	+	2.2 %	17.88 [15.21, 20.55
Kang 2004	11	122 (9)	14	123 (12)	+	1.1 %	-1.00 [-9.23, 7.23
LaManca 1993	10	141 (6.32)	10	129 (12.64)		1.1 %	12.00 [3.24, 20.76
Larocque 2006	12	137.5 (7.41)	9	136.56 (7.53)	+	1.4 %	0.94 [-5.52, 7.40
Li 1994	40	27 (2)	40	3 (4)	+	1.6 %	14.00 [8.29, 19.71
Marks 2014	129	134.6 (8.7)	128	130 (9.9)	+	2.3 %	4.60 [2.32, 6.88
Mujica-Coopman 2015	28	152 (9)	27	149 (7)	+	1.9 %	3.00 [-1.25, 7.25
Rybo 1985	45	137 (9)	44	133 (10)	+	1.9 %	4.00 [0.04, 7.96
Taniguchi 1991	27	2 ()	27	108 (12.5)	+	1.5 %	13.00 [6.72, 19.28
Viteri 1999	37	137.5 (9.2)	44	35.8 (.8)	+	1.8 %	1.70 [-2.88, 6.28
Walsh 1989	10	136 (6)	10	129 (6)	+	1.7 %	7.00 [1.74, 12.26
Yadrick 1989	9	151 (6)	9	148 (15)	<u> </u>	0.8 %	3.00 [-7.55, 13.55
Yoshida 1990	6	133 (6)	6	137 (7)		1.3 %	-4.00 [-11.38, 3.38
Zaman 2013	22	132.6 (7.4)	22	127.5 (8)	+	1.8 %	5.10 [0.55, 9.65
ubtotal (95% CI)	2296		1911		•		6.30 [4.52, 8.08
eterogeneity: Tau ² = 14.23; Chi ²		24 (P<0.00001);				1012 70	0.00 [1.92, 0.00
est for overall effect: $Z = 6.93$ (P	,					100.00/	
Total (95% CI) Heterogeneity: Tau ² = 14.69; Chi ² Hest for overall effect: $Z = 8.77$ (P Hest for subgroup differences: Chi ²	< 0.00001)	. ,			,	100.0 %	5.30 [4.11, 6.4

Favours control Favours iron

Analysis 2.6. Comparison 2 Haemoglobin, Outcome 6 Haemoglobin (iron status).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 2 Haemoglobin

Outcome: 6 Haemoglobin (iron status)

Study or subgroup	Iron	Iron Control			Mean Difference	Weight	Mean Difference	
, , ,	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI	C	IV,Random,95% Cl	
l Iron deficient								
Binkoski 2004	14	129 (16.84)	12	126 (16.97)		0.6 %	3.00 [-10.04, 16.04]	
Bruner 1996	37	135 (8)	36	127 (7)	+	2.2 %	8.00 [4.55, 11.45]	
Brutsaert 2003	10	139 (6.32)	10	134 (12.65)	+-	1.1 %	5.00 [-3.76, 13.76]	
DellaValle 2012	8	134 (8)	8	32 (7)	+	1.3 %	2.00 [-5.37, 9.37]	
Eftekhari 2006	47	142.5 (5.04)	47	129 (3.94)	+	2.6 %	3.50 [.67, 5.33]	
Fogelholm 1992	14	139 (12.15)	17	128 (10.8)		1.2 %	.00 [2.82, 9.18]	
Fogelholm 1994	37	141.54 (14.32)	35	134 (14.47)	+	1.4 %	7.54 [0.89, 14.19]	
Hinton 2000	22	I 35.2 (9.38)	19	130.8 (13.07)	+	1.4 %	4.40 [-2.66, 11.46]	
Hinton 2007	10	136 (10)	10	131 (9)		1.1 %	5.00 [-3.34, 3.34]	
Klingshim 1992	9	143.6 (12.8)	9	42.3 (.)	+	0.8 %	1.30 [-9.77, 12.37]	
LaManca 1993	10	141 (6.32)	10	129 (12.64)		1.1 %	12.00 [3.24, 20.76]	
Leonard 2014	16	135 (3.53)	8	131.6 (3.9)	÷	2.3 %	3.40 [0.19, 6.61]	
Marks 2014	73	134.4 (8.4)	71	27. (0.)	+	2.3 %	7.30 [4.26, 10.34]	
McClung 2009	32	26.8 (. 7)	31	2 .4 (2. 7)	+	1.6 %	5.40 [-0.37, 11.17]	
Murray-Kolb 2007	42	128.6 (8.8)	41	128.5 (10.89)	-	2.0 %	0.10 [-4.17, 4.37]	
Newhouse 1989	19	135 (5)	18	3 (5)	+	2.3 %	4.00 [0.78, 7.22]	
Radjen 2011	19	124.78 (7.94)	18	110.61 (5.49)	+	2.0 %	14.17 [9.79, 18.55]	
Taniguchi 1991	27	2 ()	27	108 (12.5)	+	1.5 %	3.00 [6.72, 9.28]	
Waldvogel 2012	74	135 (6.7)	71	130 (5.3)	+	2.6 %	5.00 [3.04, 6.96]	
Wang 2012	34	6.8 (6)	35	104.5 (12.9)	+	1.4 %	12.30 [5.43, 19.17]	
Zhu 1998	20	36.3 (8)	17	132.2 (7.6)	+	1.8 %	4.10 [-0.93, 9.13]	

-100 -50 0 50 100 Favours control Favours iron

(Continued . . .)

(... Continued)

							(Continue
Study or subgroup	Iron		Control		Mean Difference	Weight	Mear Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% Cl		IV,Random,95% C
Subtotal (95% CI)	574		550		*	34.7 %	6.92 [4.76, 9.09]
Heterogeneity: $Tau^2 = 16$		20 (P<0.00001); I	2 =78%				
Test for overall effect: Z = 2 Not iron deficient	- 6.27 (P < 0.00001)						
Marks 2014	56	134.5 (10.3)	57	133.5 (8.6)	÷	2.2 %	1.00 [-2.50, 4.50]
McClung 2009	52	3 (7)	51	132 (7)	+	2.4 %	-1.00 [-3.70, 1.70]
Murray-Kolb 2007	14	34 ()	16	42 ()		1.2 %	-8.00 [-15.89, -0.11
Rowland 1988	7	134 (3)	7	127 (4)	+	2.2 %	7.00 [3.30, 10.70
R svik 2010	82	129 (6)	79	128 (7)	+	2.6 %	1.00 [-1.02, 3.02
Subtotal (95% CI)	211		210		•	10.6 %	0.84 [-2.26, 3.95]
Heterogeneity: Tau ² = 8.1 Test for overall effect: Z = 3 Mixed/unstated	= 0.53 (P = 0.59)						
Agarwal 2003	699	123 (11)	691	116 (12)		2.7 %	7.00 [5.79, 8.21
Berger 1997	65	191.7 (18.8)	65	184.9 (22.3)		1.4 %	6.80 [-0.29, 13.89
Booth 2014	25	135.8 (8.3)	24	136.8 (8.6)	+	1.9 %	-1.00 [-5.74, 3.74
Charoenlarp 1988	517	28. 8 (.8)	173	122.89 (14.06)	+	2.5 %	5.29 [2.96, 7.62
Cooter 1978	5	130.75 (7.4)	5	130 (4.7)	+	1.2 %	0.75 [-6.93, 8.43
Edgerton 1979	113	126.57 (12.7)	96	114.45 (20.17)	+	1.9 %	12.12 [7.45, 16.79
Elwood 1966	40	4 (1.5)	49	-1.6 (1.1)		2.8 %	5.60 [5.04, 6.16
Florencio 1981	81	128.8 (5.8)	37	120 (5.6)	*	2.5 %	8.80 [6.60, 11.00
Gordeuk 1987	34	125 (10.34)	19	126 (13.07)	+	1.4 %	-1.00 [-7.83, 5.83
Gordeuk 1990	40	131 (8)	35	123 (9)	+	2.1 %	8.00 [4.12, 11.88
Hoppe 2013	137.8333333 (14.25)	24	12	33 (3.5)		1.0 %	4.83 [-4.70, 14.36
Jayatissa 1999	222	132 (9)	217	3 ()	+	2.6 %	I.00 [-0.88, 2.88
Jensen 1991	7	139 (3)	6	138 (6)	+	1.8 %	1.00 [-4.29, 6.29
Kanani 2000	91	126.1 (7.63)	89	108.22 (10.38)	+	2.4 %	17.88 [15.21, 20.55
Kang 2004	11	122 (9)	14	123 (12)	+	1.2 %	-1.00 [-9.23, 7.23
Kianfar 2000	92	7.4 (6.76)	148	2 (8.22)	+	2.6 %	5.40 [3.49, 7.31
Lanerolle 2000	281	35.42 (10.42)	284	131.95 (10.95)	+	2.6 %	3.47 [1.71, 5.23
Larocque 2006	12	37.5 (7.4)	9	136.56 (7.53)	+	1.5 %	0.94 [-5.52, 7.40
Li 1994	40	127 (12)	40	3 (4)	+	1.7 %	14.00 [8.29, 19.71
Maghsudlu 2008	185	132.9 (8)	182	131.9 (8)		2.6 %	1.00 [-0.64, 2.64

-100 -50 0 50 100

Favours control Favours iron

(Continued . . .)

Study or subgroup	Iron		Control		Mean Difference	Weight	(Continued) Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% Cl		IV,Random,95% CI
Mujica-Coopman 2015	28	152 (9)	27	149 (7)	+	2.0 %	3.00 [-1.25, 7.25]
Rybo 1985	45	137 (9)	44	133 (10)	+	2.1 %	4.00 [0.04, 7.96]
Viteri 1999	37	137.5 (9.2)	44	35.8 (.8)	+	1.9 %	1.70 [-2.88, 6.28]
Walsh 1989	10	136 (6)	10	129 (6)	+	1.8 %	7.00 [1.74, 12.26]
Yadrick 1989	9	151 (6)	9	148 (15)	+-	0.8 %	3.00 [-7.55, 13.55]
Yoshida 1990	6	133 (6)	6	137 (7)	+	1.3 %	-4.00 [-11.38, 3.38]
Zaman 2013	22	132.6 (7.4)	22	127.5 (8)	+	1.9 %	5.10 [0.55, 9.65]
Zavaleta 2000	101	129.47 (9.4)	97	125.19 (11)	+	2.4 %	4.28 [1.42, 7.14]
Subtotal (95% CI)	2842		2454		•	54.7 %	4.92 [3.49, 6.35]
Heterogeneity: Tau ² = 9.85; Chi ² : Test for overall effect: Z = 6.74 (P		/ (P<0.00001); I [,]	- =8/%				
Total (95% CI)	< 0.0001) 3627		3214		,	100.0 %	5.15 [4.00, 6.30]
Heterogeneity: Tau ² = 12.37; Chi ²	= 378.71, df = 5	53 (P<0.00001);	l ² =86%				
Test for overall effect: Z = 8.76 (P	< 0.00001)						
Test for subgroup differences: Chi ²	e = 9.90, df = 2 ($P = 0.01$), $I^2 = 80$	0%				

-100 -50 0 50 100

Favours control Favours iron

Analysis 2.7. Comparison 2 Haemoglobin, Outcome 7 Haemoglobin (iron-deficiency anaemia).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 2 Haemoglobin

Outcome: 7 Haemoglobin (iron-deficiency anaemia)

Study or subgroup	Iron		Control	M (CD)	Mean Difference	Weight	Mea Difference
	N	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95%
Iron-deficiency anaemia McClung 2009	18	122 (12)	17	116 (13)	-+-	1.1 %	6.00 [-2.30, 14.30
Murray-Kolb 2007	17	125 (9)	13	121 (9)	+	1.5 %	4.00 [-2.50, 10.50
Radjen 2011	10	120.8 (7.77)	10	108.4 (3.92)	+	1.7 %	12.40 [7.01, 17.79
Wang 2012	34	6.8 (6)	35	104.5 (12.9)	+	1.4 %	12.30 [5.43, 19.1]
Subtotal (95% CI)	79		75		•	5.6 %	9.01 [4.64, 13.37
leterogeneity: Tau ² = 8.26; Chi ² = est for overall effect: Z = 4.05 (P = . Iron deficient, not anaemic		= 0.16); 1 ² =42%					
Binkoski 2004	14	129 (16.84)	12	126 (16.97)		0.6 %	3.00 [-10.04, 16.0
Bruner 1996	37	135 (8)	36	127 (7)	+	2.2 %	8.00 [4.55, 11.4
Brutsaert 2003	10	139 (6.32)	10	34 (2.65)		1.0 %	5.00 [-3.76, 3.7
DellaValle 2012	8	134 (8)	8	132 (7)	+	1.3 %	2.00 [-5.37, 9.3
Fogelholm 1992	14	139 (12.15)	17	128 (10.8)		1.1 %	.00 [2.82, 9.
Hinton 2000	22	135.2 (9.38)	19	30.8 (3.07)	+	1.3 %	4.40 [-2.66, .4
Hinton 2007	10	136 (10)	10	131 (9)	+-	1.1 %	5.00 [-3.34, 3.3
Klingshim 1992	9	43.6 (2.8)	9	42.3 (.)	+	0.8 %	1.30 [-9.77, 12.3
Leonard 2014	16	135 (3.53)	8	131.6 (3.9)	+	2.3 %	3.40 [0.19, 6.6
McClung 2009	14	33 (6)	14	128 (7)	+	1.9 %	5.00 [0.17, 9.8
Murray-Kolb 2007	25	3 (8)	28	132 (10)	+	1.8 %	-1.00 [-5.85, 3.8
Newhouse 1989	19	135 (5)	18	3 (5)	+	2.3 %	4.00 [0.78, 7.2
Radjen 2011	9	129.22 (5.67)	8	113.38 (6.14)	+	1.6 %	5.84 [0.20, 2 .4
Waldvogel 2012	74	135 (6.7)	71	130 (5.3)	+	2.6 %	5.00 [3.04, 6.9
Zhu 1998	20	136.3 (8)	17	132.2 (7.6)	+	1.8 %	4.10 [-0.93, 9.1
Subtotal (95% CI)	301		285		•	23.8 %	5.15 [3.30, 6.99

Favours control Favours iron

(Continued . . .)

(... Continued)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Mean Difference IV,Random,95% Cl	Weight	Mea Difference IV,Random,95% C
Not iron deficient, not a	anaemic						
McClung 2009	52	3 (7)	51	32 (7)	+	2.4 %	-1.00 [-3.70, 1.70
Rowland 1988	7	134 (3)	7	127 (4)	+	2.2 %	7.00 [3.30, 10.70
R svik 2010	82	129 (6)	79	128 (7)	•	2.6 %	1.00 [-1.02, 3.02
Subtotal (95% CI)	141		137		•	7.2 %	2.10 [-1.77, 5.97
Heterogeneity: $Tau^2 = 9.6$		$(P = 0.003); I^2 = 8$	33%				
est for overall effect: Z = Mixed/unstated	= 1.06 (P = 0.29)						
Agarwal 2003	699	123 (11)	691	116 (12)	٠	2.7 %	7.00 [5.79, 8.21
Berger 1997	65	191.7 (18.8)	65	184.9 (22.3)	+	1.3 %	6.80 [-0.29, 3.89
Booth 2014	25	I 35.8 (8.3)	24	136.8 (8.6)	+	1.9 %	-1.00 [-5.74, 3.74
Charoenlarp 1988	517	28. 8 (.8)	173	122.89 (14.06)	+	2.5 %	5.29 [2.96, 7.62
Cooter 1978	5	130.75 (7.4)	5	30 (4.7)	+	1.2 %	0.75 [-6.93, 8.43
Edgerton 1979	113	126.57 (12.7)	96	114.45 (20.17)	+	1.9 %	12.12 [7.45, 16.79
Eftekhari 2006	47	142.5 (5.04)	47	129 (3.94)		2.6 %	13.50 [11.67, 15.33
Elwood 1966	40	4 (1.5)	49	-1.6 (1.1)		2.8 %	5.60 [5.04, 6.16
Florencio 1981	81	128.8 (5.8)	37	120 (5.6)	+	2.5 %	8.80 [6.60, 11.00
Fogelholm 1994	37	141.54 (14.32)	35	34 (4.47)	+	1.4 %	7.54 [0.89, 14.19
Gordeuk 1987	34	125 (10.34)	19	126 (13.07)	+	1.4 %	-1.00 [-7.83, 5.83
Gordeuk 1990	40	131 (8)	35	123 (9)	+	2.1 %	8.00 [4.12, 11.88
Hoppe 2013	137.8333333 (14.25)	24	12	133 (13.5)	+-	0.9 %	4.83 [-4.70, 14.36
Jayatissa 1999	222	132 (9)	217	3 ()	-	2.6 %	1.00 [-0.88, 2.88
Jensen 1991	7	139 (3)	6	138 (6)	+	1.7 %	1.00 [-4.29, 6.29
Kanani 2000	91	126.1 (7.63)	89	108.22 (10.38)	+	2.4 %	17.88 [15.21, 20.55
Kang 2004	11	122 (9)	14	123 (12)	+	1.1 %	-1.00 [-9.23, 7.23
Kianfar 2000	92	7.4 (6.76)	148	2 (8.22)	*	2.6 %	5.40 [3.49, 7.31
LaManca 1993	10	141 (6.32)	10	129 (12.64)		1.0 %	12.00 [3.24, 20.76
Lanerolle 2000	281	135.42 (10.42)	284	131.95 (10.95)		2.6 %	3.47 [1.71, 5.23
Larocque 2006	12	137.5 (7.41)	9	136.56 (7.53)	+	1.5 %	0.94 [-5.52, 7.40
Li 1994	40	127 (12)	40	113 (14)	+	1.6 %	14.00 [8.29, 19.71
Maghsudlu 2008	185	132.9 (8)	182	131.9 (8)	+	2.7 %	1.00 [-0.64, 2.64
Marks 2014	129	134.6 (8.7)	128	130 (9.9)	+	2.5 %	4.60 [2.32, 6.88

-100 -50 0 50 100

Favours iron

Favours control

(Continued . . .)

							(Continued)
Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Mujica-Coopman 2015	28	152 (9)	27	149 (7)	+	2.0 %	3.00 [-1.25, 7.25]
Rybo 1985	45	137 (9)	44	133 (10)	+	2.1 %	4.00 [0.04, 7.96]
Taniguchi 1991	27	2 ()	27	108 (12.5)	+	1.5 %	3.00 [6.72, 9.28]
Viteri 1999	37	137.5 (9.2)	44	35.8 (.8)	+	1.9 %	1.70 [-2.88, 6.28]
Walsh 1989	10	136 (6)	10	129 (6)	+	1.7 %	7.00 [1.74, 12.26]
Yadrick 1989	9	151 (6)	9	148 (15)		0.8 %	3.00 [-7.55, 13.55]
Yoshida 1990	6	133 (6)	6	137 (7)	-	1.3 %	-4.00 [-11.38, 3.38]
Zaman 2013	22	132.6 (7.4)	22	127.5 (8)	+	1.9 %	5.10 [0.55, 9.65]
Zavaleta 2000	101	129.47 (9.4)	97	125.19 (11)	+	2.4 %	4.28 [1.42, 7.14]
Subtotal (95% CI)	3092		2701		•	63.4 %	5.59 [4.15, 7.03]
Heterogeneity: $Tau^2 = 12.30$; Chi ²	= 283.30, df = 3	32 (P<0.00001);	l ² =89%				
Test for overall effect: $Z = 7.61$ (P <	< 0.00001)						
Total (95% CI)	3613		3198		•	100.0 %	5.44 [4.31, 6.56]
Heterogeneity: Tau ² = 11.76; Chi ²	= 365.57, df = 5	54 (P<0.00001);	$ ^2 = 85\%$				
Test for overall effect: $Z = 9.46$ (P <	< 0.00001)						
Test for subgroup differences: Chi ²	= 5.56, df = 3 ($P = 0.13), 1^2 = 46$	5%				

-100 -50 0 50 100

Favours control Favours iron

Analysis 2.8. Comparison 2 Haemoglobin, Outcome 8 Haemoglobin (dose).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 2 Haemoglobin

Outcome: 8 Haemoglobin (dose)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Mean Difference IV,Random,95% CI	Weight	Mean Difference IV,Random,95% Cl
< 30 mg							
Berger 1997	65	191.7 (18.8)	65	184.9 (22.3)		1.4 %	6.80 [-0.29, 13.89]
Booth 2014	25	135.8 (8.3)	24	I 36.8 (8.6)	ŧ	1.9 %	-1.00 [-5.74, 3.74]
Brutsaert 2003	10	139 (6.32)	10	134 (12.65)	+-	1.1 %	5.00 [-3.76, 3.76]
Cooter 1978	5	I 30.75 (7.4)	5	130 (4.7)	+	1.3 %	0.75 [-6.93, 8.43]
Fogelholm 1994	37	4 .54 (4.32)	35	34 (4.47)	+	1.5 %	7.54 [0.89, 14.19]
Hinton 2000	22	135.2 (9.38)	19	30.8 (3.07)	+	1.4 %	4.40 [-2.66, 11.46]
Hinton 2007	10	136 (10)	10	131 (9)		1.1 %	5.00 [-3.34, 3.34]
Larocque 2006	12	137.5 (7.41)	9	I 36.56 (7.53)	+	1.5 %	0.94 [-5.52, 7.40]
Rybo 1985	45	137 (9)	44	133 (10)	+	2.2 %	4.00 [0.04, 7.96]
Taniguchi 1991	27	2 ()	27	108 (12.5)	+	1.6 %	3.00 [6.72, 9.28]
Viteri 1999	37	137.5 (9.2)	44	35.8 (.8)	+	2.0 %	1.70 [-2.88, 6.28]
Wang 2012	34	6.8 (6)	35	104.5 (12.9)		1.4 %	12.30 [5.43, 19.17]
Yadrick 1989	9	151 (6)	9	148 (15)		0.8 %	3.00 [-7.55, 13.55]
Zavaleta 2000	101	129.47 (9.4)	97	125.19 (11)	+	2.5 %	4.28 [1.42, 7.14]
Subtotal (95% CI)	439		433		•	21.6 %	4.56 [2.50, 6.63]
Heterogeneity: Tau ² = 5.7 Test for overall effect: Z = 2 31 to 60 mg Edgerton 1979		(P = 0.06); ² = 4		114.45 (20.17)	+	2.0 %	12.12 [7.45, 16.79]
Eftekhari 2006	47	142.5 (5.04)	47	129 (3.94)	•	2.7 %	3.50 [.67, 5.33]
Hoppe 2013	137.8333333 (14.25)	24	12	33 (3.5)		1.0 %	4.83 [-4.70, 14.36]
Jayatissa 1999	222	132 (9)	217	3 ()	÷	2.7 %	1.00 [-0.88, 2.88]
Jensen 1991	7	139 (3)	6	138 (6)	+	1.8 %	1.00 [-4.29, 6.29]
Kanani 2000	91	126.1 (7.63)	89	108.22 (10.38)	+	2.5 %	17.88 [15.21, 20.55]
		122 (9)	14	123 (12)		1.2 %	-1.00 [-9.23, 7.23]

Favours control Favours iron

(Continued ...)

(... Continued) Mean Mean Difference Difference Control Study or subgroup Iron Weight Ν Mean(SD) Ν Mean(SD) IV,Random,95% CI IV,Random,95% CI Kianfar 2000 5.40 [3.49, 7.31] 92 7.4 (6.76) 148 2 (8.22) 2.7 % 1.30 [-9.77, 12.37] Klingshim 1992 9 143.6 (12.8) 9 |42.3 (||.|) 0.8 % Lanerolle 2000 3.47 [1.71, 5.23] 281 135.42 (10.42) 284 131.95 (10.95) 2.7 % Leonard 2014 133.7 (2.3) 131.6 (3.9) 2.1 % 2.10 [-2.04, 6.24] 8 4 Li 1994 14.00 [8.29, 19.71] 40 127 (12) 40 ||3 (|4) 1.7 % Marks 2014 129 134.6 (8.7) 128 130 (9.9) 2.6 % 4.60 [2.32, 6.88] McClung 2009 2.00 [-1.01, 5.01] 85 130 (9) 86 128 (11) 2.4 % Mujica-Coopman 2015 28 27 149 (7) 2.1 % 3.00 [-1.25, 7.25] 152 (9) Murray-Kolb 2007 56 129.92 (10.04) 57 132.29 (12.42) 2.1 % -2.37 [-6.53, 1.79] Yoshida 1990 1.3 % -4.00 [-11.38, 3.38] 133 (6) 6 137 (7) 6 Zaman 2013 22 132.6 (7.4) 22 127.5 (8) 2.0 % 5.10 [0.55, 9.65] Zhu 1998 17 132.2 (7.6) 1.9 % 4.10 [-0.93, 9.13] 20 136.3 (8) Subtotal (95% CI) 38.3 % 4.93 [2.20, 7.66] 1291 1309 Heterogeneity: Tau² = 30.74; Chi² = 234.16, df = 18 (P<0.00001); l² =92% Test for overall effect: Z = 3.53 (P = 0.00041) 3 61 mg to 100 mg Agarwal 2003 699 123 (11) 691 116 (12) 2.8 % 7.00 [5.79, 8.21] Binkoski 2004 129 (16.84) 3.00 [-10.04, 16.04] 14 12 126 (16.97) 0.6 % Fogelholm 1992 139 (12.15) 17 128 (10.8) ||.00 [2.82, |9.18] 14 12% Gordeuk 1990 8.00 [4.12, 11.88] 131 (8) 35 123 (9) 2.2 % 40 12.00 [3.24, 20.76] LaManca 1993 10 141 (6.32) 10 129 (12.64) 1.1 % Leonard 2014 8 136.3 (4.2) 4 131.6 (3.9) 1.9 % 4.70 [-0.10, 9.50] + Radjen 2011 124.78 (7.94) 2.0 % 14.17 [9.79, 18.55] 19 18 110.61 (5.49) R svik 2010 82 129 (6) 79 128 (7) 27% 1.00 [-1.02, 3.02] Waldvogel 2012 74 135 (6.7) 71 130 (5.3) 2.7 % 5.00 [3.04, 6.96] Subtotal (95% CI) 960 937 17.2 % 6.87 [4.24, 9.49] Heterogeneity: Tau² = 10.23; Chi² = 45.26, df = 8 (P<0.00001); l² = 82% Test for overall effect: Z = 5.13 (P < 0.00001) 4 > 100 mg Bruner 1996 37 135 (8) 36 127 (7) 2.3 % 8.00 [4.55, 11.45] 173 122.89 (14.06) Charoenlarp 1988 517 128.18 (11.81) 2.6 % 5.29 [2.96, 7.62] DellaValle 2012 15 133 (6) 16 134 (8) 1.9 % -1.00 [-5.96, 3.96] Elwood 1966 40 4 (1.5) 49 -1.6 (1.1) 2.9 % 5.60 [5.04, 6.16] -100 -50 0 50 100

0 -0 0 00

Favours control Favours iron

(Continued . . .)

Study or subgroup	Iron		Control		Mean Difference	Weight	
	N	Mean(SD)	N	Mean(SD)	IV,Random,95% Cl		IV,Random,95% CI
Florencio 1981	81	128.8 (5.8)	37	120 (5.6)	+	2.6 %	8.80 [6.60, 11.00]
Gordeuk 1987	34	125 (10.34)	19	126 (13.07)	+	1.4 %	-1.00 [-7.83, 5.83]
Maghsudlu 2008	185	132.9 (8)	182	131.9 (8)	-	2.8 %	1.00 [-0.64, 2.64]
Newhouse 1989	19	135 (5)	18	131 (5)	+	2.4 %	4.00 [0.78, 7.22]
Rowland 1988	7	134 (3)	7	127 (4)	+	2.2 %	7.00 [3.30, 10.70]
Walsh 1989	10	136 (6)	10	129 (6)	+	1.8 %	7.00 [1.74, 12.26]
Subtotal (95% CI)	945		547		•	22.9 %	4.85 [3.03, 6.67]
Heterogeneity: $Tau^2 = 5.79$; Chi ²		<pre>0.00001); l² =</pre>	82%				
Test for overall effect: $Z = 5.22$ (F	,						
Total (95% CI)	3635		3226		'	100.0 %	5.26 [4.12, 6.41]
Heterogeneity: Tau² = 11.73; Chi	² = 357.81, df = 5	I (P<0.00001);	$ ^2 = 86\%$				
Test for overall effect: $Z = 9.00$ (F	P < 0.0000∣)						
Test for subgroup differences: Chi	² = 2.09, df = 3 (F	$P = 0.55$), $ ^2 = 0.55$	0%				
0 1	, ,	,					

-100 -50 0 50 100

Favours control Favours iron

Analysis 2.9. Comparison 2 Haemoglobin, Outcome 9 Haemoglobin (duration).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 2 Haemoglobin

Outcome: 9 Haemoglobin (duration)

Mea Differenc IV,Random,95% (Weight	Mean Difference IV,Random,95% Cl	Mean(SD)	Control N	Mean(SD)	lron N	Study or subgroup
1v,Naridoni,7578 (IV,INdINUOITI,2576 CI	rieari(3D)	IN	rieari(SD)	IN	
-1.00 [-7.83, 5.83	1.5 %	+	126 (13.07)	19	125 (10.34)	34	I < 30 days (I month) Gordeuk 1987
-1.00 [-9.23, 7.23	1.2 %	+	123 (12)	14	122 (9)	11	Kang 2004
1.00 [-0.64, 2.64	2.8 %	+	131.9 (8)	182	I 32.9 (8)	185	Maghsudlu 2008
7.00 [3.30, 10.70	2.3 %	+	127 (4)	7	34 (3)	7	Rowland 1988
1.00 [-1.02, 3.02	2.7 %	+	128 (7)	79	129 (6)	82	R svik 2010
5.00 [3.04, 6.96	2.7 %	•	130 (5.3)	71	I 35 (6.7)	74	Waldvogel 2012
2.60 [0.28, 4.91	13.2 %	•		372		393	Subtotal (95% CI)
				%	P = 0.002; $P = 74$		Heterogeneity: Tau ² = 5.10 Test for overall effect: Z =
						2.20 (1 = 0.020)	2 I to 3 months
6.80 [-0.29, 3.89	1.4 %	+	184.9 (22.3)	65	191.7 (18.8)	65	Berger 1997
3.00 [-10.04, 16.04	0.6 %	- -	126 (16.97)	12	129 (16.84)	14	Binkoski 2004
8.00 [4.55, 11.45	2.3 %	+	127 (7)	36	35 (8)	37	Bruner 1996
5.00 [-3.76, 3.76	1.1 %		34 (2.65)	10	139 (6.32)	10	Brutsaert 2003
5.29 [2.96, 7.62	2.6 %	+	122.89 (14.06)	173	128.18 (11.81)	517	Charoenlarp 1988
-1.00 [-5.96, 3.96	1.9 %	+	134 (8)	16	133 (6)	15	DellaValle 2012
12.12 [7.45, 16.79	2.0 %	+	114.45 (20.17)	96	126.57 (12.7)	113	Edgerton 1979
3.50 [.67, 5.33	2.8 %		129 (3.94)	47	142.5 (5.04)	47	Eftekhari 2006
5.60 [5.04, 6.16	2.9 %		-1.6 (1.1)	49	4 (1.5)	40	Elwood 1966
8.80 [6.60, 11.00	2.7 %	+	120 (5.6)	37	128.8 (5.8)	81	Florencio 1981
.00 [2.82, 9. 8	1.2 %		128 (10.8)	17	139 (12.15)	14	Fogelholm 1992
8.00 [4.12, 11.88	2.2 %	+	123 (9)	35	131 (8)	40	Gordeuk 1990
4.40 [-2.66, .46	1.4 %	+-	130.8 (13.07)	19	135.2 (9.38)	22	Hinton 2000
5.00 [-3.34, 3.34	1.2 %	+-	131 (9)	10	136 (10)	10	Hinton 2007
			133 (13.5)	12	24	137.8333333 (14.25)	Hoppe 2013

Favours control Favours iron

(Continued ...)

(... Continued)

(Continu							
Me Differen	Weight	Mean Difference		Control		Iron	Study or subgroup
IV,Random,95%		IV,Random,95% CI	Mean(SD)	Ν	Mean(SD)	Ν	
1.00 [-0.88, 2.8	2.7 %	+	3 ()	217	32 (9)	222	Jayatissa 1999
1.00 [-4.29, 6.29	1.8 %	+	138 (6)	6	39 (3)	7	Jensen 1991
17.88 [15.21, 20.5	2.6 %	+	108.22 (10.38)	89	126.1 (7.63)	91	Kanani 2000
5.40 [3.49, 7.3	2.7 %	*	2 (8.22)	148	7.4 (6.76)	92	Kianfar 2000
1.30 [-9.77, 12.3	0.8 %	+	42.3 (.)	9	143.6 (12.8)	9	Klingshim 1992
12.00 [3.24, 20.7	1.1 %		29 (2.64)	10	141 (6.32)	10	LaManca 1993
3.47 [1.71, 5.2	2.8 %	٠	131.95 (10.95)	284	135.42 (10.42)	281	Lanerolle 2000
0.94 [-5.52, 7.4	1.5 %	+	136.56 (7.53)	9	137.5 (7.41)	12	Larocque 2006
14.00 [8.29, 19.7	1.7 %	+	113 (14)	40	127 (12)	40	Li 1994
4.60 [2.32, 6.8	2.7 %	*	130 (9.9)	128	134.6 (8.7)	129	Marks 2014
2.00 [-1.01, 5.0	2.5 %	+	128 (11)	86	130 (9)	85	McClung 2009
3.00 [-1.25, 7.2	2.1 %	+	149 (7)	27	152 (9)	28	Mujica-Coopman 2015
4.00 [0.78, 7.2	2.4 %	+	3 (5)	18	135 (5)	19	Newhouse 1989
14.17 [9.79, 18.5	2.1 %	+	110.61 (5.49)	18	124.78 (7.94)	19	Radjen 2011
4.00 [0.04, 7.9	2.2 %	+	133 (10)	44	137 (9)	45	Rybo 1985
3.00 [6.72, 9.2	1.6 %	+	108 (12.5)	27	2 ()	27	Taniguchi 1991
1.70 [-2.88, 6.2	2.0 %	+	35.8 (.8)	44	137.5 (9.2)	37	Viteri 1999
7.00 [1.74, 12.2	1.8 %	+	129 (6)	10	136 (6)	10	Walsh 1989
3.00 [-7.55, 13.5	0.9 %	+-	148 (15)	9	151 (6)	9	Yadrick 1989
-4.00 [-11.38, 3.3	1.3 %	-+	137 (7)	6	133 (6)	6	Yoshida 1990
5.10 [0.55, 9.6	2.0 %	+	127.5 (8)	22	132.6 (7.4)	22	Zaman 2013
4.10 [-0.93, 9.1	1.9 %	+	32.2 (7.6)	17	136.3 (8)	20	Zhu 1998
6.14 [4.70, 7.58	7 0. 7 %	•		1902		2269	ubtotal (95% CI)
				2 =86%	36 (P<0.00001); I		eterogeneity: $Tau^2 = 13.34$; Chi
						36 (P < 0.00001)	est for overall effect: $Z = 8.36$ (F > 3 months
7.00 [5.79, 8.2	2.9 %	•	116 (12)	691	23 ()	699	Agarwal 2003
-1.00 [-5.74, 3.74	2.0 %	+	36.8 (8.6)	24	135.8 (8.3)	25	Booth 2014
0.75 [-6.93, 8.4	1.3 %	+	130 (4.7)	5	130.75 (7.4)	5	Cooter 1978
7.54 [0.89, 14.19	1.5 %	+	34 (4.47)	35	141.54 (14.32)	37	Fogelholm 1994
3.40 [0.19, 6.6	2.4 %	*	131.6 (3.9)	8	135 (3.53)	16	Leonard 2014
	2.1 %	+	32.29 (2.42)	57	129.92 (10.04)	56	Murray-Kolb 2007

(Continued . . .)

							(Continued)
Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Wang 2012	34	116.8 (16)	35	104.5 (12.9)	+	1.4 %	12.30 [5.43, 19.17]
Zavaleta 2000	101	129.47 (9.4)	97	125.19 (11)	+	2.5 %	4.28 [1.42, 7.14]
Subtotal (95% CI)	973		952		•	16.1 %	3.84 [0.94, 6.75]
Heterogeneity: Tau ² = 12.09; Chi ² =	= 34.82, df = 7	$(P = 0.00001); ^2$	=80%				
Test for overall effect: $Z = 2.59$ (P =	0.0096)						
Total (95% CI)	3635		3226		•	100.0 %	5.30 [4.14, 6.45]
Heterogeneity: Tau ² = 11.74; Chi ² =	= 356.76, df = 5	0 (P<0.00001); I	² =86%				
Test for overall effect: Z = 8.98 (P <	0.00001)						
Test for subgroup differences: Chi ²	= 7.15, df = 2 (I	P = 0.03), l ² =72	%				
						1	

-100 -50 0 50 100

Favours control Favours iron

Analysis 2.10. Comparison 2 Haemoglobin, Outcome 10 Haemoglobin (type of iron).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 2 Haemoglobin

Outcome: 10 Haemoglobin (type of iron)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
I Ferrous sulphate							
Binkoski 2004	14	29 (6.84)	12	126 (16.97)		0.7 %	3.00 [-10.04, 16.04]
Bruner 1996	37	135 (8)	36	127 (7)	+	2.6 %	8.00 [4.55, 11.45]
DellaValle 2012	15	133 (6)	16	134 (8)	+	2.1 %	-1.00 [-5.96, 3.96]
Edgerton 1979	113	126.57 (12.7)	96	114.45 (20.17)	+	2.2 %	12.12 [7.45, 16.79]
Eftekhari 2006	47	142.5 (5.04)	47	129 (3.94)	•	3.0 %	3.50 [.67, 5.33]
Florencio 1981	81	128.8 (5.8)	37	120 (5.6)	+	2.9 %	8.80 [6.60, 11.00]
Fogelholm 1992	14	39 (2. 5)	17	128 (10.8)		1.3 %	.00 [2.82, 9.18]
				-100	-50 0 50 10	10	

Favours control Favours iron

(Continued ...)

(Continued)	(.		Continued)
--------------	----	--	------------

Me Differer	Weight	Mean Difference		Control		Iron	Study or subgroup
IV,Random,95%		IV,Random,95% CI	Mean(SD)	N	Mean(SD)	N	
-1.00 [-10.40, 8.4	1.1 %		126 (13.07)	9	125 (8.25)	17	Gordeuk 1987
4.40 [-2.66, 11.4	1.5 %		130.8 (13.07)	19	135.2 (9.38)	22	Hinton 2000
5.00 [-3.34, 13.3	1.2 %	+-	131 (9)	10	136 (10)	10	Hinton 2007
1.00 [-0.88, 2.8	3.0 %	t	3 ()	217	32 (9)	222	Jayatissa 1999
1.00 [-4.29, 6.2	2.0 %	+	138 (6)	6	139 (3)	7	Jensen 1991
5.40 [3.49, 7.3	3.0 %	·	2 (8.22)	148	7.4 (6.76)	92	Kianfar 2000
1.30 [-9.77, 12.3	0.9 %	+	42.3 (.)	9	43.6 (2.8)	9	Klingshim 1992
2.00 [3.24, 20.7	1.2 %		129 (12.64)	10	141 (6.32)	10	LaManca 1993
3.47 [1.71, 5.2	3.0 %	•	131.95 (10.95)	284	135.42 (10.42)	281	Lanerolle 2000
4.00 [8.29, 9.7	1.9 %	+	3 (4)	40	127 (12)	40	Li 1994
1.00 [-0.64, 2.6	3.1 %	ł	131.9 (8)	182	132.9 (8)	185	Maghsudlu 2008
2.00 [-1.01, 5.0	2.7 %	+	28 ()	86	130 (9)	85	McClung 2009
3.00 [-1.25, 7.2	2.3 %	+	149 (7)	27	152 (9)	28	Mujica-Coopman 2015
4.00 [0.78, 7.2	2.6 %	+	131 (5)	18	135 (5)	19	Newhouse 1989
14.17 [9.79, 18.5	2.3 %	+	110.61 (5.49)	18	124.78 (7.94)	19	Radjen 2011
7.00 [3.30, 10.7	2.5 %	+	127 (4)	7	134 (3)	7	Rowland 1988
1.70 [-2.88, 6.2	2.2 %	+	35.8 (.8)	44	137.5 (9.2)	37	Viteri 1999
5.00 [3.04, 6.9	3.0 %	•	130 (5.3)	71	135 (6.7)	74	Waldvogel 2012
3.00 [-7.55, 13.5	0.9 %	<u> </u>	148 (15)	9	151 (6)	9	Yadrick 1989
4.28 [1.42, 7.1	2.7 %	+	125.19 (11)	97	129.47 (9.4)	101	Zavaleta 2000
5.56 [3.74, 7.38	57.7 %			1572		1595	ubtotal (95% CI)
					、 , ,	99 (P < 0.00001)	eterogeneity: Tau ² = 16.75; Ch st for overall effect: Z = 5.99 (Ferrous fumurate
0.75 [-6.93, 8.4	1.4 %	-	130 (4.7)	5	130.75 (7.4)	5	Cooter 1978
12.30 [5.43, 19.1	1.6 %	-	104.5 (12.9)	35	6.8 (6)	34	Wang 2012
5.66 [-4.66, 17.97	2.9 %	•		40	(P = 0.03); I ² =79		ubtotal (95% CI) eterogeneity: Tau ² = 52.87; Ch est for overall effect: Z = 1.15 (Other/not stated
7.00 [5.79, 8.2	3.2 %	•	116 (12)	691	23 ()	699	Agarwal 2003
6.80 [-0.29, 3.8	1.5 %	+	184.9 (22.3)	65	191.7 (18.8)	65	Berger 1997
-1.00 [-5.74, 3.7	2.1 %	+	136.8 (8.6)	24	135.8 (8.3)	25	Booth 2014

(Continued \dots)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mear Difference
	N	Mean(SD)	Ν	Mean(SD)	IV,Random,95% Cl		IV,Random,95% C
Charoenlarp 1988	517	28. 8 (.8)	173	122.89 (14.06)	+	2.9 %	5.29 [2.96, 7.62
Elwood 1966	40	4 (1.5)	49	-1.6 (1.1)		3.2 %	5.60 [5.04, 6.16
Fogelholm 1994	37	141.54 (14.32)	35	34 (4.47)	-+-	1.6 %	7.54 [0.89, 14.19
Gordeuk 1987	17	125 (12.37)	9	126 (13.07)	-	0.9 %	-1.00 [-11.37, 9.37
Gordeuk 1990	40	131 (8)	35	123 (9)	+	2.4 %	8.00 [4.12, 11.88
Hoppe 2013	137.8333333 (14.25)	24	12	33 (3.5)	+-	1.1 %	4.83 [-4.70, 14.36
Kanani 2000	91	126.1 (7.63)	89	108.22 (10.38)	+	2.8 %	17.88 [15.21, 20.55
Kang 2004	11	122 (9)	14	123 (12)	+	1.3 %	-1.00 [-9.23, 7.23
Larocque 2006	12	137.5 (7.41)	9	136.56 (7.53)	+	1.7 %	0.94 [-5.52, 7.40
Marks 2014	129	134.6 (8.7)	128	130 (9.9)	+	2.9 %	4.60 [2.32, 6.88
Rybo 1985	45	137 (9)	44	133 (10)	+	2.4 %	4.00 [0.04, 7.96
Taniguchi 1991	27	2 ()	27	108 (12.5)	-	1.7 %	13.00 [6.72, 19.28
Walsh 1989	10	136 (6)	10	129 (6)	+	2.0 %	7.00 [1.74, 12.26
Yoshida 1990	6	133 (6)	6	137 (7)		1.4 %	-4.00 [-11.38, 3.38
Zaman 2013	22	132.6 (7.4)	22	127.5 (8)	+	2.2 %	5.10 [0.55, 9.65
Zhu 1998	20	136.3 (8)	17	132.2 (7.6)	+	2.1 %	4.10 [-0.93, 9.13
ubtotal (95% CI)	1837		1459		•	39.4 %	5.71 [3.93, 7.49
leterogeneity: $Tau^2 = 9.4$	6; Chi ² = 112.94, df =	18 (P<0.00001);	l ² =84%				
est for overall effect: Z =	6.29 (P < 0.00001)						
otal (95% CI)	3471		3071		•	100.0 %	5.63 [4.44, 6.82
eterogeneity: $Tau^2 = $.	.27; Chi ² = 320.63, df =	47 (P<0.00001)	; I ² =85%				
est for overall effect: Z =	9.29 (P < 0.00001)						

-100 -50 0 50 100

Favours control Favours iron

Analysis 3.1. Comparison 3 Iron deficiency, Outcome 1 Iron deficiency at end of therapy (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 3 Iron deficiency

Outcome: I Iron deficiency at end of therapy (total)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Ballin 1992	2/29	5/30		1.8 %	0.41 [0.09, 1.97]
Lanerolle 2000	28/275	56/274	-	17.7 %	0.50 [0.33, 0.76]
Leonard 2014	3/13	4/5	_ _	3.6 %	0.29 [0.10, 0.85]
Marks 2014	67/129	103/128	-	40.4 %	0.65 [0.54, 0.78]
Mujica-Coopman 2015	5/28	8/27		4.3 %	0.60 [0.23, 1.61]
Viteri 1999	1/37	7/44		1.1 %	0.17 [0.02, 1.32]
Wang 2012	23/34	31/35	-	31.1 %	0.76 [0.59, 0.99]
Total (95% CI)	545	543	•	100.0 %	0.62 [0.50, 0.76]
Total events: 129 (Iron), 214 (C	ontrol)				
Heterogeneity: Tau ² = 0.02; Ch	i ² = 8.37, df = 6 (F	P = 0.2 I); I ² =28%			
Test for overall effect: $Z = 4.47$	(P < 0.00001)				
Test for subgroup differences: N	lot applicable				

Favours iron Favours control

Analysis 3.2. Comparison 3 Iron deficiency, Outcome 2 Iron deficiency at end of therapy (sensitivity analysis).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Outcome: 2 Iron deficienc	ey at end of therapy (sensitiv	ity analysis)		
Study or subgroup	Iron	Control	Risk Ratio M- H.Random,95%	Risk Ratio M- H,Random,95%
	n/N	n/N	H,Random,95% Cl	H,Random,95%
Marks 2014	67/129	103/128	+	0.65 [0.54, 0.78]
			0.01 0.1 1 10 100 Favours iron Favours control	

Analysis 4.1. Comparison 4 Iron-deficiency anaemia, Outcome I Iron-deficiency anaemia (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 4 Iron-deficiency anaemia

Comparison: 3 Iron deficiency

Outcome: I Iron-deficiency anaemia (total)

Study or subgroup	Experimental	Control		Ratio M- 25%	Risk Ratio M- H,Random,95%
	n/N	n/N		Cl	CI
Mujica-Coopman 2015	0/28	0/27			Not estimable
			i		
			0.01 0.1 1	10 100	
			Favours iron	Favours control	

Analysis 4.2. Comparison 4 Iron-deficiency anaemia, Outcome 2 Microcytic anaemia (Total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 4 Iron-deficiency anaemia

Outcome: 2 Microcytic anaemia (Total)

Study or subgroup	Experimental	Control	Risk Ratio M- H,Random,95%	Risk Ratio M- H,Random,95%
	n/N	n/N	CI	CI
Gunaratna 2015	26/184	54/194		0.51 [0.33, 0.77]
_				
			0.01 0.1 1 10 100	
			Favours iron Favours control	

Analysis 5.1. Comparison 5 Side effects, Outcome I Any side effect (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: I Any side effect (total)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Ballin 1992	6/29	0/30		6.0 %	3.43 [0.79, 228.16]
Hoppe 2013	5/24	1/12		9.2 %	2.50 [0.33, 19.08]
Leonard 2014	6/16	1/8	—	9.7 %	3.00 [0.43, 20.86]
Maghsudlu 2008	27/185	12/182		18.5 %	2.21 [1.16, 4.23]
Marks 2014	116/129	114/128	•	20.9 %	1.01 [0.93, 1.10]
Pereira 2014	6/7	3/6		17.1 %	1.71 [0.73, 4.03]
Waldvogel 2012	29/74	/7	-	18.7 %	2.53 [1.37, 4.67]
Total (95% CI)	464	437	•	100.0 %	2.14 [0.94, 4.86]
Total events: 195 (Iron), 14	12 (Control)				
Heterogeneity: $Tau^2 = 0.8$	4; Chi ² = 49.95, df =	6 (P<0.00001); I ² =	-88%		
Test for overall effect: $Z =$	I.82 (P = 0.069)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours iron Favours control		

Analysis 5.2. Comparison 5 Side effects, Outcome 2 Any side effect (sensitivity analysis).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: 2 Any side effect (sensitivity analysis)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl_
Marks 2014	116/129	114/128	•	38.8 %	1.01 [0.93, 1.10]
Pereira 2014	6/7	3/6		28.4 %	1.71 [0.73, 4.03]
Waldvogel 2012	29/74	11/71		32.7 %	2.53 [1.37, 4.67]
Total (95% CI)	210	205	-	100.0 %	1.59 [0.66, 3.81]
Total events: 151 (Iron), 12	28 (Control)				
Heterogeneity: $Tau^2 = 0.5$	I; Chi ² = 17.52, df =	2 (P = 0.00016); I ² =89	%		
Test for overall effect: Z =	1.03 (P = 0.30)				
Test for subgroup difference	ces: Not applicable				

0.01 0.1 1 10 100 Favours iron Favours control

Analysis 5.3. Comparison 5 Side effects, Outcome 3 Any side effect (dose).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: 3 Any side effect (dose)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95 Cl
I < 30 mg					
Subtotal (95% CI)	0	0			Not estimable
Total events: 0 (Iron), 0 (Contr	rol)				
Heterogeneity: not applicable					
Test for overall effect: not appl	icable				
2 31 mg to 60 mg					
Hoppe 2013	5/24	1/12		8.6 %	2.50 [0.33, 19.08]
Leonard 2014	2/8	1/4		8.3 %	1.00 [0.13, 8.00]
Marks 2014	116/129	114/128	+	20.0 %	1.01 [0.93, 1.10]
Subtotal (95% CI)	161	144	•	36.9 %	1.01 [0.93, 1.10]
Total events: 123 (Iron), 116 (0	Control)				
Heterogeneity: $Tau^2 = 0.0$; Chi	$i^2 = 0.89$, df = 2 (P =	= 0.64); l ² =0.0%			
Test for overall effect: $Z = 0.26$	6 (P = 0.79)				
3 61 mg to 100 mg					
Leonard 2014	4/8	0/4		5.9 %	5.00 [0.33, 75.11]
Waldvogel 2012	29/74	11/71		17.8 %	2.53 [1.37, 4.67]
Subtotal (95% CI)	82	75	•	23.8 %	2.61 [1.44, 4.75]
Total events: 33 (Iron), 11 (Co	ntrol)				
Heterogeneity: $Tau^2 = 0.0$; Chi	$i^2 = 0.23$, df = 1 (P =	= 0.63); I ² =0.0%			
Test for overall effect: $Z = 3.15$	5 (P = 0.0016)				
4 > 100 mg					
Ballin 1992	6/29	0/30		5.6 %	3.43 [0.79, 228.16]
Maghsudlu 2008	27/185	12/182		17.6 %	2.21 [1.16, 4.23]
Pereira 2014	6/7	3/6	+	16.2 %	1.71 [0.73, 4.03]
Subtotal (95% CI)	221	218	•	39.4 %	2.15 [1.24, 3.73]
Total events: 39 (Iron), 15 (Co	ntrol)				
Heterogeneity: $Tau^2 = 0.02$; C	hi ² = 2.17, df = 2 (P	= 0.34); l ² =8%			
Test for overall effect: $Z = 2.74$	```				
Total (95% CI)	464	437	-	100.0 %	2.04 [0.93, 4.48]
Total events: 195 (Iron), 142 (0	,				
Heterogeneity: $Tau^2 = 0.81$; C		P<0.00001); l ² =86%			
Test for overall effect: $Z = 1.78$	· /				
Test for subgroup differences: (Chi ² = 16.30, df = 2	$(P = 0.00), I^2 = 88\%$			
		0.	05 0.2 I 5 20		
			Favours iron Favours control		

Analysis 5.4. Comparison 5 Side effects, Outcome 4 Gastrointestinal side effects (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: 4 Gastrointestinal side effects (total)

Study or subgroup	Iron	Control	Risk Ratio	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Gordeuk 1987	39/47	8/23		27.1 %	2.39 [1.34, 4.24]
Hoppe 2013	5/24	1/12		4.5 %	2.50 [0.33, 19.08]
Marks 2014	40/129	33/128	+	35.5 %	1.20 [0.81, 1.78]
Pereira 2014	6/7	2/6		11.4 %	2.57 [0.80, 8.30]
Waldvogel 2012	25/74	8/7		21.5 %	3.00 [1.45, 6.20]
Total (95% CI)	281	240	•	100.0 %	1.99 [1.26, 3.12]
Total events: 115 (Iron), 5	2 (Control)				
Heterogeneity: $Tau^2 = 0.1$	I; $Chi^2 = 7.33$, df =	4 (P = 0.12); $ ^2 = 45\%$			
Test for overall effect: Z =	2.98 (P = 0.0029)				
Test for subgroup differen	ces: Not applicable				
			0.01 0.1 1 10 100		
			Favours iron Favours control		

Analysis 5.5. Comparison 5 Side effects, Outcome 5 Gastrointestinal side effects (sensitivity analysis).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: 5 Gastrointestinal side effects (sensitivity analysis)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Marks 2014	40/129	33/128	-	45.6 %	1.20 [0.81, 1.78]
Pereira 2014	6/7	2/6		20.9 %	2.57 [0.80, 8.30]
Waldvogel 2012	25/74	8/71	-	33.5 %	3.00 [1.45, 6.20]
Total (95% CI)	210	205	•	100.0 %	1.91 [0.96, 3.80]
Total events: 71 (Iron), 43	(Control)				
Heterogeneity: $Tau^2 = 0.2$	3; Chi ² = 5.56, df =	2 (P = 0.06); I ² =64%			
Test for overall effect: Z =	1.85 (P = 0.064)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		

Favours iron

Favours control

Analysis 5.6. Comparison 5 Side effects, Outcome 6 Gastrointestinal side effects (dose).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: 6 Gastrointestinal side effects (dose)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,S CI
I < 30 mg					
Subtotal (95% CI)	0	0			Not estimable
Total events: 0 (Iron), 0 (Cont	rol)				
Heterogeneity: not applicable Test for overall effect: not app	licabla				
2 31 mg to 60 mg	licable				
Hoppe 2013	5/24	1/12		4.5 %	2.50 [0.33, 19.08]
Marks 2014	40/129	33/128	+	35.5 %	1.20 [0.81, 1.78]
Subtotal (95% CI)	153	140	•	40.0 %	1.23 [0.84, 1.81]
Total events: 45 (Iron), 34 (Co					
Heterogeneity: $Tau^2 = 0.0$; Ch	,	= 0.49); I ² =0.0%			
Test for overall effect: $Z = 1.03$	8 (P = 0.28)				
3 61 mg to 100 mg					
Waldvogel 2012	25/74	8/71		21.5 %	3.00 [1.45, 6.20]
Subtotal (95% CI)	74	71	•	21.5 %	3.00 [1.45, 6.20]
Total events: 25 (Iron), 8 (Con	itrol)				
Heterogeneity: not applicable					
Test for overall effect: $Z = 2.9$	6 (P = 0.0031)				
4 > 100 mg					
Gordeuk 1987	39/47	8/23		27.1 %	2.39 [1.34, 4.24]
Pereira 2014	6/7	2/6		11.4 %	2.57 [0.80, 8.30]
Subtotal (95% CI)	54	29	•	38.5 %	2.42 [1.45, 4.05]
Total events: 45 (Iron), 10 (Co	ntrol)				
Heterogeneity: $Tau^2 = 0.0$; Ch	$i^2 = 0.01$, $df = 1$ (P	= 0.9 l); l ² =0.0%			
Test for overall effect: $Z = 3.3$	· /				
Total (95% CI)	281	240	•	100.0 %	1.99 [1.26, 3.12]
Total events: 115 (Iron), 52 (C	,				
Heterogeneity: $Tau^2 = 0.11$; C		' = 0.12); l ² =45%			
Test for overall effect: $Z = 2.95$	` '	(P - 0.02) 2 - 7 0/			
Test for subgroup differences:	Cni= − 6.80, at = 2 ((r - 0.03), 1~ -/176			

Analysis 5.7. Comparison 5 Side effects, Outcome 7 Loose stools/diarrhoea (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: 7 Loose stools/diarrhoea (total)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Gordeuk 1990	8/40	1/36		9.5 %	7.20 [0.95, 54.79]
Leonard 2014	2/16	2/8		12.2 %	0.50 [0.09, 2.93]
Marks 2014	17/129	6/128		34.9 %	2.81 [1.15, 6.90]
Pereira 2014	2/7	2/6	_ -	4. %	0.86 [0.17, 4.37]
Rybo 1985	3/45	1/44		8.1 %	2.93 [0.32, 27.14]
Waldvogel 2012	9/74	3/71		21.3 %	2.88 [0.81, 10.20]
Total (95% CI)	311	293	◆	100.0 %	2.13 [1.10, 4.11]
Total events: 41 (Iron), 15	(Control)				
Heterogeneity: $Tau^2 = 0.1$	I; Chi ² = 5.99, df =	5 (P = 0.31); $I^2 = 17\%$			
Test for overall effect: Z =	2.24 (P = 0.025)				
Test for subgroup difference	ces: Not applicable				
- ·					
			0.01 0.1 1 10 100		
			Favours iron Favours control		

Analysis 5.8. Comparison 5 Side effects, Outcome 8 Hard stools/constipation (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: 8 Hard stools/constipation (total)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Bruner 1996	2/34	1/31		3.3 %	1.82 [0.17, 19.13]
Gordeuk 1990	10/40	5/36		19.2 %	1.80 [0.68, 4.77]
Leonard 2014	1/16	0/8		1.9 %	1.59 [0.07, 35.15]
Maghsudlu 2008	2/185	0/182		2.0 %	4.92 [0.24, 101.77]
Marks 2014	15/129	11/128		33.5 %	1.35 [0.65, 2.83]
Pereira 2014	4/7	0/6		2.4 %	7.88 [0.51, 121.96]
Rybo 1985	15/45	6/44		25.2 %	2.44 [1.04, 5.72]
Waldvogel 2012	13/74	3/7		12.4 %	4.16 [1.24, 13.98]
Total (95% CI)	530	506	•	100.0 %	2.07 [1.35, 3.17]
Total events: 62 (Iron), 26	(Control)				
Heterogeneity: $Tau^2 = 0.0$;	$Chi^2 = 4.10, df = 7$	(P = 0.77); l ² =0.0%			
Test for overall effect: Z =	3.34 (P = 0.00085)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		

Favours iron

Favours control

Analysis 5.9. Comparison 5 Side effects, Outcome 9 Hard stools/constipation (sensitivity analysis).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: 9 Hard stools/constipation (sensitivity analysis)

Study or subgroup	Iron	Control	Risk Ratio	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Bruner 1996	2/34	1/31		8.7 %	1.82 [0.17, 19.13]
Marks 2014	15/129	11/128	-	56.6 %	1.35 [0.65, 2.83]
Pereira 2014	4/7	0/6		6.5 %	7.88 [0.51, 121.96]
Waldvogel 2012	13/74	3/71		28.1 %	4.16 [1.24, 13.98]
Total (95% CI)	244	236	◆	100.0 %	2.14 [1.04, 4.38]
Total events: 34 (Iron), 15	(Control)				
Heterogeneity: $Tau^2 = 0.0$	9; Chi ² = 3.53, df =	3 (P = 0.32); $ ^2 = 5\%$			
Test for overall effect: Z =	2.07 (P = 0.038)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours iron Favours control		

Analysis 5.10. Comparison 5 Side effects, Outcome 10 Abdominal pain (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: 10 Abdominal pain (total)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Bryson 1968	1/123	0/120		1.9 %	2.93 [0.12, 71.16]
Gordeuk 1990	3/40	4/36		9.6 %	0.68 [0.16, 2.81]
Maghsudlu 2008	5/185	2/182		7.4 %	2.46 [0.48, 12.52]
Marks 2014	19/129	15/128	-	49.1 %	1.26 [0.67, 2.36]
Pereira 2014	5/7	1/6		5.7 %	4.29 [0.67, 27.24]
Rybo 1985	8/45	3/44		12.3 %	2.61 [0.74, 9.19]
Waldvogel 2012	7/74	4/71	_ -	13.9 %	1.68 [0.51, 5.49]
Total (95% CI)	603	587	•	100.0 %	1.55 [0.99, 2.41]
Total events: 48 (Iron), 29	(Control)				
Heterogeneity: $Tau^2 = 0.0$;	$Chi^2 = 4.04, df = 6$	$(P = 0.67); ^2 = 0.0\%$			
Test for overall effect: Z =	I.93 (P = 0.054)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours iron Favours control		

Analysis 5.11. Comparison 5 Side effects, Outcome 11 Nausea (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: II Nausea (total)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Bryson 1968	4/123	3/120		8.3 %	1.30 [0.30, 5.69]
Gordeuk 1990	3/40	3/36		7.7 %	0.90 [0.19, 4.18]
Leonard 2014	2/16	1/8		3.6 %	1.00 [0.11, 9.44]
Maghsudlu 2008	19/185	8/182		28.3 %	2.34 [1.05, 5.20]
Marks 2014	8/129	3/ 28		25.3 %	0.61 [0.26, 1.42]
Pereira 2014	2/7	2/6		6.8 %	0.86 [0.17, 4.37]
Rybo 1985	7/45	6/44		17.9 %	1.14 [0.42, 3.13]
Waldvogel 2012	2/74	0/71		2.0 %	4.80 [0.23, 98.27]
Total (95% CI)	619	595	•	100.0 %	1.19 [0.78, 1.82]
Total events: 47 (Iron), 36	(Control)				
Heterogeneity: $Tau^2 = 0.0$;	$Chi^2 = 6.30, df = 7$	$(P = 0.5 I); I^2 = 0.0\%$			
Test for overall effect: $Z =$	0.80 (P = 0.42)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		

Favours iron Favours control

Analysis 5.12. Comparison 5 Side effects, Outcome 12 Change in stool colour (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: 12 Change in stool colour (total)

Study or subgroup	Iron	Control	Risk Ratio	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Bruner 1996	22/34	3/3		28.8 %	6.69 [2.22, 20.16]
Leonard 2014	5/16	0/8		4.5 %	5.82 [0.36, 93.87]
Marks 2014	49/129	7/128	-	61.9 %	6.95 [3.27, 14.75]
Pereira 2014	5/7	0/6		4.8 %	9.63 [0.64, 144.88]
Total (95% CI)	186	173	•	100.0 %	6.92 [3.83, 12.52]
Total events: 81 (Iron), 10	(Control)				
Heterogeneity: $Tau^2 = 0.0$; $Chi^2 = 0.08$, $df = 3$	$B (P = 0.99); I^2 = 0.0\%$			
Test for overall effect: Z =	6.40 (P < 0.00001)				
Test for subgroup differen	ces: Not applicable				
			0.01 0.1 1 10 100		
			Favours iron Favours control		

Analysis 5.13. Comparison 5 Side effects, Outcome 13 Headache (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 5 Side effects

Outcome: 13 Headache (total)

Study or subgroup	Iron	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Gordeuk 1987	3/47	7/23	-	47.1 %	0.91 [0.42, 1.97]
Gordeuk 1990	7/40	7/36		31.4 %	0.90 [0.35, 2.32]
Maghsudlu 2008	1/185	2/182		4.9 %	0.49 [0.04, 5.38]
Pereira 2014	4/7	2/6		16.6 %	1.71 [0.47, 6.30]
Total (95% CI)	279	247	+	100.0 %	0.98 [0.58, 1.66]
Total events: 25 (Iron), 18	(Control)				
Heterogeneity: $Tau^2 = 0.0$;	Chi ² = 1.11, df = 3	(P = 0.78); I ² =0.0%			
Test for overall effect: Z =	0.09 (P = 0.93)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		

Favours iron Favours control

Analysis 6.1. Comparison 6 Iron status, Outcome I Ferritin in ng/ml (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: I Ferritin in ng/ml (total)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Mean Difference IV,Random,95% Cl	Weight	Mean Difference IV,Random,95% CI
Binkoski 2004	14	32.3 (3.)	12	17.2 (12.47)		1.4 %	15.10 [5.26, 24.94]
Booth 2014	25	25.4 (15.8)	24	18.4 (17.5)		1.5 %	7.00 [-2.35, 16.35]
Bruner 1996	37	27.3 (13.2)	36	12.1 (7.6)	+	3.0 %	15.20 [10.28, 20.12]
Brutsaert 2003	10	15.02 (7.02)	10	16.18 (7.24)	+	2.5 %	-1.16 [-7.41, 5.09]
Charoenlarp 1988	160	99.775 (54.13)	86	48 (33)		1.2 %	51.78 [40.87, 62.68]
DellaValle 2012	15	28 (8.6)	16	27.5 (13.1)	+	1.9 %	0.50 [-7.26, 8.26]
Eftekhari 2006	47	17.2 (1.28)	47	10.89 (0.55)		4.9 %	6.31 [5.91, 6.71]
Flink 2006	24	33 (14)	23	23.4 (15.8)		1.7 %	9.60 [1.05, 18.15]
Fogelholm 1992	14	26 (24.3)	17	(0.8)		0.8 %	15.00 [1.27, 28.73]
Fogelholm 1994	37	28.67 (16.22)	35	17 (9.31)	-	2.5 %	.67 [5.60, 7.74]
Gordeuk 1987	34	13 (4.09)	19	10 (4.35)	٠	4.3 %	3.00 [0.61, 5.39]
Hinton 2000	22	14.52 (7.04)	19	8.11 (3.92)	+	3.8 %	6.41 [2.98, 9.84]
Hinton 2007	10	20.82 (11.6)	10	15.18 (12.23)		1.3 %	5.64 [-4.81, 16.09]
Hoppe 2013	42.91666667 (29.79)	24	12	24 (13.5)		0.8 %	18.92 [4.76, 33.07]
ayatissa 1999	222	93.4 (39.9)	217	56.3 (30.4)	-	2.3 %	37.10 [30.47, 43.73]
lensen 1991	7	42 (23.81)	6	17 (14.7)		0.4 %	25.00 [3.80, 46.20]
Kang 2004	11	33.3 (33.4)	14	24.1 (15.8)		0.4 %	9.20 [-12.20, 30.60]
Kianfar 2000	92	21.83 (18.49)	142	2.37 (10.66)	+	3.4 %	9.46 [5.29, 23.63]
Klingshim 1992	9	23.44 (6.65)	9	15.77 (10.45)		1.8 %	7.67 [-0.42, 5.76]
LaManca 1993	10	22.5 (10.75)	10	14.3 (6.95)		1.9 %	8.20 [0.27, 16.13]
Lanerolle 2000	275	27.48 (2.25)	274	15.98 (9.3)	•	4.8 %	.50 [0.37, 2.63]
Larocque 2006	12	22.3 (9.11)	9	16.96 (6.21)	+-	2.3 %	5.34 [-1.22, 11.90]
Leonard 2014	16	32.6 (8.66)	8	31.9 (5)	+	2.8 %	0.70 [-4.78, 6.18]
Li 1994	40	30 (20.8)	40	18.8 (17.9)		1.7 %	.20 [2.70, 9.70]
Maghsudlu 2008	185	26.06 (1.77)	182	19.47 (1.57)	•	4.9 %	6.59 [6.25, 6.93]

-100 -50 0 50 100

Favours control Favours iron

(Continued . . .)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Mean Difference IV,Random,95% CI	Weight	Mean Difference IV,Random,95% CI
Marks 2014	129	17 (10.9)	128	10.6 (8.4)	+	4.3 %	6.40 [4.02, 8.78]
McClung 2009	85	32 (22.1)	86	26 (18.3)		2.5 %	6.00 [-0.09, 2.09]
Mujica-Coopman 2015	28	30.2 (21.2)	27	20.3 (13.5)	-+-	1.5 %	9.90 [0.54, 19.26]
Murray-Kolb 2007	56	35.4 (34.46)	57	21.16 (20.11)		1.3 %	14.24 [3.81, 24.67]
Newhouse 1989	19	37.7 (19.7)	18	17.2 (8.9)		1.4 %	20.50 [10.73, 30.27]
Radjen 2011	19	24.94 (5.83)	18	8.99 (2.05)	+	4.1 %	5.95 [3.16, 8.74]
Rowland 1988	7	26.6 (10.1)	7	8.6 (3.9)		1.8 %	18.00 [9.98, 26.02]
Swain 2007	9	4.6 (6.9)	12	0.5 (4.5)	+	2.9 %	4.10 [-1.08, 9.28]
Taniguchi 1991	27	5.4 (2.95)	27	3.25 (0.55)		4.8 %	2.15 [1.02, 3.28]
Verdon 2003	71	21 (9.2)	65	13.7 (6.9)	+	4.2 %	7.30 [4.58, 10.02]
Viteri 1999	37	14.81 (17.52)	44	-2.96 (13.53)	+	2.2 %	17.77 [10.85, 24.69]
Waldvogel 2012	74	28 (9.8)	71	12.9 (8.3)	+	4.0 %	5. 0 [2. 5, 8.05]
Walsh 1989	10	20.8 (12)	10	15.7 (9.9)	+-	1.4 %	5.10 [-4.54, 14.74]
Yadrick 1989	9	41.5 (14.1)	9	28.2 (16.8)		0.8 %	3.30 [-1.03, 27.63]
Yoshida 1990	6	22 (5)	6	15 (6)	+	2.5 %	7.00 [0.75, 3.25]
Zaman 2013	22	45.2 (26.6)	22	30 (20.4)		0.8 %	15.20 [1.19, 29.21]
Zhu 1998	20	36.9 (24)	17	16.2 (13.5)		1.0 %	20.70 [8.38, 33.02]
Total (95% CI) Heterogeneity: Tau ² = 9.96; Chi ² = 4 Test for overall effect: $Z = 14.63$ (P < Test for subgroup differences: Not app	0.00001)	41 (P<0.00001);	1901 ² =91%		,	100.0 %	10.27 [8.90, 11.65]

100 -100 -50 0 50

Favours control Favours iron

Daily iron supplementation for improving anaemia, iron status and health in menstruating women (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

(... Continued)

Analysis 6.2. Comparison 6 Iron status, Outcome 2 Ferritin in ng/ml (cointervention).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 2 Ferritin in ng/ml (cointervention)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Mean Difference IV,Random,95% Cl	Weight	Mean Difference IV,Random,95% CI
Iron alone							
Binkoski 2004	14	32.3 (13.1)	12	17.2 (12.47)		1.3 %	15.10 [5.26, 24.94]
Booth 2014	25	25.4 (15.8)	24	18.4 (17.5)		1.4 %	7.00 [-2.35, 6.35]
Bruner 1996	37	27.3 (13.2)	36	12.1 (7.6)	+	2.9 %	5.20 [0.28, 20.12]
Brutsaert 2003	10	15.02 (7.02)	10	16.18 (7.24)	+	2.3 %	-1.16 [-7.41, 5.09]
Charoenlarp 1988	160	99.775 (54.13)	86	48 (33)		1.1 %	51.78 [40.87, 62.68]
DellaValle 2012	15	28 (8.6)	16	27.5 (13.1)	+	1.8 %	0.50 [-7.26, 8.26]
Eftekhari 2006	23	16.8 (1.5)	22	(0.3)	•	4.9 %	5.80 [5.17, 6.43]
Flink 2006	24	33 (14)	23	23.4 (15.8)		1.5 %	9.60 [1.05, 18.15]
Fogelholm 1992	14	26 (24.3)	17	(0.8)		0.7 %	5.00 [.27, 28.73]
Fogelholm 1994	37	28.67 (16.22)	35	7 (9.3)	+	2.3 %	.67 [5.60, 7.74]
Gordeuk 1987	34	13 (4.09)	19	10 (4.35)	+	4.3 %	3.00 [0.61, 5.39]
Hinton 2000	22	14.52 (7.04)	19	8.11 (3.92)	+	3.7 %	6.41 [2.98, 9.84]
Hinton 2007	10	20.82 (11.6)	10	15.18 (12.23)		1.2 %	5.64 [-4.81, 16.09]
Hoppe 2013	42.9166667 (29.79)	24	12	24 (13.5)		0.7 %	18.92 [4.76, 33.07]
Jensen 1991	7	42 (23.81)	6	17 (14.7)		0.3 %	25.00 [3.80, 46.20]
Kang 2004	11	33.3 (33.4)	4	24.1 (15.8)	_ 	0.3 %	9.20 [-12.20, 30.60]
Kianfar 2000	92	21.83 (18.49)	142	2.37 (10.66)	+	3.3 %	19.46 [15.29, 23.63]
Klingshim 1992	9	23.44 (6.65)	9	15.77 (10.45)		1.7 %	7.67 [-0.42, 15.76]
LaManca 1993	10	22.5 (10.75)	10	14.3 (6.95)		1.7 %	8.20 [0.27, 16.13]
Lanerolle 2000	275	27.48 (2.25)	274	15.98 (9.3)	•	4.8 %	1.50 [10.37, 12.63]
Larocque 2006	12	22.3 (9.11)	9	16.96 (6.21)	+	2.2 %	5.34 [-1.22, 11.90]
Leonard 2014	16	32.6 (8.66)	8	31.9 (5)	+	2.6 %	0.70 [-4.78, 6.18]
Li 1994	40	30 (20.8)	40	18.8 (17.9)		1.6 %	.20 [2.70, 9.70]
Maghsudlu 2008	185	26.06 (1.77)	182	19.47 (1.57)	4	5.0 %	6.59 [6.25, 6.93]

-100 -50 0 50 100

Favours control Favours iron

(Continued ...)

(... Continued)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mea Differenc
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% Cl		IV,Random,95% (
Marks 2014	129	17 (10.9)	128	10.6 (8.4)	÷	4.3 %	6.40 [4.02, 8.78
McClung 2009	85	32 (22.1)	86	26 (18.3)		2.3 %	6.00 [-0.09, 12.09
Mujica-Coopman 2015	28	30.2 (21.2)	27	20.3 (13.5)		1.4 %	9.90 [0.54, 19.26
Murray-Kolb 2007	56	35.4 (34.46)	57	21.16 (20.11)		1.2 %	14.24 [3.81, 24.67
Newhouse 1989	19	37.7 (19.7)	18	17.2 (8.9)		1.3 %	20.50 [10.73, 30.27
Radjen 2011	19	24.94 (5.83)	18	8.99 (2.05)	+	4.0 %	15.95 [13.16, 18.74
Rowland 1988	7	26.6 (10.1)	7	8.6 (3.9)		1.7 %	18.00 [9.98, 26.02
Swain 2007	9	4.6 (6.9)	12	0.5 (4.5)	+	2.7 %	4.10 [-1.08, 9.28
Verdon 2003	71	21 (9.2)	65	13.7 (6.9)	*	4.1 %	7.30 [4.58, 10.02
Viteri 1999	37	4.8 (7.52)	44	-2.96 (13.53)	+	2.0 %	17.77 [10.85, 24.69
Waldvogel 2012	74	28 (9.8)	71	12.9 (8.3)	+	3.9 %	15.10 [12.15, 18.05
Walsh 1989	10	20.8 (12)	10	15.7 (9.9)		1.3 %	5.10 [-4.54, 14.74
Zhu 1998	20	36.9 (24)	17	16.2 (13.5)		0.9 %	20.70 [8.38, 33.02
Subtotal (95% CI)	1670		1595	· · ·	,	84.4 %	10.05 [8.55, 11.54
2 Iron + vitamin C versus vitamin C Jayatissa 1999 Taniguchi 1991	222 27	93.4 (39.9) 5.4 (2.95)	217 27	56.3 (30.4) 3.25 (0.55)	-	2.1 % 4.8 %	37.10 [30.47, 43.73 2.15 [1.02, 3.28
Jayatissa 1999	222	93.4 (39.9)	217	56.3 (30.4)	+	2.1 %	37.10 [30.47, 43.73
Zaman 2013	27	45.2 (26.6)	22	30 (20.4)		0.7 %	15.20 [1.19, 29.21
		43.2 (20.0)		50 (20.4)			-
Subtotal (95% CI) Heterogeneity: Tau ² = 503.56; Chi ² = Test for overall effect: Z = 1.37 (P = B Iron + cointervention versus cointe	0.17)	= 2 (P<0.00001)	266 ;; ² =98%			/./ %	18.10 [-7.79, 44.00
Eftekhari 2006	24	17.6 (0.9)	25	10.8 (0.7)	•	5.0 %	6.80 [6.35, 7.25
Yadrick 1989	9	41.5 (14.1)	9	28.2 (16.8)		0.7 %	3.30 [-1.03, 27.63
Yoshida 1990	6	22 (5)	6	15 (6)	+	2.3 %	7.00 [0.75, 13.25
Subtotal (95% CI)	39		40		•	7.9 %	6.81 [6.36, 7.26
Heterogeneity: Tau ² = 0.0; Chi ² = 0.7 Fest for overall effect: Z = 29.56 (P < Fotal (95% CI)		9 = 0.67); I ² =0.09	[%] 1901		,	1 00.0 %	9.97 [8.70, 11.25
Heterogeneity: Tau ² = 8.52; Chi ² = 4 Test for overall effect: $Z = 15.29$ (P < Test for subgroup differences: Chi ² =	(100001)	× /·					

Analysis 6.3. Comparison 6 Iron status, Outcome 3 Ferritin in ng/ml (age).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 3 Ferritin in ng/ml (age)

Mea Differenc IV,Random,95% (Weight	Mean Difference IV,Random,95% CI	Mean(SD)	Control N	Mean(SD)	lron N	Study or subgroup
14,14and0m,75764		IV, Mandolin, 7576 Ci	T lean(SD)	IN	T lean(SD)	IN	1 12 += 10
15.20 [10.28, 20.12	3.0 %	+	2. (7.6)	36	27.3 (13.2)	37	I I2 to I8 years of age Bruner 1996
- 6.31 [5.91, 6.71	4.9 %		10.89 (0.55)	47	17.2 (1.28)	47	Eftekhari 2006
37.10 [30.47, 43.73	2.3 %	+	56.3 (30.4)	217	93.4 (39.9)	222	Jayatissa 1999
19.46 [15.29, 23.63	3.4 %	+	2.37 (10.66)	142	21.83 (18.49)	92	Kianfar 2000
.50 [0.37, 2.63	4.8 %	•	15.98 (9.3)	274	27.48 (2.25)	275	Lanerolle 2000
5.34 [-1.22, 11.90	2.3 %	+	16.96 (6.21)	9	22.3 (9.11)	12	Larocque 2006
5.10 [-4.54, 14.74	1.4 %	+-	15.7 (9.9)	10	20.8 (12)	10	Walsh 1989
14.19 [9.70, 18.68	22.2 %	•		735		695	Subtotal (95% CI)
Not estimabl				0			2 50 to 55 years of age Subtotal (95% CI) Heterogeneity: not applicable
							Heterogeneity: not applicable Test for overall effect: not applical
						Jicable	3 Mixed/unstated
15.10 [5.26, 24.94	1.4 %		17.2 (12.47)	12	32.3 (13.1)	4	Binkoski 2004
7.00 [-2.35, 16.35	1.5 %		18.4 (17.5)	24	25.4 (15.8)	25	Booth 2014
	2.5 %	+	16.18 (7.24)	10	15.02 (7.02)	10	Brutsaert 2003
-1.16 [-7.41, 5.09				86	99.775 (54.13)	160	Charoenlarp 1988
-1.16 [-7.41, 5.09 51.78 [40.87, 62.68	1.2 %		48 (33)	00	///////////////////////////////////////	100	
L	1.2 % 1.9 %	+	48 (33) 27.5 (13.1)	16	28 (8.6)	15	DellaValle 2012
51.78 [40.87, 62.68					· · · ·		DellaValle 2012 Flink 2006
5 I.78 [40.87, 62.68 0.50 [-7.26, 8.26	1.9 %		27.5 (13.1)	16	28 (8.6)	15	
51.78 [40.87, 62.68 0.50 [-7.26, 8.26 9.60 [1.05, 18.15	1.9 % 1.7 %	 +	27.5 (13.1) 23.4 (15.8)	16 23	28 (8.6) 33 (14)	15 24	Flink 2006
51.78 [40.87, 62.68 0.50 [-7.26, 8.26 9.60 [1.05, 18.15 15.00 [1.27, 28.73	1.9 % 1.7 % 0.8 %		27.5 (13.1) 23.4 (15.8) 11 (10.8)	16 23 17	28 (8.6) 33 (14) 26 (24.3)	15 24 14	Flink 2006 Fogelholm 1992

Favours control Favours iron

(Continued . . .)

(... Continued)

Study or subgroup	Iron		Control		Mean Difference	Weight	Me Differer
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95%
Hinton 2007	10	20.82 (11.6)	10	15.18 (12.23)	+-	1.3 %	5.64 [-4.81, 16.0
Hoppe 2013	42.9166667 (29.79)	24	12	24 (13.5)		0.8 %	18.92 [4.76, 33.0
Jensen 1991	7	42 (23.81)	6	17 (14.7)		0.4 %	25.00 [3.80, 46.2
Kang 2004	11	33.3 (33.4)	14	24.1 (15.8)		0.4 %	9.20 [-12.20, 30.6
Klingshim 1992	9	23.44 (6.65)	9	15.77 (10.45)	+	1.8 %	7.67 [-0.42, 15.7
LaManca 1993	10	22.5 (10.75)	10	14.3 (6.95)	+	1.9 %	8.20 [0.27, 16.1
Leonard 2014	16	32.6 (8.66)	8	31.9 (5)	+	2.8 %	0.70 [-4.78, 6.1
Li 1994	40	30 (20.8)	40	8.8 (7.9)	-	1.7 %	11.20 [2.70, 19.7
Maghsudlu 2008	185	26.06 (1.77)	182	19.47 (1.57)	•	4.9 %	6.59 [6.25, 6.9
Marks 2014	129	17 (10.9)	128	10.6 (8.4)	+	4.3 %	6.40 [4.02, 8.7
McClung 2009	85	32 (22.1)	86	26 (18.3)	+	2.5 %	6.00 [-0.09, 2.0
Mujica-Coopman 2015	28	30.2 (21.2)	27	20.3 (13.5)		1.5 %	9.90 [0.54, 19.2
Murray-Kolb 2007	56	35.4 (34.46)	57	21.16 (20.11)		1.3 %	14.24 [3.81, 24.6
Newhouse 1989	19	37.7 (19.7)	18	17.2 (8.9)		1.4 %	20.50 [10.73, 30.2
Radjen 2011	19	24.94 (5.83)	18	8.99 (2.05)	+	4.1 %	15.95 [13.16, 18.7
Rowland 1988	7	26.6 (10.1)	7	8.6 (3.9)	-	1.8 %	18.00 [9.98, 26.0
Swain 2007	9	4.6 (6.9)	12	0.5 (4.5)	+	2.9 %	4.10 [-1.08, 9.2
Taniguchi 1991	27	5.4 (2.95)	27	3.25 (0.55)		4.8 %	2.15 [1.02, 3.2
Verdon 2003	71	21 (9.2)	65	13.7 (6.9)	+	4.2 %	7.30 [4.58, 10.0
Viteri 1999	37	14.81 (17.52)	44	-2.96 (13.53)	-	2.2 %	17.77 [10.85, 24.6
Waldvogel 2012	74	28 (9.8)	71	12.9 (8.3)	+	4.0 %	15.10 [12.15, 18.0
Yadrick 1989	9	41.5 (14.1)	9	28.2 (16.8)		0.8 %	3.30 [- .03, 27.6
Yoshida 1990	6	22 (5)	6	15 (6)	+	2.5 %	7.00 [0.75, 13.2
Zaman 2013	22	45.2 (26.6)	22	30 (20.4)		0.8 %	15.20 [1.19, 29.2
		36.9 (24)	17	16.2 (13.5)		1.0 %	20.70 [8.38, 33.0
Zhu 1998	20	JU.7 (Z-1)					

Analysis 6.4. Comparison 6 Iron status, Outcome 4 Ferritin in ng/ml (baseline Hb).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 4 Ferritin in ng/ml (baseline Hb)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI	-	IV,Random,95% CI
Anaemic							
Kianfar 2000	47	21.7 (19.2)	70	0.8 (9.3)	+	2.4 %	20.90 [14.99, 26.81]
McClung 2009	18	14.5 (8.7)	17	9.7 (5.5)	+	2.8 %	4.80 [0.01, 9.59]
Murray-Kolb 2007	7	22.8 (17.7)	13	9.2 (7.7)	-	1.4 %	3.60 [4.20, 23.00]
Radjen 2011	10	24.32 (6.92)	10	8.33 (2.52)	+	2.9 %	5.99 [.43, 20.55]
Subtotal (95% CI)	92		110		•	9.5 %	13.74 [6.32, 21.16]
Heterogeneity: Tau ² = 47.2	$15; Chi^2 = 19.76, df = 3$	8 (P = 0.00019);	l ² =85%				
Test for overall effect: $Z = 3$	3.63 (P = 0.00028)						
Non anaemic Binkoski 2004	4	32.3 (13.1)	12	17.2 (12.47)		1.3 %	15.10 [5.26, 24.94]
Booth 2014	25	25.4 (15.8)	24	18.4 (17.5)		1.4 %	7.00 [-2.35, 16.35]
Bruner 1996	37	27.3 (13.2)	36	12.1 (7.6)	+	2.8 %	15.20 [10.28, 20.12]
Brutsaert 2003	10	15.02 (7.02)	10	16.18 (7.24)	+	2.3 %	-1.16 [-7.41, 5.09]
DellaValle 2012	15	28 (8.6)	16	27.5 (3.)	+	1.8 %	0.50 [-7.26, 8.26]
Flink 2006	24	33 (14)	23	23.4 (15.8)		1.6 %	9.60 [1.05, 18.15]
Fogelholm 1992	4	26 (24.3)	17	(0.8)		0.8 %	5.00 [.27, 28.73]
Hinton 2000	22	14.52 (7.04)	19	8.11 (3.92)	+	3.4 %	6.41 [2.98, 9.84]
Hinton 2007	10	20.82 (11.6)	10	15.18 (12.23)	+-	1.2 %	5.64 [-4.81, 16.09]
Hoppe 2013	42.9166667 (29.79)	24	12	24 (13.5)		0.7 %	8.92 [4.76, 33.07]
Jensen 1991	7	42 (23.81)	6	17 (14.7)		0.4 %	25.00 [3.80, 46.20]
Kianfar 2000	43	23 (7.9)	72	3.9 (11.7)	+	3.3 %	19.10 [15.51, 22.69]
Klingshim 1992	9	23.44 (6.65)	9	15.77 (10.45)	+-	1.7 %	7.67 [-0.42, 15.76]
Leonard 2014	16	32.6 (8.66)	8	31.9 (5)	+	2.5 %	0.70 [-4.78, 6.18]
Maghsudlu 2008	185	26.06 (1.77)	182	19.47 (1.57)	•	4.4 %	6.59 [6.25, 6.93]

-100 -50 0 50 100

Favours iron

Favours control

(Continued . . .)

							(Continue
Study or subgroup	Iron		Control		Mean Difference	Weight	Mear Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% C
McClung 2009	66	36.76 (22.23)	65	30.2 (18.12)		2.0 %	6.56 [-0.38, 13.50]
Murray-Kolb 2007	39	41 (38.52)	44	24.7 (21.33)		0.8 %	16.30 [2.67, 29.93]
Newhouse 1989	19	37.7 (19.7)	18	17.2 (8.9)		1.3 %	20.50 [10.73, 30.27]
Radjen 2011	9	25.63 (4.64)	8	9.83 (0.84)	*	3.6 %	15.80 [12.71, 18.89
Rowland 1988	7	26.6 (10.1)	7	8.6 (3.9)	+	1.7 %	18.00 [9.98, 26.02
Swain 2007	9	4.6 (6.9)	12	0.5 (4.5)	+	2.7 %	4.10 [-1.08, 9.28
Verdon 2003	71	21 (9.2)	65	13.7 (6.9)	+	3.7 %	7.30 [4.58, 10.02
Waldvogel 2012	74	28 (9.8)	71	12.9 (8.3)	+	3.6 %	15.10 [12.15, 18.05
Zhu 1998	20	36.9 (24)	17	16.2 (13.5)		0.9 %	20.70 [8.38, 33.02
Subtotal (95% CI)	769		763		•	49.9 %	10.40 [7.90, 12.89]
Heterogeneity: Tau ² = 24.43; Chi ² Test for overall effect: $Z = 8.17$ (P B Mixed/unstated		= 23 (P<0.00001)); I ² =86%				
Charoenlarp 1988	160	99.775 (54.13)	86	48 (33)		1.1 %	51.78 [40.87, 62.68
Eftekhari 2006	47	17.2 (1.28)	47	10.89 (0.55)	1	4.4 %	6.31 [5.91, 6.71
Fogelholm 1994	37	28.67 (16.22)	35	17 (9.31)	+	2.3 %	.67 [5.60, 7.74
Gordeuk 1987	34	13 (4.09)	19	10 (4.35)	*	3.9 %	3.00 [0.61, 5.39
Jayatissa 1999	222	93.4 (39.9)	217	56.3 (30.4)	-	2.1 %	37.10 [30.47, 43.73
Kang 2004	11	33.3 (33.4)	14	24.1 (15.8)		0.4 %	9.20 [-12.20, 30.60
LaManca 1993	10	22.5 (10.75)	10	14.3 (6.95)		1.7 %	8.20 [0.27, 16.13
Lanerolle 2000	275	27.48 (2.25)	274	15.98 (9.3)		4.3 %	.50 [0.37, 2.63
Larocque 2006	12	22.3 (9.11)	9	16.96 (6.21)	+	2.1 %	5.34 [-1.22, 11.90
Li 1994	40	30 (20.8)	40	18.8 (17.9)		1.6 %	11.20 [2.70, 19.70
Marks 2014	129	17 (10.9)	128	10.6 (8.4)	*	3.9 %	6.40 [4.02, 8.78
Mujica-Coopman 2015	28	30.2 (21.2)	27	20.3 (13.5)		1.4 %	9.90 [0.54, 19.26
Taniguchi 1991	27	5.4 (2.95)	27	3.25 (0.55)		4.3 %	2.15 [1.02, 3.28
Viteri 1999	37	14.81 (17.52)	44	-2.96 (13.53)	-	2.0 %	17.77 [10.85, 24.69
	10	20.8 (12)	10	15.7 (9.9)	+-	1.3 %	5.10 [-4.54, 14.74
Walsh 1989	10					0.7 %	13.30 [-1.03, 27.63
Walsh 1989 Yadrick 1989	9	41.5 (14.1)	9	28.2 (16.8)			
		41.5 (14.1) 22 (5)	9 6	28.2 (16.8) 15 (6)		2.3 %	7.00 [0.75, 13.25
Yadrick 1989	9	. ,					7.00 [0.75, 13.25

Favours control Favours iron

(... Continued) Mean Difference Mean Difference Study or subgroup Iron Control Weight Ν Mean(SD) Ν Mean(SD) IV,Random,95% CI IV,Random,95% CI Heterogeneity: Tau² = 21.34; Chi² = 306.21, df = 17 (P<0.00001); l² =94% Test for overall effect: Z = 8.28 (P < 0.00001)Total (95% CI) 100.0 % 10.65 [9.31, 11.99] 1977 1897 + Heterogeneity: $Tau^2 = 10.66$; $Chi^2 = 516.18$, df = 45 (P<0.00001); $I^2 = 91\%$ Test for overall effect: Z = 15.55 (P < 0.00001) Test for subgroup differences: $Chi^2 = 0.82$, df = 2 (P = 0.66), $l^2 = 0.0\%$ -100 -50 0 50 100 Favours control Favours iron

Analysis 6.5. Comparison 6 Iron status, Outcome 5 Ferritin in ng/ml (iron status).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 5 Ferritin in ng/ml (iron status)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% Cl	-	IV,Random,95% CI
Iron deficient							
Binkoski 2004	14	32.3 (13.1)	12	17.2 (12.47)		1.3 %	15.10 [5.26, 24.94]
Bruner 1996	37	27.3 (13.2)	36	2. (7.6)	+	2.8 %	15.20 [10.28, 20.12]
Brutsaert 2003	10	15.02 (7.02)	10	16.18 (7.24)	+	2.3 %	-1.16 [-7.41, 5.09]
DellaValle 2012	8	25.1 (9.5)	8	20.7 (9.3)	+-	1.4 %	4.40 [-4.81, 13.61]
Eftekhari 2006	47	17.2 (1.28)	47	10.89 (0.55)	,	4.7 %	6.31 [5.91, 6.71]
Flink 2006	24	33 (14)	23	23.4 (15.8)		1.6 %	9.60 [1.05, 18.15]
Fogelholm 1992	14	26 (24.3)	17	(0.8)		0.8 %	15.00 [1.27, 28.73]
Fogelholm 1994	37	28.67 (16.22)	35	17 (9.31)	+	2.4 %	.67 [5.60, 7.74]
Hinton 2000	22	14.52 (7.04)	19	8.11 (3.92)	+	3.6 %	6.41 [2.98, 9.84]
Hinton 2007	10	20.82 (11.6)	10	15.18 (12.23)	+	1.2 %	5.64 [-4.81, 16.09]

-100 -50 0 50 10 Favours control Favours iron

Mean Mean Difference Difference Study or subgroup Iron Control Weight Ν Mean(SD) Ν Mean(SD) IV,Random,95% CI IV,Random,95% CI 7.67 [-0.42, | 5.76] Klingshim 1992 9 23.44 (6.65) 9 15.77 (10.45) 1.7 % LaManca 1993 10 22.5 (10.75) 1.7 % 8.20 [0.27, 16.13] 10 14.3 (6.95) Leonard 2014 0.70 [-4.78, 6.18] 16 32.6 (8.66) 8 31.9 (5) 2.6 % Marks 2014 73 12.7 (7.4) 6.9 (4.3) 5.80 [3.83, 7.77] 71 4.2 % 5.44 [0.91, 9.97] McClung 2009 32 18.48 (9.56) 31 13.04 (8.77) 3.0 % Murray-Kolb 2007 23.87 (20.41) 12.96 (12.67) 1.9 % 10.91 [3.62, 18.20] 42 41 Radjen 2011 15.95 [13.16, 18.74] 19 24.94 (5.83) 18 8.99 (2.05) 3.9 % Taniguchi 1991 27 5.4 (2.95) 2.15 [1.02, 3.28] 27 3.25 (0.55) 4.5 % Waldvogel 2012 74 28 (9.8) 71 + 3.8 % 15.10 [12.15, 18.05] 12.9 (8.3) 0.9 % Zhu 1998 20.70 [8.38, 33.02] 20 36.9 (24) 17 16.2 (13.5) Subtotal (95% CI) 545 520 50.3 % 8.40 [6.31, 10.49] Heterogeneity: Tau² = 13.68; Chi² = 169.59, df = 19 (P<0.00001); l² = 89% Test for overall effect: Z = 7.87 (P < 0.00001) 2 Not iron deficient Marks 2014 56 22.7 (12.1) 15.1 (9.9) 3.2 % 7.60 [3.52, 11.68] 57 McClung 2009 52 40.3 (23.5) 1.7 % 6.50 [-1.61, 14.61] 51 33.8 (18.2) Murray-Kolb 2007 14 70.3 (44.4) 16 42.2 (20.7) 0.3 % 28.10 [2.73, 53.47] Newhouse 1989 19 37.7 (19.7) ----20.50 [10.73, 30.27] 18 17.2 (8.9) 1.3 % 26.6 (10.1) _ Rowland 1988 7 7 1.7 % 18.00 [9.98, 26.02] 8.6 (3.9) Subtotal (95% CI) 148 149 • 8.2 % 13.38 [6.74, 20.01] Heterogeneity: Tau² = 33.97; Chi² = 12.10, df = 4 (P = 0.02); l² =67% Test for overall effect: Z = 3.95 (P = 0.000077) 3 Mixed/unstated Booth 2014 25.4 (15.8) 18.4 (17.5) 1.4 % 7.00 [-2.35, 16.35] 25 24 Charoenlard 1988 160 99.775 (54.13) 86 48 (33) 1.1 % 51.78 [40.87, 62.68] Gordeuk 1987 34 4.1 % 3.00 [0.61, 5.39] 13 (4.09) 19 10 (4.35) 18.92 [4.76, 33.07] Hoppe 2013 42.9166667 (29.79) 24 12 24 (13.5) 07% Jayatissa 1999 222 93.4 (39.9) 217 56.3 (30.4) 2.1 % 37.10 [30.47, 43.73] lensen 1991 7 42 (23.81) 17 (14.7) 0.4 % 25.00 [3.80, 46.20] 6 Kang 2004 П 33.3 (33.4) 14 24.1 (15.8) 04% 9.20 [-12.20, 30.60] Kianfar 2000 92 21.83 (18.49) 142 2.37 (10.66) + 32% 19.46 [15.29, 23.63] 4.5 % Lanerolle 2000 275 27.48 (2.25) 274 15.98 (9.3) | | .50 [| 0.37, | 2.63] Larocque 2006 12 22.3 (9.11) 9 16.96 (6.21) 2.2 % 5.34 [-1.22, 11.90]

-100 -50 0 50 100

Favours control Favours iron

(Continued . . .)

(... Continued)

							(
Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Li 1994	40	30 (20.8)	40	18.8 (17.9)		1.6 %	.20 [2.70, 9.70]
Maghsudlu 2008	185	26.06 (1.77)	182	19.47 (1.57)	•	4.7 %	6.59 [6.25, 6.93]
Mujica-Coopman 2015	28	30.2 (21.2)	27	20.3 (13.5)		1.4 %	9.90 [0.54, 19.26]
Swain 2007	9	4.6 (6.9)	12	0.5 (4.5)	+	2.7 %	4.10 [-1.08, 9.28]
Verdon 2003	71	21 (9.2)	65	13.7 (6.9)	+	3.9 %	7.30 [4.58, 10.02]
Viteri 1999	37	4.8 (7.52)	44	-2.96 (13.53)	+	2.0 %	17.77 [10.85, 24.69]
Walsh 1989	10	20.8 (12)	10	15.7 (9.9)	+-	1.3 %	5.10 [-4.54, 14.74]
Yadrick 1989	9	41.5 (14.1)	9	28.2 (16.8)		0.7 %	3.30 [-1.03, 27.63]
Yoshida 1990	6	22 (5)	6	15 (6)	+	2.3 %	7.00 [0.75, 3.25]
Zaman 2013	22	45.2 (26.6)	22	30 (20.4)		0.7 %	15.20 [1.19, 29.21]
Subtotal (95% CI)	1279		1220		•	41.5 %	12.88 [9.99, 15.78]
Heterogeneity: $Tau^2 = 27.10$; Chi ²		19 (P<0.00001); I ² =93%				
Test for overall effect: $Z = 8.72$ (P	< 0.00001)						
Total (95% CI)	1972		1889		*	100.0 %	10.13 [8.81, 11.45]
Heterogeneity: $Tau^2 = 9.70$; Chi ²	= 476.20, df = 4	44 (P<0.00001);	$ ^2 = 9 \%$				
Test for overall effect: $Z = 15.03$ (P < 0.00001)						
Test for subgroup differences: Chi ²	² = 7.02, df = 2	$(P = 0.03), I^2 =$	71%				
					.		

-100 -50 0 50 100

Favours control Favours iron

Daily iron supplementation for improving anaemia, iron status and health in menstruating women (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. (... Continued)

Analysis 6.6. Comparison 6 Iron status, Outcome 6 Ferritin in ng/ml (iron-deficiency anaemia).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 6 Ferritin in ng/ml (iron-deficiency anaemia)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Mean Difference IV,Random,95% CI	Weight	Mean Difference IV,Random,95% CI
I Iron-deficiency anaemia							
McClung 2009	18	14.5 (8.7)	17	9.7 (5.5)	+	2.8 %	4.80 [0.01, 9.59]
Murray-Kolb 2007	17	22.8 (17.7)	13	9.2 (7.7)		1.4 %	3.60 [4.20, 23.00]
Radjen 2011	10	24.32 (6.92)	10	8.33 (2.52)	+	2.9 %	5.99 [.43, 20.55]
Subtotal (95% CI)	45		40		•	7.2 %	11.27 [3.26, 19.29]
Heterogeneity: Tau ² = 39.88; Chi ² Test for overall effect: $Z = 2.76$ (P 2 Iron deficient, not anaemic		2 (P = 0.004); I ²	=82%				
Binkoski 2004	14	32.3 (13.1)	12	17.2 (12.47)	-	1.3 %	15.10 [5.26, 24.94]
Bruner 1996	37	27.3 (13.2)	36	2. (7.6)	+	2.8 %	15.20 [10.28, 20.12]
Brutsaert 2003	10	15.02 (7.02)	10	16.18 (7.24)	+	2.3 %	-1.16 [-7.41, 5.09]
DellaValle 2012	8	25.1 (9.5)	8	20.7 (9.3)	+-	1.4 %	4.40 [-4.81, 13.61]
Flink 2006	24	33 (14)	23	23.4 (15.8)		1.6 %	9.60 [1.05, 18.15]
Fogelholm 1992	14	26 (24.3)	17	(0.8)		0.8 %	5.00 [.27, 28.73]
Hinton 2000	22	14.52 (7.04)	19	8.11 (3.92)	+	3.5 %	6.41 [2.98, 9.84]
Hinton 2007	10	20.82 (11.6)	10	5. 8 (2.23)	+	1.2 %	5.64 [-4.81, 16.09]
Klingshim 1992	9	23.44 (6.65)	9	15.77 (10.45)	+	1.7 %	7.67 [-0.42, 15.76]
Leonard 2014	16	32.6 (8.66)	8	31.9 (5)	+	2.6 %	0.70 [-4.78, 6.18]
McClung 2009	14	23.6 (8.3)	14	17.1 (10.4)	+	2.0 %	6.50 [-0.47, 3.47]
Murray-Kolb 2007	25	24.6 (22.4)	28	14.7 (14.2)		1.2 %	9.90 [-0.34, 20.14]
Newhouse 1989	19	37.7 (19.7)	18	17.2 (8.9)		1.3 %	20.50 [10.73, 30.27]
Radjen 2011	9	25.63 (4.64)	8	9.83 (0.84)	+	3.6 %	15.80 [12.71, 18.89]
Waldvogel 2012	74	28 (9.8)	71	12.9 (8.3)	+	3.7 %	15.10 [12.15, 18.05]
Zhu 1998	20	36.9 (24)	17	16.2 (13.5)		0.9 %	20.70 [8.38, 33.02]
Subtotal (95% CI)	325		308		•	31.8 %	10.07 [6.77, 13.38]
Heterogeneity: $Tau^2 = 30.18$; Chi ² Test for overall effect: $Z = 5.97$ (P	= 66.88, df =	15 (P<0.00001);		-100	0 -50 0 50 1	91.8 %	10.07 [0.77, 13.36

Favours control Favours iron

(Continued . . .)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Mean Difference IV,Random,95% Cl	Weight	Mean Difference IV,Random,95% CI
Not iron deficient, not a	naemic			. ,			
McClung 2009	52	40.3 (23.5)	51	33.8 (18.2)		1.7 %	6.50 [-1.61, 14.61]
Rowland 1988	7	26.6 (10.1)	7	8.6 (3.9)	-	1.7 %	18.00 [9.98, 26.02]
Subtotal (95% CI) Heterogeneity: Tau ² = 49. Fest for overall effect: $Z =$		(P = 0.05); I ² =7	58 74%		•	3.4 %	12.27 [1.00, 23.54]
Booth 2014	25	25.4 (15.8)	24	18.4 (17.5)		1.4 %	7.00 [-2.35, 6.35]
Charoenlarp 1988	160	99.775 (54.13)	86	48 (33)		1.1 %	51.78 [40.87, 62.68]
Eftekhari 2006	47	17.2 (1.28)	47	10.89 (0.55)	•	4.5 %	6.31 [5.91, 6.71]
Fogelholm 1994	37	28.67 (16.22)	35	17 (9.31)	+	2.3 %	.67 [5.60, 7.74
Gordeuk 1987	34	13 (4.09)	19	10 (4.35)	•	4.0 %	3.00 [0.61, 5.39]
Hoppe 2013	42.9166667 (29.79)	24	12	24 (13.5)		0.7 %	18.92 [4.76, 33.07]
Jayatissa 1999	222	93.4 (39.9)	217	56.3 (30.4)	+	2.1 %	37.10 [30.47, 43.73
Jensen 1991	7	42 (23.81)	6	17 (14.7)		0.4 %	25.00 [3.80, 46.20
Kang 2004	11	33.3 (33.4)	14	24.1 (15.8)		0.3 %	9.20 [-12.20, 30.60
Kianfar 2000	92	21.83 (18.49)	142	2.37 (10.66)	+	3.1 %	19.46 [15.29, 23.63
LaManca 1993	10	22.5 (10.75)	10	14.3 (6.95)		1.7 %	8.20 [0.27, 16.13
Lanerolle 2000	275	27.48 (2.25)	274	15.98 (9.3)	*	4.4 %	11.50 [10.37, 12.63
Larocque 2006	12	22.3 (9.11)	9	16.96 (6.21)	+	2.1 %	5.34 [-1.22, 11.90
Li 1994	40	30 (20.8)	40	18.8 (17.9)		1.6 %	.20 [2.70, 9.70
Maghsudlu 2008	185	26.06 (1.77)	182	19.47 (1.57)	•	4.5 %	6.59 [6.25, 6.93
Marks 2014	129	17 (10.9)	128	10.6 (8.4)	+	4.0 %	6.40 [4.02, 8.78
Mujica-Coopman 2015	28	30.2 (21.2)	27	20.3 (13.5)		1.4 %	9.90 [0.54, 19.26
Swain 2007	9	4.6 (6.9)	12	0.5 (4.5)	+	2.7 %	4.10 [-1.08, 9.28
Taniguchi 1991	27	5.4 (2.95)	27	3.25 (0.55)		4.4 %	2.15 [1.02, 3.28
Verdon 2003	71	21 (9.2)	65	13.7 (6.9)	+	3.8 %	7.30 [4.58, 10.02
Viteri 1999	37	14.81 (17.52)	44	-2.96 (13.53)	+	2.0 %	17.77 [10.85, 24.69
Walsh 1989	10	20.8 (12)	10	15.7 (9.9)	+-	1.3 %	5.10 [-4.54, 14.74
Yadrick 1989	9	41.5 (14.1)	9	28.2 (16.8)		0.7 %	3.30 [- .03, 27.63
Yoshida 1990	6	22 (5)	6	15 (6)	+	2.3 %	7.00 [0.75, 13.25
Zaman 2013	22	45.2 (26.6)	22	30 (20.4)		0.7 %	15.20 [1.19, 29.21

-100 -50 0 50 100

Favours control Favours iron

Study or subgroup	lron N	Cc Mean(SD)	ntrol N	Mean(SD)		Mean fference dom.95% Cl	Weight	Mean Difference IV.Random.95% CI
Subtotal (95% CI)	1529		467	r lean(3D)	14,14411	+	57.7 %	
Heterogeneity: $Tau^2 = 8.03$; Chi	² = 349.91, df = 24	4 (P<0.00001); I ² =	93%					
Test for overall effect: $Z = 12.13$	(P < 0.00001)							
Total (95% CI)	1958	1	873			+	100.0 %	10.31 [8.99, 11.63]
Heterogeneity: $Tau^2 = 9.90$; Chi	² = 480.84, df = 45	5 (P<0.00001); I ² =	91%					
Test for overall effect: Z = 15.34	(P < 0.00001)							
Test for subgroup differences: Ch	$hi^2 = 0.24, df = 3$ (P = 0.97), I ² =0.0%	, 5					
				-100	-50	0 50	100	
				Favou	rs control	Favours iro	n	

Analysis 6.7. Comparison 6 Iron status, Outcome 7 Ferritin in ng/ml (dose).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 7 Ferritin in ng/ml (dose)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	N	Mean(SD)	N	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
I < 30 mg							
Booth 2014	25	25.4 (15.8)	24	18.4 (17.5)	+-	1.5 %	7.00 [-2.35, 16.35]
Brutsaert 2003	10	15.02 (7.02)	10	16.18 (7.24)	+	2.4 %	-1.16 [-7.41, 5.09]
Fogelholm 1994	37	28.67 (16.22)	35	17 (9.31)	+	2.5 %	1.67 [5.60, 17.74]
Hinton 2000	22	14.52 (7.04)	19	8.11 (3.92)	+	3.7 %	6.41 [2.98, 9.84]
Hinton 2007	10	20.82 (11.6)	10	15.18 (12.23)	+-	1.3 %	5.64 [-4.81, 16.09]
Larocque 2006	12	22.3 (9.11)	9	16.96 (6.21)	+	2.3 %	5.34 [-1.22, 11.90]
Swain 2007	9	4.6 (6.9)	12	0.5 (4.5)	+	2.9 %	4.10 [-1.08, 9.28]
Taniguchi 1991	27	5.4 (2.95)	27	3.25 (0.55)		4.7 %	2.15 [1.02, 3.28]
Viteri 1999	37	4.8 (7.52)	44	-2.96 (13.53)	+	2.2 %	17.77 [10.85, 24.69]
				-10	0 -50 0 50 10	00	

-100 -50 0 50 10 Favours control Favours iron

							(Continue
Study or subgroup	Iron		Control		Mean Difference	Weight	Mear Difference
,	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% Cl	-	IV,Random,95% C
Yadrick 1989	9	41.5 (14.1)	9	28.2 (16.8)		0.8 %	3.30 [-1.03, 27.63
Subtotal (95% CI)	198		199		•	24.3 %	6.47 [3.18, 9.75
Heterogeneity: $Tau^2 = 16.9$		9 (P = 0.00003);	l ² =75%				
Test for overall effect: Z = 3 2 31 mg to 60 mg	3.85 (P - 0.00012)						
Binkoski 2004	14	32.3 (13.1)	12	17.2 (12.47)		1.4 %	15.10 [5.26, 24.94
Eftekhari 2006	47	17.2 (1.28)	47	10.89 (0.55)	,	4.9 %	6.31 [5.91, 6.71
Flink 2006	24	33 (14)	23	23.4 (15.8)		1.7 %	9.60 [1.05, 18.15
Hoppe 2013	42.9166667 (29.79)	24	12	24 (13.5)		0.8 %	18.92 [4.76, 33.07
Jayatissa 1999	222	93.4 (39.9)	217	56.3 (30.4)	+	2.3 %	37.10 [30.47, 43.73
Jensen 1991	7	42 (23.81)	6	17 (14.7)		0.4 %	25.00 [3.80, 46.20
Kang 2004	11	33.3 (33.4)	14	24.1 (15.8)	<u> </u>	0.4 %	9.20 [-12.20, 30.60
Kianfar 2000	92	21.83 (18.49)	142	2.37 (10.66)	+	3.4 %	19.46 [15.29, 23.63
Klingshim 1992	9	23.44 (6.65)	9	15.77 (10.45)		1.8 %	7.67 [-0.42, 15.76
Lanerolle 2000	275	27.48 (2.25)	274	15.98 (9.3)	•	4.7 %	1.50 [10.37, 12.63
Leonard 2014	8	34.4 (10.2)	4	31.9 (5)		1.7 %	2.50 [-6.10, 11.10
Li 1994	40	30 (20.8)	40	18.8 (17.9)		1.7 %	.20 [2.70, 9.70
Marks 2014	129	17 (10.9)	128	10.6 (8.4)	+	4.3 %	6.40 [4.02, 8.78
McClung 2009	85	32 (22.1)	86	26 (18.3)	+	2.5 %	6.00 [-0.09, 12.09
Mujica-Coopman 2015	28	30.2 (21.2)	27	20.3 (13.5)		1.5 %	9.90 [0.54, 19.26
Murray-Kolb 2007	56	35.4 (34.46)	57	21.16 (20.11)		1.3 %	14.24 [3.81, 24.67
Yoshida 1990	6	22 (5)	6	15 (6)		2.4 %	7.00 [0.75, 13.25
Zaman 2013	22	45.2 (26.6)	22	30 (20.4)		0.8 %	15.20 [1.19, 29.21
Zhu 1998	20	36.9 (24)	17	16.2 (13.5)		1.0 %	20.70 [8.38, 33.02
Subtotal (95% CI)	1119		1143		•	38.8 %	12.36 [9.50, 15.22
Heterogeneity: $Tau^2 = 22.9$	3; Chi ² = 204.52, df =	: 18 (P<0.00001)	; I ² =91%				
Test for overall effect: $Z = 8$	8.47 (P < 0.00001)						
3 61 mg to 100 mg Fogelholm 1992	14	26 (24.3)	17	(10.8)		0.8 %	15.00 [1.27, 28.73
LaManca 1993	10	22.5 (10.75)	10	14.3 (6.95)		1.9 %	8.20 [0.27, 16.13
Leonard 2014	8	30.7 (7)	4	31.9 (5)	+	2.2 %	-1.20 [-8.09, 5.69
Radjen 2011	19	24.94 (5.83)	18	8.99 (2.05)	+	4.1 %	15.95 [13.16, 18.74
,	71	21 (9.2)	65	13.7 (6.9)	+	4.1 %	7.30 [4.58, 10.02

Favours control Favours iron

Mea Veight Difference	Weight	Mean Difference		Control		Iron	Study or subgroup
IV,Random,95% (-	IV,Random,95% CI	Mean(SD)	Ν	Mean(SD)	Ν	, .
4.0 % 15.10 [12.15, 18.05	4.0 %	+	12.9 (8.3)	71	28 (9.8)	74	Waldvogel 2012
.0 % 10.14 [5.20, 15.08	17.0 %	•		185		196	Subtotal (95% CI)
				=87%	5 (P<0.00001); I ²	ni ² = 38.49, df =	Heterogeneity: Tau ² = 28.57; Chi ²
						(P = 0.000057)	Test for overall effect: $Z = 4.02$ (F
							4 > 100 mg
3.0 % 15.20 [10.28, 20.12	3.0 %	+	12.1 (7.6)	36	27.3 (13.2)	37	Bruner 1996
1.2 % 51.78 [40.87, 62.68	1.2 %		48 (33)	86	99.775 (54.13)	160	Charoenlarp 1988
1.9 % 0.50 [-7.26, 8.26	1.9 %	+	27.5 (13.1)	16	28 (8.6)	15	DellaValle 2012
4.3 % 3.00 [0.61, 5.39	4.3 %	•	10 (4.35)	19	13 (4.09)	34	Gordeuk 1987
4.9 % 6.59 [6.25, 6.93	4.9 %	•	19.47 (1.57)	182	26.06 (1.77)	185	Maghsudlu 2008
1.4 % 20.50 [10.73, 30.27	1.4 %		17.2 (8.9)	18	37.7 (19.7)	19	Newhouse 1989
1.8 % 18.00 [9.98, 26.02	1.8 %	-	8.6 (3.9)	7	26.6 (10.1)	7	Rowland 1988
1.4 % 5.10 [-4.54, 14.74	1.4 %	+	15.7 (9.9)	10	20.8 (12)	10	Walsh 1989
.9 % 13.50 [8.15, 18.86	19.9 %	•		374		467	Subtotal (95% CI)
				2 =93%	= 7 (P<0.00001); I	$mi^2 = 104.30$, df =	Heterogeneity: Tau ² = 46.61; Chi [:]
						(P < 0.00001)	Test for overall effect: Z = 4.94 (F
.0 % 10.16 [8.79, 11.52	100.0 %	•		1901		1980	Total (95% CI)
				2 =91%	42 (P<0.00001); I	² = 476.57, df =	Heterogeneity: Tau ² = 9.97; Chi ²
						(P < 0.00001)	Test for overall effect: $Z = 14.54$ (
				5%	$P = 0.04$), $I^2 = 6$	$hi^2 = 8.59, df = 3$	Test for subgroup differences: Chi

Favours control Favours iron

Analysis 6.8. Comparison 6 Iron status, Outcome 8 Ferritin in ng/ml (duration).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 8 Ferritin in ng/ml (duration)

Me: Differen	Weight	Mean Difference		Control		Iron	Study or subgroup
IV,Random,95%		IV,Random,95% CI	Mean(SD)	Ν	Mean(SD)	Ν	
	12.00		10 (125)	10	12 (100)	24	I < 30 days (I month)
3.00 [0.61, 5.39	4.3 %		10 (4.35)	19	13 (4.09)	34	Gordeuk 1987
9.20 [-12.20, 30.60	0.4 %		24.1 (15.8)	14	33.3 (33.4)	11	Kang 2004
6.59 [6.25, 6.93	4.9 %	1	19.47 (1.57)	182	26.06 (1.77)	185	Maghsudlu 2008
18.00 [9.98, 26.02	1.8 %	+	8.6 (3.9)	7	26.6 (10.1)	7	Rowland 1988
2.15 [1.02, 3.28	4.8 %		3.25 (0.55)	27	5.4 (2.95)	27	Taniguchi 1991
7.30 [4.58, 10.02	4.2 %	+	3.7 (6.9)	65	21 (9.2)	71	Verdon 2003
15.10 [12.15, 18.05	4.0 %	+	12.9 (8.3)	71	28 (9.8)	74	Waldvogel 2012
7.60 [4.64, 10.57	24.5 %	•		385		409	Subtotal (95% CI)
				l ² =94%	= 6 (P<0.00001);	.54; Chi ² = 104.62, df =	Heterogeneity: $Tau^2 = $.
						5.03 (P < 0.00001)	Test for overall effect: Z =
							2 I to 3 months
15.10 [5.26, 24.94	1.4 %		17.2 (12.47)	12	32.3 (3.)	14	Binkoski 2004
15.20 [10.28, 20.12	3.0 %	+	2. (7.6)	36	27.3 (13.2)	37	Bruner 1996
-1.16 [-7.41, 5.09	2.5 %	+	16.18 (7.24)	10	15.02 (7.02)	10	Brutsaert 2003
51.78 [40.87, 62.68	1.2 %		48 (33)	86	99.775 (54.13)	160	Charoenlarp 1988
0.50 [-7.26, 8.26	1.9 %	+	27.5 (13.1)	16	28 (8.6)	15	DellaValle 2012
6.31 [5.91, 6.71	4.9 %		10.89 (0.55)	47	17.2 (1.28)	47	Eftekhari 2006
9.60 [1.05, 18.15	1.7 %		23.4 (15.8)	23	33 (14)	24	Flink 2006
15.00 [1.27, 28.73	0.8 %	_+_	(0.8)	17	26 (24.3)	4	Fogelholm 1992
6.41 [2.98, 9.84	3.8 %	+	8.11 (3.92)	19	14.52 (7.04)	22	Hinton 2000
5.64 [-4.81, 16.09	1.3 %	+	15.18 (12.23)	10	20.82 (11.6)	10	Hinton 2007
L ,							
18.92 [4.76, 33.07	0.8 %		24 (13.5)	12	24	42.9166667 (29.79)	Hoppe 2013
	0.8 % 2.3 %	+	24 (13.5) 56.3 (30.4)	12 217	24 93.4 (39.9)	42.9166667 (29.79) 222	Hoppe 2013 Jayatissa 1999
18.92 [4.76, 33.07		-+- + -+-	. ,			. ,	

-100 -50 0 50 100 Favours control Favours iron

(Continued ...)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mea Differenc
	N	Mean(SD)	N	Mean(SD)	IV,Random,95% Cl		IV,Random,95% (
Klingshim 1992	9	23.44 (6.65)	9	15.77 (10.45)	+	1.8 %	7.67 [-0.42, 15.76
LaManca 1993	10	22.5 (10.75)	10	14.3 (6.95)	+-	1.9 %	8.20 [0.27, 16.13
Lanerolle 2000	275	27.48 (2.25)	274	15.98 (9.3)	•	4.8 %	11.50 [10.37, 12.63
Larocque 2006	12	22.3 (9.11)	9	16.96 (6.21)	+	2.3 %	5.34 [-1.22, 11.90
Li 1994	40	30 (20.8)	40	18.8 (17.9)		1.7 %	.20 [2.70, 9.70
Marks 2014	129	17 (10.9)	128	10.6 (8.4)	+	4.3 %	6.40 [4.02, 8.78
McClung 2009	85	32 (22.1)	86	26 (18.3)	+	2.5 %	6.00 [-0.09, 12.09
Mujica-Coopman 2015	28	30.2 (21.2)	27	20.3 (13.5)		1.5 %	9.90 [0.54, 19.26
Newhouse 1989	19	37.7 (19.7)	18	17.2 (8.9)		1.4 %	20.50 [10.73, 30.27
Radjen 2011	19	24.94 (5.83)	18	8.99 (2.05)	+	4.1 %	15.95 [13.16, 18.74
Swain 2007	9	4.6 (6.9)	12	0.5 (4.5)	+	2.9 %	4.10 [-1.08, 9.28
Viteri 1999	37	14.81 (17.52)	44	-2.96 (13.53)		2.2 %	17.77 [10.85, 24.69
Walsh 1989	10	20.8 (12)	10	15.7 (9.9)	+-	1.4 %	5.10 [-4.54, 14.74
Yadrick 1989	9	41.5 (14.1)	9	28.2 (16.8)		0.8 %	13.30 [-1.03, 27.63
Yoshida 1990	6	22 (5)	6	15 (6)	+	2.5 %	7.00 [0.75, 13.25
Zaman 2013	22	45.2 (26.6)	22	30 (20.4)		0.8 %	15.20 [1.19, 29.21
Zhu 1998	20	36.9 (24)	17	16.2 (13.5)		1.0 %	20.70 [8.38, 33.02
Subtotal (95% CI)	1437		1392		•	67.5 %	12.17 [9.81, 14.53
Heterogeneity: $Tau^2 = 28.95$; $Chi^2 =$ est for overall effect: $Z = 10.11$ (P z > 3 months	< 0.00001)						
Booth 2014	25	25.4 (15.8)	24	18.4 (17.5)		1.5 %	7.00 [-2.35, 16.35
Fogelholm 1994	37	28.67 (16.22)	35	17 (9.31)	+	2.5 %	11.67 [5.60, 17.74
Leonard 2014	16	32.6 (8.66)	8	31.9 (5)	+	2.8 %	0.70 [-4.78, 6.18
Murray-Kolb 2007	56	35.4 (34.46)	57	21.16 (20.11)	-	1.3 %	14.24 [3.81, 24.67
Subtotal (95% CI) Heterogeneity: Tau ² = 28.96; Chi ² = Test for overall effect: $Z = 2.35$ (P =		$(P = 0.03); I^2 = 0.03)$	124 67%		•	8.1 %	7.85 [1.31, 14.38
Fotal (95% CI) Heterogeneity: Tau ² = 9.96; Chi ² = Fest for overall effect: Z = 14.63 (P Fest for subgroup differences: Chi ² :	1980 475.21, df = < 0.00001)				,	100.0 %	10.27 [8.90, 11.65

Analysis 6.9. Comparison 6 Iron status, Outcome 9 Ferritin in ng/ml (type of iron).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 9 Ferritin in ng/ml (type of iron)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Mean Difference IV,Random,95% CI	Weight	Mean Difference IV,Random,95% CI
Ferrous sulphate		. ,		. ,			
Binkoski 2004	14	32.3 (13.1)	12	17.2 (12.47)		1.3 %	15.10 [5.26, 24.94]
Bruner 1996	37	27.3 (13.2)	36	2. (7.6)	+	2.9 %	5.20 [0.28, 20.12]
Brutsaert 2003	10	15.02 (7.02)	10	16.18 (7.24)	+	2.3 %	-1.16 [-7.41, 5.09]
DellaValle 2012	15	28 (8.6)	16	27.5 (3.)	+	1.8 %	0.50 [-7.26, 8.26]
Eftekhari 2006	47	17.2 (1.28)	47	10.89 (0.55)	•	4.7 %	6.31 [5.91, 6.71]
Fogelholm 1992	14	26 (24.3)	17	(0.8)		0.8 %	15.00 [1.27, 28.73]
Gordeuk 1987	17	12 (4.123)	9	10 (4.35)	+	3.6 %	2.00 [-1.45, 5.45]
Hinton 2000	22	14.52 (7.04)	19	8.11 (3.92)	+	3.6 %	6.41 [2.98, 9.84]
Hinton 2007	10	20.82 (11.6)	10	15.18 (12.23)		1.2 %	5.64 [-4.81, 16.09]
Jensen 1991	7	42 (23.81)	6	17 (14.7)		0.4 %	25.00 [3.80, 46.20]
Kianfar 2000	92	21.83 (18.49)	142	2.37 (10.66)	+	3.3 %	19.46 [15.29, 23.63]
Klingshim 1992	9	23.44 (6.65)	9	15.77 (10.45)		1.8 %	7.67 [-0.42, 15.76]
LaManca 1993	10	22.5 (10.75)	10	14.3 (6.95)		1.8 %	8.20 [0.27, 16.13]
Lanerolle 2000	275	27.48 (2.25)	274	15.98 (9.3)	+	4.6 %	.50 [0.37, 2.63]
Leonard 2014	16	32.6 (8.66)	8	31.9 (5)	+	2.7 %	0.70 [-4.78, 6.18]
Li 1994	40	30 (20.8)	40	18.8 (17.9)		1.6 %	.20 [2.70, 9.70]
Maghsudlu 2008	185	26.06 (1.77)	182	19.47 (1.57)	•	4.7 %	6.59 [6.25, 6.93]
McClung 2009	85	32 (22.1)	86	26 (18.3)	+	2.4 %	6.00 [-0.09, 12.09]
Mujica-Coopman 2015	28	30.2 (21.2)	27	20.3 (13.5)		1.4 %	9.90 [0.54, 19.26]
Murray-Kolb 2007	56	35.4 (34.46)	57	21.16 (20.11)		1.2 %	14.24 [3.81, 24.67]
Newhouse 1989	19	37.7 (19.7)	18	17.2 (8.9)	-+-	1.4 %	20.50 [10.73, 30.27]
Radjen 2011	19	24.94 (5.83)	18	8.99 (2.05)	+	3.9 %	5.95 [3. 6, 8.74]
Rowland 1988	7	26.6 (10.1)	7	8.6 (3.9)	-	1.8 %	18.00 [9.98, 26.02]

-100 -50 0 50 100 Favours control Favours iron

Study or subgroup	Iron		Control		Mean Difference	Weight	Mear Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% C
Verdon 2003	71	21 (9.2)	65	3.7 (6.9)	+	4.0 %	7.30 [4.58, 10.02
Viteri 1999	37	14.81 (17.52)	44	-2.96 (13.53)	+	2.1 %	17.77 [10.85, 24.69
Waldvogel 2012	74	28 (9.8)	71	12.9 (8.3)	+	3.8 %	15.10 [12.15, 18.05
Yadrick 1989	9	41.5 (14.1)	9	28.2 (16.8)		0.7 %	3.30 [-1.03, 27.63
Subtotal (95% CI)	1225		1249		•	65.9 %	9.73 [8.32, 11.14]
Heterogeneity: Tau ² = 5.99; C Test for overall effect: Z = 13.		26 (P<0.00001);	² =90%				
2 Ferrous fumurate Flink 2006	24	33 (14)	23	23.4 (15.8)		1.6 %	9.60 [1.05, 18.15
	24	55 (11)	23	25.1 (15.0)	•	1.6 %	9.60 [1.05, 18.15]
Subtotal (95% CI) Heterogeneity: not applicable	24		23			1.0 %	9.00 [1.05, 16.15]
Test for overall effect: $Z = 2.2$	0 (P = 0.028)						
3 Other/not stated	0.5	05 4 4 5 0					7005 005 1405
Booth 2014	25	25.4 (15.8)	24	18.4 (17.5)		1.4 %	7.00 [-2.35, 16.35
Charoenlarp 1988		99.775 (54.13)	86	48 (33)		1.2 %	51.78 [40.87, 62.68
Fogelholm 1994	37	28.67 (16.22)	35	17 (9.31)	+	2.4 %	11.67 [5.60, 17.74
Gordeuk 1987	17	14 (4.123)	9	10 (4.35)	+	3.6 %	4.00 [0.55, 7.45
Hoppe 2013 42	2.9166667 (29.79)	24	12	24 (13.5)		0.8 %	18.92 [4.76, 33.07
Jayatissa 1999	222	93.4 (39.9)	217	56.3 (30.4)	+	2.2 %	37.10 [30.47, 43.73
Kang 2004	11	33.3 (33.4)	14	24.1 (15.8)	_ 	0.4 %	9.20 [-12.20, 30.60
Larocque 2006	12	22.3 (9.11)	9	16.96 (6.21)		2.2 %	5.34 [-1.22, 11.90
Marks 2014	129	17 (10.9)	128	10.6 (8.4)	+	4.1 %	6.40 [4.02, 8.78
Newhouse 1989	19	37.7 (19.7)	18	17.2 (8.9)		1.4 %	20.50 [10.73, 30.27
Swain 2007	9	4.6 (6.9)	12	0.5 (4.5)	+	2.8 %	4.10 [-1.08, 9.28
Taniguchi 1991	27	5.4 (2.95)	27	3.25 (0.55)		4.6 %	2.15 [1.02, 3.28]
Walsh 1989	10	20.8 (12)	10	15.7 (9.9)	+	1.4 %	5.10 [-4.54, 14.74]
Yoshida 1990	6	22 (5)	6	15 (6)	-	2.3 %	7.00 [0.75, 13.25
Zaman 2013	22	45.2 (26.6)	22	30 (20.4)		0.8 %	15.20 [1.19, 29.21
Zhu 1998	20	36.9 (24)	17	16.2 (13.5)		1.0 %	20.70 [8.38, 33.02
Subtotal (95% CI)	750		646		•	32.5 %	13.34 [8.61, 18.08]
Heterogeneity: Tau ² = 72.79; Fest for overall effect: $Z = 5.5$ Total (95% CI) Heterogeneity: Tau ² = 10.09; Fest for overall effect: $Z = 14$.	3 (P < 0.00001) 1999 Chi ² = 483.06, df =		1918		,	100.0 %	10.19 [8.84, 11.55

(Continued \dots)

Study or subgroup	Iron	C	ontrol		Diff	Mean erence	Weight	Mea Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI			IV,Random,95% (
		· · /		· · /		1		
st for subgroup differences: Chi	$^{2} - 207 df - 20$	$P = 0.35$ $l^2 = 4\%$						
est for subgroup differences: Chi	² = 2.07, df = 2 ($(P = 0.35), I^2 = 4\%$						
est for subgroup differences: Chi	² = 2.07, df = 2 ((P = 0.35), I ² =4%			1			
est for subgroup differences: Chi	² = 2.07, df = 2 ((P = 0.35), I ² =4%		-100	-50	0 50 1		

Analysis 6.10. Comparison 6 Iron status, Outcome 10 Transferrin saturation (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 10 Transferrin saturation (total)

Mean Difference IV,Random,95% CI	Weight	Mean Difference IV,Random,95% Cl	Mean(SD)	Control N	Mean(SD)	lron N	Study or subgroup
-0.30 [-7.24, 6.64]	4.2 %		32.6 (9.01)	12	32.3 (8.98)	14	Binkoski 2004
2.80 [-1.56, 27.16]	1.6 %		34.6 (17.1)	24	47.4 (30.9)	23	Booth 2014
2.20 [-5.62, 30.02]	1.1 %		27.4 (22.14)	10	39.6 (18.34)	10	Brutsaert 2003
-10.10 [-26.53, 6.33]	1.3 %		41 (14.8)	5	30.9 (11.5)	5	Cooter 1978
10.14 [8.08, 12.20]	7.5 %		9.54 (0.9)	47	19.68 (7.16)	47	Eftekhari 2006
4.00 [0.39, 7.61]	6.5 %	_ -	20 (7)	36	24 (9)	40	Gordeuk 1990
9.90 [-1.07, 20.87]	2.4 %		22 (16.13)	19	31.9 (19.69)	22	Hinton 2000
8.60 [-2.44, 19.64]	2.4 %		15.8 (8.4)	10	24.4 (15.7)	10	Hinton 2007
2.00 [-13.31, 17.31]	1.5 %	· · · · · · · · · · · · · · · · · · ·	34 (14.7)	6	36 (13.23)	7	Jensen 1991
6.74 [-2.69, 6.17]	3.0 %		19.69 (5.39)	9	26.43 (13.39)	9	Klingshim 1992
10.50 [-1.53, 22.53]	2.1 %		27.5 (11.7)	10	38 (15.49)	10	LaManca 1993
4.14 [1.33, 6.95]	7.0 %		30.59 (10.33)	124	34.73 (12.79)	137	Lanerolle 2000
3.54 [3.33, 3.75]	8.1 %	-	20.8 (1.06)	182	24.34 (0.96)	185	Maghsudlu 2008
2.80 [-0.16, 5.76]	6.9 %		17.8 (9.4)	86	20.6 (10.3)	85	McClung 2009

Favours control Favours iron

							(Continued
Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Mujica-Coopman 2015	28	28.6 (12)	27	24.9 (10.8)		4.8 %	3.70 [-2.33, 9.73]
Murray-Kolb 2007	56	28.9 (12.5)	57	21.9 (11.71)	_	5.9 %	7.00 [2.53, 11.47]
Newhouse 1989	19	34.1 (14.4)	18	21.4 (13)		3.2 %	12.70 [3.87, 21.53]
Radjen 2011	19	27.59 (8.92)	18	10.95 (4.2)		5.9 %	6.64 [2.18, 21.10]
Rybo 1985	45	39.9 (16.7)	44	23.4 (12.3)		4.7 %	6.50 [0.42, 22.58]
Swain 2007	9	-1.6 (1.5)	12	-0.02 (2.42)		7.7 %	-1.58 [-3.26, 0.10]
Walsh 1989	10	22.9 (7.1)	10	18.6 (6.1)		4.9 %	4.30 [-1.50, 10.10]
Zaman 2013	22	28 (12)	22	25.1 (12.1)		4.1 %	2.90 [-4.22, 10.02]
Zhu 1998	20	26.3 (16.9)	17	22.4 (11.7)		3.0 %	3.90 [-5.36, 3. 6]
Total (95% CI)	832		805		•	100.0 %	5.98 [3.93, 8.02]
Heterogeneity: $Tau^2 = 13.38$).00001); I ²	=85%			
Test for overall effect: $Z = 5$.73 (P < 0.	00001)					
Test for subgroup difference	s: Not app	licable					
				1			

Favours control Favours iron

Analysis 6.11. Comparison 6 Iron status, Outcome 11 Soluble transferrin receptor (mg/L) (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: II Soluble transferrin receptor (mg/L) (total)

Study or subgroup	Iron		Control		Std. Mean Difference	Weight	Std. Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Booth 2014	25	1.03 (0.36)	24	1.19 (0.38)		8.5 %	-0.43 [-0.99, 0.14]
Brutsaert 2003	10	5.57 (2.65)	10	6.3 (2.12)		3.5 %	-0.29 [-1.17, 0.59]
DellaValle 2012	15	5.4 (1.7)	16	6.2 (1.7)		5.4 %	-0.46 [-1.17, 0.26]
Hinton 2000	22	6.78 (1.97)	19	7.98 (3.36)		7.1 %	-0.44 [-1.06, 0.19]
Hinton 2007	10	5.96 (1.17)	10	6.85 (1.78)		3.4 %	-0.57 [-1.46, 0.33]
Hoppe 2013	24	2.8458333 (1.454)	12	3.1 (1.755)		5.7 %	-0.16 [-0.85, 0.53]
Leonard 2014	8	1.3 (0.3)	8	0.7 (0.6)		• 2.3 %	1.20 [0.11, 2.29]
Mujica-Coopman 2015	28	5.8 (1.8)	27	6.5 (1.9)		9.6 %	-0.37 [-0.91, 0.16]
Murray-Kolb 2007	56	5.5 (2.3)	57	6.43 (2.3)		19.7 %	-0.40 [-0.77, -0.03]
R svik 2010	82	2.94 (0.8)	79	3.14 (0.85)		28.5 %	-0.24 [-0.55, 0.07]
Zhu 1998	20	4.51 (1.5)	17	5.83 (2.95)		6.3 %	-0.57 [-1.23, 0.09]
Total (95% CI) Heterogeneity: Tau ² = 0.0; Test for overall effect: Z = 3			279 =0.0%		•	100.0 %	-0.32 [-0.49, -0.16]
Test for subgroup difference	``	,					
					-2 -1 0 1	2	
				F	avours control Favours iro	n	

Analysis 6.12. Comparison 6 Iron status, Outcome 12 Total iron binding capacity (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 12 Total iron binding capacity (total)

S Mi Differer	Weight	Std. Mean Difference		Control		Iron	Study or subgroup
IV,Random,95%	V VCIgitt	IV,Random,95% Cl	Mean(SD)	N	Mean(SD)	N	Study of Subgroup
-0.53 [-1.32, 0.2	5.3 %		73.6 (11.43)	12	67.4 (11.22)	14	Binkoski 2004
-0.34 [-1.23, 0.5	5.2 %		64.7 (17.71)	10	58.6 (16.44)	10	Brutsaert 2003
0.79 [-0.53, 2.1	4.8 %		300.6 (47.7)	5	337.7 (36.8)	5	Cooter 1978
-0.15 [-0.71, 0.4	5.5 %		407 (78.46)	19	396.5 (61.23)	34	Gordeuk 1987
-0.87 [-1.34, -0.4	5.5 %	_ - -	371 (55)	36	328 (43)	40	Gordeuk 1990
0.09 [-0.53, 0.7	5.4 %	_ _	60.7 (13.07)	19	62.1 (17.82)	22	Hinton 2000
-0.34 [-1.23, 0.5	5.2 %		382 (73.3)	10	356.9 (66.1)	10	Hinton 2007
0.39 [-0.71, 1.5	5.0 %		355 (117.58)	6	412 (148.16)	7	Jensen 1991
-0.06 [-0.85, 0.7	5.3 %		392 (50)	14	388 (75)	П	Kang 2004
-1.11 [-2.12, -0.1	5.1 %		328.04 (49.04)	9	274.86 (41.79)	9	Klingshim 1992
-0.95 [-1.89, -0.0	5.2 %		342.2 (52.49)	10	293.8 (44.27)	10	LaManca 1993
-4.64 [-5.03, -4.2	5.5 %		406.42 (8.88)	182	369.73 (6.79)	185	Maghsudlu 2008
-0.87 [-1.42, -0.3	5.5 %	_ 	362.6 (47.1)	27	326.7 (33.5)	28	Mujica-Coopman 2015
-1.53 [-2.27, -0.7	5.3 %	- 	68.49 (8.12)	18	56.71 (6.92)	19	Radjen 2011
-0.53 [-0.96, -0.1	5.5 %		67.7 (12.5)	44	61.6 (10.1)	45	Rybo 1985
-0.48 [-1.36, 0.4	5.2 %		2.9 (2.77)	12	0.5 (6.6)	9	Swain 2007
-0.55 [-1.45, 0.3	5.2 %		368 (41)	10	345 (39)	10	Walsh 1989
-0.15 [-1.29, 0.9	5.0 %		410 (60)	6	400 (60)	6	Yoshida 1990
-0.01 [-0.65, 0.6	5.4 %		63.2 (15.4)	17	63.1 (17.6)	20	Zhu 1998
-0.64 [-1.38, 0.0	100.0 %			466		494	otal (95% CI)
-0.64 -1.38, 0	100.0 %		=95%		0.085)	$Chi^2 = 3$.72 (P = 0	leterogeneity: Tau ² = 2.49; est for overall effect: Z = 1 est for subgroup difference

Favours control Favours iron

Analysis 6.13. Comparison 6 Iron status, Outcome 13 Serum iron (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 13 Serum iron (total)

Study or subgroup	Iron		Control			Std. lean ence	Weight	Sto Mea Differenc
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,	95% CI		IV,Random,95% C
Brutsaert 2003	10	22.7 (10.44)	10	15.8 (10.75)			4.9 %	0.62 [-0.28, 1.53
Cooter 1978	5	102.3 (33.2)	5	118.8 (34.2)	• •		3.3 %	-0.44 [-1.71, 0.82
Gordeuk 1987	34	90.5 (44.3)	19	80 (34.87)			7.2 %	0.25 [-0.31, 0.81
Gordeuk 1990	40	76 (24)	36	73 (25)			8.1 %	0.12 [-0.33, 0.57
Hinton 2000	22	19.4 (12.66)	19	12.2 (7.84)		 ∎→	6.7 %	0.66 [0.03, 1.29
Hinton 2007	10	86.3 (62.4)	10	57.1 (29.7)			4.9 %	0.57 [-0.33, 1.47
Jensen 1991	7	126 (50.27)	6	112 (36.74)		••	3.9 %	0.29 [-0.81, 1.39
Kang 2004	11	78 (31)	14	85 (476)			5.6 %	-0.02 [-0.81, 0.77
Klingshim 1992	9	71.43 (33.29)	9	63.57 (15.54)		••	4.8 %	0.29 [-0.64, 1.22
LaManca 1993	10	110 (44.58)	10	93.5 (34.15)			5.0 %	0.40 [-0.49, 1.29
Maghsudlu 2008	185	87.71 (3.8)	182	83.26 (4.71)		\rightarrow	9.7 %	1.04 [0.82, 1.26
Radjen 2011	19	15.49 (4.8)	18	7.41 (2.64)		٠	5.5 %	2.03 [1.22, 2.83
Rybo 1985	45	24.8 (11.7)	44	15.5 (7.5)			8.2 %	0.94 [0.50, 1.37
Walsh 1989	10	79.3 (56.8)	10	68.3 (38.9)		→	5.0 %	0.22 [-0.66, 1.10
Yoshida 1990	6	84 (36)	6	96 (36)	•		3.7 %	-0.31 [-1.45, 0.83
Zaman 2013	22	18.2 (8.8)	22	17.8 (8)			7.0 %	0.05 [-0.54, 0.64
Zhu 1998	20	15.5 (9.1)	17	13.5 (6.8)			6.6 %	0.24 [-0.41, 0.89
Total (95% CI)	465		437		-	•	100.0 %	0.47 [0.19, 0.74
Heterogeneity: Tau ² =	0.19; Chi ²	= 48.20, df = 16 (F	P = 0.00004);	$^{2} = 67\%$				
Test for overall effect: 2	Z = 3.31 (F	P = 0.00092)						
Test for subgroup diffe	rences: No	t applicable						
					-I -0.5 0 Favours control	0.5 I Favours iron		

Analysis 6.14. Comparison 6 Iron status, Outcome 14 Erythrocyte protophyrin (ug/g Hb) (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 6 Iron status

Outcome: 14 Erythrocyte protophyrin (ug/g Hb) (total)

Study or subgroup	Iron		Control			D	Me ifferer			Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)		IV,Rar	ndom,	95% CI		IV,Random,95% CI
Berger 1997	65	2.06 (0.89)	65	2.19 (0.77)	_				_	-0.13 [-0.42, 0.16]
					-100 Favours d	-50 control	0	50 Favours	100 iron	

Analysis 7.1. Comparison 7 Exercise performance - peak (maximal), Outcome I Absolute VO2 max (L/min) (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 7 Exercise performance - peak (maximal)

Outcome: I Absolute VO₂ max (L/min) (total)

Study or subgroup	Iron		Control		Dit	Mean fference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Ran	dom,95% Cl		IV,Random,95% CI
DellaValle 2012	15	3.4 (0.4)	16	3.3 (0.4)	-		10.1 %	0.10 [-0.18, 0.38]
Hinton 2000	22	2.48 (0.375)	19	2.56 (0.48)		-	11.3 %	-0.08 [-0.35, 0.19]
Hinton 2007	10	2.63 (0.8)	10	2.56 (0.76)			1.7 %	0.07 [-0.61, 0.75]
LaManca 1993	10	2.39 (0.38)	10	2.3 (0.38)	_		7.3 %	0.09 [-0.24, 0.42]
Li 1994	40	1.97 (0.34)	40	1.82 (0.35)			35.2 %	0.15 [0.00, 0.30]
Radjen 2011	19	3.05 (0.27)	18	2.84 (0.31)			22.8 %	0.21 [0.02, 0.40]
Rowland 1988	5	3.132 (0.377)	5	2.9 (0.52)			2.5 %	0.23 [-0.33, 0.79]
Zhu 1998	20	2.535 (0.482)	17	2.61 (0.443)		-	9.0 %	-0.07 [-0.37, 0.23]
Total (95% CI)	141		135			•	100.0 %	0.11 [0.02, 0.20]
Heterogeneity: Tau ² =	0.0; Chi ² =	4.96, df = 7 (P = 0.6	66); I ² =0.0%	,)				
Test for overall effect: 2	<u>z</u> = 2.38 (P	= 0.017)						
Test for subgroup differ	ences: Not	applicable						
					-1 -0.5	0 0.5 I		
					Favours control	Favours iron		

Analysis 7.2. Comparison 7 Exercise performance - peak (maximal), Outcome 2 Relative VO2 max ml/kg/min (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 7 Exercise performance - peak (maximal)

Outcome: 2 Relative VO2 max ml/kg/min (total)

Study or subgroup	Iron		Control		۱ Differ	1ean ence	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Randor	n,95% Cl		IV,Random,95% CI
DellaValle 2012	15	66.5 (5.4)	16	65.1 (6.2)			6.7 %	1.40 [-2.69, 5.49]
Fogelholm 1992	14	45.7 (12.69)	17	45.3 (10.935)			3.2 %	0.40 [-8.04, 8.84]
Hinton 2000	22	57.6 (8.44)	19	58.1 (10.46)			4.9 %	-0.50 [-6.38, 5.38]
Hinton 2007	10	42.41 (8.54)	10	37.92 (8.23)			3.8 %	4.49 [-2.86, .84]
Jensen 1991	7	38 (2)	6	29.3 (1.7)		_∎+	9.0 %	8.70 [6.69, 10.71]
Klingshim 1992	9	50.47 (4.6)	9	51.72 (4.15)			6.7 %	-1.25 [-5.30, 2.80]
LaManca 1993	10	41.72 (3.16)	10	39.48 (6.32)		•	6.4 %	2.24 [-2.14, 6.62]
Lyle 1992	20	42.7 (5.155)	14	43.2 (3.55)		_	8.0 %	-0.50 [-3.43, 2.43]
Newhouse 1989	19	52.7 (3.8)	18	50.6 (5.5)	-	-	7.9 %	2.10 [-0.96, 5.16]
Radjen 2011	19	47.04 (2.38)	18	44.48 (2.84)			9.3 %	2.56 [0.87, 4.25]
Rajaram 1995	16	38.1 (6)	13	35.2 (6.4)			6.2 %	2.90 [-1.65, 7.45]
Rowland 1988	5	54.3 (6.6)	5	52.6 (5.2)			3.8 %	1.70 [-5.66, 9.06]
Taniguchi 1991	27	37.6 (3.4)	27	37.8 (4)		_	9.1 %	-0.20 [-2.18, 1.78]
Walsh 1989	10	56.61 (3.7)	10	50.67 (2.4)			8.3 %	5.94 [3.21, 8.67]
Yoshida 1990	6	54.66 (4.66)	6	52 (2)			6.7 %	2.66 [-1.40, 6.72]
Total (95% CI) Heterogeneity: Tau ² = 3	209 8.39; Chi ²	= 58.26, df = 14 (l	198 P<0.00001); I ²	² =76%	-	•	100.0 %	2.36 [0.55, 4.17]
Test for overall effect: Z			,					
Test for subgroup differ	ences: Not	applicable						
					-10 -5 0	5 10		
					-10 -5 0 Favours control	5 IU Favours iron	,	

Analysis 7.3. Comparison 7 Exercise performance - peak (maximal), Outcome 3 Peak respiratory exchange ratio (RER) (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 7 Exercise performance - peak (maximal)

Outcome: 3 Peak respiratory exchange ratio (RER) (total)

Study or subgroup	Iron		Control		Mea Differenc		Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,9	5% CI		IV,Random,95% CI
DellaValle 2012	15	1.05 (0.07)	16	1.04 (0.07)			26.9 %	0.01 [-0.04, 0.06]
Hinton 2000	22	1.06 (0.09)	19	1.08 (0.09)	•		21.5 %	-0.02 [-0.08, 0.04]
Hinton 2007	10	1.23 (0.06)	10	1.2 (0.05)			27.9 %	0.03 [-0.02, 0.08]
LaManca 1993	10	1.21 (0.06)	10	1.21 (0.06)			23.7 %	0.0 [-0.05, 0.05]
Total (95% CI)	57		55				100.0 %	0.01 [-0.02, 0.03]
Heterogeneity: Tau ² =	0.0; Chi ² =	1.87, $df = 3$ (P = 0.	60); $ ^2 = 0.0\%$					
Test for overall effect: Z	Z = 0.52 (P	= 0.60)						
Test for subgroup differ	ences: Not	applicable						
					-0.05 -0.03 0	0.03 0.05		
					Favours control F	avours iron		

Analysis 7.4. Comparison 7 Exercise performance - peak (maximal), Outcome 4 Maximum heart rate (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 7 Exercise performance - peak (maximal)

Outcome: 4 Maximum heart rate (total)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
DellaValle 2012	15	195.8 (7.8)	16	190.8 (9.8)		16.9 %	5.00 [-1.22, 11.22]
Hinton 2000	22	191.9 (6.52)	19	190.4 (7.8)		33.2 %	1.50 [-2.94, 5.94]
Hinton 2007	10	189 (9)	10	184 (11)		8.4 %	5.00 [-3.81, 13.81]
LaManca 1993	10	184 (3.16)	10	184 (6.32)		34.1 %	0.0 [-4.38, 4.38]
Rowland 1988	7	197 (10)	7	197 (8)		7.3 %	0.0 [-9.49, 9.49]
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Z Test for subgroup differ	<u>z</u> = 1.35 (F	9 = 0.18)	62 68); I ² =0.0%	6	•	100.0 %	1.77 [-0.79, 4.33]
					-20 -10 0 10	20	

Favours control Favours iron

Analysis 7.5. Comparison 7 Exercise performance - peak (maximal), Outcome 5 Lactate at longest point (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 7 Exercise performance - peak (maximal)

Outcome: 5 Lactate at longest point (total)

Study or subgroup	Iron		Control			Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,R	andom,95% Cl		IV,Random,95% CI
DellaValle 2012	15	12.2 (1.7)	16	.4 (2.)			29.1 %	0.80 [-0.54, 2.14]
Klingshirn 1992	9	3.91 (1.42)	9	4.49 (0.65)		•	50.3 %	-0.58 [-1.60, 0.44]
LaManca 1993	10	9 (2.52)	10	8.5 (2.84)		•	9.4 %	0.50 [-1.85, 2.85]
Zhu 1998	20	9.9 (3.6)	17	9.8 (3.1)		•	11.2 %	0.10 [-2.06, 2.26]
Total (95% CI)	54		52				100.0 %	0.00 [-0.72, 0.72]
Heterogeneity: Tau ² =	0.0; Chi ² =	2.79, df = 3 (P = 0.	43); I ² =0.09	6				
Test for overall effect: 2	Z = 0.00 (P	= 1.0)						
Test for subgroup differ	rences: Not	applicable						
							I	
					-100 -50	0 50 I	00	

Favours control Favours iron

Analysis 8.1. Comparison 8 Exercise performance - submaximal, Outcome I Percentage VO2 peak (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 8 Exercise performance - submaximal

Outcome: I Percentage VO₂ peak (total)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
, , ,	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI	-	IV,Random,95% Cl
Hinton 2000	22	61.8 (7.04)	19	60.7 (6.71)		23.0 %	1.10 [-3.11, 5.31]
Klingshim 1992	9	74.22 (3)	9	77.16 (3.73)		29.8 %	-2.94 [-6.07, 0.19]
LaManca 1993	10	76.2 (6.32)	10	80.8 (6.64)		16.2 %	-4.60 [-10.28, 1.08]
Rowland 1988	5	71.1 (10.4)	5	82.1 (9.1)	•+	4.9 %	- .00 [-23. , .]
Zhu 1998	20	83 (6.3)	17	88.5 (5.2)		26.0 %	-5.50 [-9.21, -1.79]
Total (95% CI)	66		60		•	100.0 %	-3.34 [-6.17, -0.51]
Heterogeneity: Tau ² =	4.45; Chi ²	= 7.33, df = 4 (P =	0.12); 1 ² =4	-5%			
Test for overall effect: Z	Z = 2.31 (P	9 = 0.021)					
Test for subgroup differ	rences: Not	t applicable					

-20 -10 0 10 20 Favours control Favours iron

Favour's control Favour's Iror

Analysis 8.2. Comparison 8 Exercise performance - submaximal, Outcome 2 Heart rate (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 8 Exercise performance - submaximal

Outcome: 2 Heart rate (total)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Hinton 2000	22	170 (14.07)	19	170 (13.07)	+	22.2 %	0.0 [-8.31, 8.31]
Hinton 2007	10	149 (13)	10	153 (15)		10.1 %	-4.00 [-16.30, 8.30]
LaManca 1993	10	164 (9.48)	10	172 (12.65)	-	16.0 %	-8.00 [-17.80, 1.80]
Li 1994	40	91.1 (8)	40	98 (65)		3.7 %	-6.90 [-27.20, 3.40]
Rowland 1988	7	165 (14)	7	175 (13)		7.7 %	-10.00 [-24.15, 4.15]
Zhu 1998	20	171 (9)	17	176 (10)	-	40.2 %	-5.00 [-11.18, 1.18]
Total (95% CI)	109		103		•	100.0 %	-4.72 [-8.64, -0.80]
Heterogeneity: Tau ² =	0.0; Chi ² =	2.27, df = 5 (P =	0.81); 12 =0.0	%			
Test for overall effect: 2	Z = 2.36 (P	= 0.018)					
Test for subgroup diffe	rences: Not	applicable					
					100 -50 0 50 10	0	

Favours control Favours iron

Analysis 8.3. Comparison 8 Exercise performance - submaximal, Outcome 3 Energy consumption (kJ/min) (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 8 Exercise performance - submaximal

Outcome: 3 Energy consumption (kJ/min) (total)

Study or subgroup	Iron		Control		Mi Differe	ean nce	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random	,95% Cl		IV,Random,95% CI
Hinton 2000	22	9.4 (1.41)	19	9.8 (1.74)	•		20.3 %	-0.40 [-1.38, 0.58]
Hinton 2007	10	1.9 (0.76)	10	1.9 (0.24)	•		79.7 %	0.0 [-0.49, 0.49]
Total (95% CI)	32		29				100.0 %	-0.08 [-0.52, 0.36]
Heterogeneity: Tau ² =	0.0; Chi ² =	0.5 I, df = I (P = 0	.47); l ² =0.0%					
Test for overall effect: 2	<u>z</u> = 0.36 (P	= 0.72)						
Test for subgroup differ	rences: Not	applicable						
					-100 -50 0	50 100		
					Favours control	Favours iron		

Analysis 8.4. Comparison 8 Exercise performance - submaximal, Outcome 4 Respiratory exchange ratio (RER) (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 8 Exercise performance - submaximal

Outcome: 4 Respiratory exchange ratio (RER) (total)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Hinton 2000	22	0.87 (0.09)	19	0.89 (0.09)		7.6 %	-0.02 [-0.08, 0.04]
Hinton 2007	10	0.919 (0.04)	10	0.9 (0.05)		14.7 %	0.02 [-0.02, 0.06]
Klingshim 1992	9	0.94 (0.02)	9	0.96 (0.03)	-	41.8 %	-0.02 [-0.04, 0.00]
LaManca 1993	10	0.96 (0.06)	10	0.97 (0.06)	_ _	8.4 %	-0.01 [-0.06, 0.04]
Zhu 1998	20	0.89 (0.05)	17	0.89 (0.04)		27.5 %	0.0 [-0.03, 0.03]
Total (95% CI) Heterogeneity: $Tau^2 = 0$	71 0.0; Chi ² =	= 2.88, df = 4 (P = 0	65 0.58); I ² =0.09	%	•	100.0 %	-0.01 [-0.02, 0.01]
Test for overall effect: Z	z = 1.08 (F	P = 0.28)					
Test for subgroup differ	ences: No	t applicable					

-0.2 -0.1 0 0.1 0.2

Favours control Favours iron

Analysis 8.5. Comparison 8 Exercise performance - submaximal, Outcome 5 Achieved workload (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 8 Exercise performance - submaximal

Outcome: 5 Achieved workload (total)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI	-	IV,Random,95% CI
Hinton 2000	22	115 (28.1)	20	127 (31.3)		41.8 %	-12.00 [-30.06, 6.06]
Hinton 2007	10	97.7 (38.3)	10	92.2 (33.2)	_	13.8 %	5.50 [-25.92, 36.92]
Zhu 1998	20	137 (26)	17	138 (28)	-	44.4 %	-1.00 [-18.52, 16.52]
Total (95% CI)	52		47		•	100.0 %	-4.70 [-16.37, 6.97]
Heterogeneity: Tau ² =	0.0; Chi ² =	= 1.20, df = 2 (P =	0.55); l ² =0.0	1%			
Test for overall effect: 2	<u>z</u> = 0.79 (F	P = 0.43)					
Test for subgroup differ	rences: No	t applicable					

-100 -50 0 50 100 Favours control Favours iron

Analysis 8.6. Comparison 8 Exercise performance - submaximal, Outcome 6 Time to exhaustion (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 8 Exercise performance - submaximal

Outcome: 6 Time to exhaustion (total)

Study or subgroup	Iron		Control			Mean Difference	W	eight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IN	(Random,95% C	1		IV,Random,95% CI
Klingshim 1992	9	83.23 (13.62)	9	80.44 (10.82)		-	75	5.6 %	2.79 [-8.57, 14.15]
LaManca 1993	10	51.4 (23.56)	10	45.85 (22.04)			24	ł.4 %	5.55 [-14.45, 25.55]
Total (95% CI)	19		19			+	100.0) %	3.46 [-6.42, 13.34]
Heterogeneity: Tau ² =	0.0; Chi ²	= 0.06, df = 1 (P = 0	0.8 l); l ² =0.0	0%					
Test for overall effect: 2	Z = 0.69 (P = 0.49							
Test for subgroup diffe	rences: No	ot applicable							
					-100 -50	0 50	100		
					Favours con	rol Favour	s iron		

Analysis 9.1. Comparison 9 Anthropometric, Outcome I Height (cm) (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 9 Anthropometric

Outcome: I Height (cm) (total)

Study or subgroup	Iron		Control				Mear Difference			Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)		IV,Ra	ndom,95	% CI			IV,Random,95% CI
Berger 1997	65	149.5 (6.9)	65	148.7 (6.5)			-			30.1 %	0.80 [-1.50, 3.10]
Eftekhari 2006	47	154.5 (5.49)	47	156.9 (3.95)						34.4 %	-2.40 [-4.33, -0.47]
Hinton 2000	22	166.5 (7.03)	19	66. (6.97)			-			14.6 %	0.40 [-3.90, 4.70]
Radjen 2011	19	177 (6)	18	176 (4)			-			20.9 %	1.00 [-2.27, 4.27]
Total (95% CI)	153		149				•			100.0 %	-0.32 [-2.25, 1.61]
Heterogeneity: Tau ² =	1.84; Chi ²	= 5.87, df = 3 (P =	0.12); 12 =49	9%							
Test for overall effect: 2	Z = 0.32 (P	= 0.75)									
Test for subgroup differ	rences: Not	t applicable									
					-20	-10	0	10	20		

Favours control Favours iron

Analysis 9.2. Comparison 9 Anthropometric, Outcome 2 Weight (kg) (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 9 Anthropometric

Outcome: 2 Weight (kg) (total)

Study or subgroup	lron N	Mean(SD)	Control N	Mean(SD)	Mean Difference IV,Random,95% Cl	Weight	Mean Difference IV,Random,95% Cl
Berger 1997	65	53.7 (9.8)	65	52.6 (9)		13.0 %	1.10 [-2.13, 4.33]
DellaValle 2012	15	67.3 (7.1)	16	67.8 (9.4)		4.0 %	-0.50 [-6.34, 5.34]
Eftekhari 2006	47	50.75 (5.47)	47	50.46 (3.98)	+	36.3 %	0.29 [-1.64, 2.22]
Hinton 2000	22	59 (5.63)	19	59.6 (7.85)		7.5 %	-0.60 [-4.84, 3.64]
Hinton 2007	10	61.4 (64)	10	67.4 (.)		0.1 %	-6.00 [-46.26, 34.26]
Kanani 2000	101	29.39 (7.74)	102	27.22 (8.58)	-	26.9 %	2.17 [-0.08, 4.42]
Radjen 2011	19	65.13 (7.64)	18	64.11 (6.11)		6.9 %	1.02 [-3.43, 5.47]
Zhu 1998	20	60.3 (6.3)	17	61.7 (8.8)		5.4 %	-1.40 [-6.41, 3.61]
Total (95% CI)	299		294		•	100.0 %	0.76 [-0.41, 1.92]
Heterogeneity: Tau ² =	0.0; Chi ² =	: 3.19, df = 7 (P =	0.87); l ² =0.09	%			
Test for overall effect: 2	Z = 1.27 (P	= 0.20)					
Test for subgroup diffe	rences: Not	applicable					
					-20 -10 0 10 20		
					Favours control Favours iron		

Analysis 9.3. Comparison 9 Anthropometric, Outcome 3 Weight (kg) (sensitivity analysis).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 9 Anthropometric

Outcome: 3 Weight (kg) (sensitivity analysis)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Berger 1997	65	53.7 (9.8)	65	52.6 (9)		17.7 %	1.10 [-2.13, 4.33]
DellaValle 2012	15	67.3 (7.1)	16	67.8 (9.4)		5.4 %	-0.50 [-6.34, 5.34]
Eftekhari 2006	47	50.75 (5.47)	47	50.46 (3.98)	+	49.6 %	0.29 [-1.64, 2.22]
Hinton 2000	22	59 (5.63)	19	59.6 (7.85)		10.3 %	-0.60 [-4.84, 3.64]
Hinton 2007	10	61.4 (64)	10	67.4 (11.1)	← ← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	0.1 %	-6.00 [-46.26, 34.26]
Radjen 2011	19	65.13 (7.64)	18	64.11 (6.11)		9.4 %	1.02 [-3.43, 5.47]
Zhu 1998	20	60.3 (6.3)	17	61.7 (8.8)		7.4 %	-1.40 [-6.41, 3.61]
Total (95% CI) Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup differe	= 0.34 (P	= 0.73)	192 0.98); I ² =0.09	6	•	100.0 %	0.24 [-1.13, 1.60]
					-20 -10 0 10 20		

Favours control Favours iron

Analysis 9.4. Comparison 9 Anthropometric, Outcome 4 Body mass index (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 9 Anthropometric

Outcome: 4 Body mass index (total)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Berger 1997	65	24.1 (5.4)	65	23.8 (3.8)		7.2 %	0.30 [-1.31, 1.91]
Eftekhari 2006	47	21.1 (1.79)	47	20.45 (1.43)		43.1 %	0.65 [0.00, 1.30]
Hinton 2007	10	23.2 (3.2)	10	23.9 (2.5)	• • •	2.9 %	-0.70 [-3.22, 1.82]
Hoppe 2013	24	22.3416667 (6.85)	12	21.4 (1.485)		2.3 %	0.94 [-1.92, 3.81]
Kanani 2000	101	14.7 (2.31)	102	14.16 (2.63)		39.9 %	0.54 [-0.14, 1.22]
Radjen 2011	19	20.76 (1.31)	18	20.59 (4.12)		4.7 %	0.17 [-1.82, 2.16]
Total (95% CI) Heterogeneity: Tau ² =	266 0.0; Chi ²	= 1.33, df = 5 (P = 0.93);	254 ² =0.0%		•	100.0 %	0.53 [0.10, 0.96]
Test for overall effect: 2	<u>z</u> = 2.40 (P = 0.017)					
Test for subgroup differ	rences: No	ot applicable					
Test for subgroup differ	rences: No	ot applicable					

Favours control Favours iron

Analysis 9.5. Comparison 9 Anthropometric, Outcome 5 Body mass index (sensitivity analysis).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 9 Anthropometric

Outcome: 5 Body mass index (sensitivity analysis)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Berger 1997	65	24.1 (5.4)	65	23.8 (3.8)		11.9 %	0.30 [-1.31, 1.91]
Eftekhari 2006	47	21.1 (1.79)	47	20.45 (1.43)		71.7 %	0.65 [0.00, 1.30]
Hinton 2007	10	23.2 (3.2)	10	23.9 (2.5)	· · · · ·	4.9 %	-0.70 [-3.22, 1.82]
Hoppe 2013	24	22.3416667 (6.85)	12	21.4 (1.485)		3.7 %	0.94 [-1.92, 3.81]
Radjen 2011	19	20.76 (1.31)	18	20.59 (4.12)	e	7.8 %	0.17 [-1.82, 2.16]
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Test for subgroup differ	Z = 1.82 (· · · ·	152 1 ² =0.0%		-	100.0 %	0.52 [-0.04, 1.07]
					-2 -1 0 1 2		

-2 -1 0 1 2 Favours control Favours iron

Analysis 10.1. Comparison 10 Serum/plasma zinc, Outcome I Zinc levels (total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 10 Serum/plasma zinc

Outcome: I Zinc levels (total)

Study or subgroup	Iron		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Mujica-Coopman 2015	28	92.6 (21.8)	27	86.7 (11.9)	+-	4.4 %	5.90 [-3.34, 15.14]
Prosser 2010	17	13.1 (0.412)	17	12.5 (0.412)	+	39.1 %	0.60 [0.32, 0.88]
Yadrick 1989	9	13.7 (1.2)	9	16.2 (3.3)	-	26.4 %	-2.50 [-4.79, -0.21]
Zaman 2013	22	12.8 (3.3)	22	14.4 (2.8)	-	30.1 %	-1.60 [-3.41, 0.21]
Total (95% CI)	76		75		•	100.0 %	-0.65 [-2.70, 1.40]
Heterogeneity: $Tau^2 = 2.79$;	$Chi^2 = 12$	3.56, df = 3 (P = 0.	004); l ² =78	3%			
Test for overall effect: $Z = 0$	0.62 (P = C	0.54)					
Test for subgroup difference	s: Not app	olicable					

-100 -50 0 50 100 Favours control Favours iron

Analysis 11.1. Comparison 11 Productivity, Outcome 1 Productivity.

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: II Productivity

Outcome: I Productivity

Study or subgroup	Iron		Control		Std. Mean Difference	Weight	Std. Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI
Edgerton 1979	105	10.64 (2.36)	139	10.67 (2.51)		56.0 %	-0.01 [-0.27, 0.24]
Florencio 1981	81	90.71 (19.27)	41	89.24 (16.26)		25.5 %	0.08 [-0.30, 0.46]
Li 1994	40	7.72 (0.64)	40	7.47 (0.98)		18.5 %	0.30 [-0.14, 0.74]
Total (95% CI) Heterogeneity: Tau ² =	226 0.0; Chi ² =	= 1.44, df = 2 (P = (220 0.49); I ² =0.09	%	•	100.0 %	0.07 [-0.12, 0.26]
Test for overall effect: 2	Z = 0.71 (F	P = 0.48)					
Test for subgroup diffe	rences: No	t applicable					
						1	
					-1 -0.5 0 0.5	T	
					Favours control Favours in	ron	

Analysis 12.1. Comparison 12 Malaria, Outcome I Malaria prevalence at end of therapy (Total).

Review: Daily iron supplementation for improving anaemia, iron status and health in menstruating women

Comparison: 12 Malaria

Outcome: I Malaria prevalence at end of therapy (Total)

Study or subgroup	lron n/N	Control n/N	Risk Ratio M- H,Random,95% Cl	Risk Ratio M- H,Random,95% Cl
Gunaratna 2015	6/184	8/194		0.79 [0.28, 2.24]
			0.01 0.1 1 10 100 Favours iron Favours control	

APPENDICES

Appendix I. Search strategies

Cochrane Central Register of Controlled Studies (CENTRAL)

CENTRAL 2012, Issue 2, searched 6 March 2012 [4417 records] CENTRAL 2014, Issue 8, searched 17 September 2014 [1202 records] CENTRAL 2015, Issue 10, searched 12 November 2015 [487 records] #1MeSH descriptor: [Iron] this term only #2MeSH descriptor: [Anemia, Iron-Deficiency] this term only #3MeSH descriptor: [Iron, Dietary] this term only #4MeSH descriptor: [Folic Acid] this term only #5MeSH descriptor: [Micronutrients] this term only #6MeSH descriptor: [Dietary Supplements] this term only #7iron* #8(folic* or folate* or folvite* or folacin* or pteroylglutamic*) #9MeSH descriptor: [Trace Elements] this term only #10(diet* near/3 supplement*) #11micronutrient* or micro next nutrient* or multinutrient* or multi next nutrient* #12MeSH descriptor: [Ferric Compounds] this term only #13MeSH descriptor: [Ferrous Compounds] this term only #14ferrous* or ferric* or fe #15#1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 #16MeSH descriptor: [Drug Administration Schedule] this term only #17MeSH descriptor: [Dose-Response Relationship, Drug] this term only #18MeSH descriptor: [Time Factors] explode all trees #19day or daily or week* or biweek* or bi next week* or intermittent* or alternat* #20#16 or #17 or #18 or #19 #21#15 and #20 #22MeSH descriptor: [Menstruation] this term only #23(menstruat* or menstrual*) #24#22 or #23 #25(teen* or adolescen* or puberty or pubescen* or ADULT or MIDDLE next AGE*) #26(girl* or woman* or women* or female*) #27#25 and #26 #28#24 or #27 #29#21 and #28, in Trials

Ovid MEDLINE(R)

1948 to February Week 4 2012, searched 6 March 2012 [6714 records]
1946 to September Week 1 2014, searched 17 September 2014 [1737 records]
1946 to November Week 1 2015, searched 12 November 2015 [839 records]
1 iron/
2 anemia, iron deficiency/
3 iron, Dietary/
4 Folic acid/
5 Micronutrients/
6 Dietary Supplements/
7 iron\$.tw.
8 (folic\$ or folate\$ or folvite\$ or folacin\$ or pteroylglutamic\$).tw.

9 trace elements/ 10 (diet\$ adj3 supplement\$).tw. 11 (micronutrient\$ or micro-nutrient\$ or multinutrient\$ or multi-nutrient\$).tw. 12 Ferric compounds/ 13 Ferrous compounds/ 14 (ferrous\$ or ferric\$ or fe).tw. 15 or/1-14 16 Drug Administration Schedule/ 17 Dose-Response Relationship, Drug/ 18 Time Factors/ 19 (day or daily or week\$ or bi-week\$ or biweek\$ or intermittent\$ or alternate\$).tw. 20 or/16-19 21 15 and 20 22 (iron adj3 (dose\$ or dosage or administer\$ or administration or frequency or regimen\$)).tw. 23 21 or 22 24 adult/ 25 middle aged/ 26 adolescent/ 27 (teen\$ or adolescen\$ or puberty or pubescen\$).tw. 28 or/24-27 29 (girl\$ or wom#n\$ or female\$).tw. 30 female/ 31 29 or 30 32 28 and 31 33 Menstruation/ 34 (menstruat\$ or menstrual\$).tw. 35 or/33-34 36 32 or 35 37 randomized controlled trial.pt. 38 controlled clinical trial.pt. 39 randomi#ed.ab. 40 placebo\$.ab. 41 drug therapy.fs. 42 randomly.ab. 43 trial.ab. 44 groups.ab. 45 or/37-44 46 exp animals/ not humans.sh. 47 45 not 46 48 23 and 36 and 47

EMBASE (Ovid)

1980 to 2012 Week 9, searched 4 March 2012 [7146 records] 1980 to 2014 Week 37, searched 17 September 2014 [1826 records] 1980 to 2015 Week 45, searched 12 November 2015 [918 records] 1 iron/ 2 iron intake/ 3 iron deficiency anemia/ 4 folic acid/ 5 exp trace element/ 6 diet supplementation/ 7 iron\$.tw.

8 (folic\$ or folate\$ or folvite\$ or folacin\$ or pteroylglutamic\$).tw. 9 (diet\$ adj3 supplement\$).tw. 10 (micro-nutrient\$ or micronutrient\$ or multi-nutrient\$ or multinutrient\$).tw. 11 ferric ion/ 12 ferrous ion/ 13 (ferric\$ or ferrous\$ or fe).tw. 14 or/1-13 15 drug administration/ 16 dose response/ 17 (day or daily or week\$ or biweek\$ or bi-week\$ or intermittent\$ or alternat\$).tw. 18 15 or 16 or 17 19 14 and 18 20 (iron adj3 (dose\$ or dosage or administer\$ or administration or frequency)).tw. 21 19 or 20 22 adult/ 23 middle aged/ 24 adolescent/ 25 (teen\$ or adolescen\$ or puberty or pubescen\$).tw. 26 or/22-25 27 female/ 28 (girl\$ or wom#n or female\$).tw. 29 27 or 28 30 26 and 29 31 menstruation/ 32 (menstruat\$ or menstrual\$).tw. 33 31 or 32 34 30 or 33 35 exp Clinical trial/ 36 Randomized controlled trial/ 37 Randomization/ 38 Single blind procedure/ 39 Double blind procedure/ 40 Crossover procedure/ 41 Placebo/ 42 Randomi#ed.tw. 43 RCT.tw. 44 (random\$ adj3 (allocat\$ or assign\$)).tw. 45 randomly.ab. 46 groups.ab. 47 trial.ab. 48 ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj3 (blind\$ or mask\$)).tw. 49 Placebo\$.tw. 50 Prospective study/ 51 (crossover or cross-over).tw. 52 prospective.tw. 53 or/35-52 54 21 and 34 and 53 55 remove duplicates from 54

CINAHL (EBSCOhost)

1937 to current, searched 5 March 2012 [1210 records] 1937 to current, searched 17 September 2014 [456 records]

1937 to current, searched 12 November 2015 [180 records] S47 S31 and S46 \$46 \$32 or \$33 or \$34 or \$35 or \$36 or \$37 or \$38 or \$39 or \$40 or \$41 or \$42 or \$43 or \$44 or \$45 S45 TI (evaluat* study or evaluat* research) or AB (evaluate* study or evaluat* research) or TI (effectiv* study or effectiv* research) or AB (effectiv* study or effectiv* research) OR TI(prospectiv* study or prospectiv* research) or AB(prospectiv* study or prospectiv* research) or TI (follow-up study or follow-up research) or AB (follow-up study or follow-up research) S44 placebo* S43 crossover* or "cross over*" S42 (MH "Crossover Design") S41 (tripl* N3 mask*) or (tripl* N3 blind*) S40 (trebl* N3 mask*) or (trebl* N3 blind*) S39 (doubl* N3 mask*) or (doubl* N3 blind*) S38 (singl* N3 mask*) or (singl* N3 blind*) S37 (clinic* N3 trial*) or (control* N3 trial*) S36 (random* N3 allocat*) or (random* N3 assign*) \$35 randomis* or randomiz* S34 (MH "Meta Analysis") S33 (MH "Clinical Trials+") S32 MH random assignment S31 S19 and S30 S30 S26 or S29 S29 S27 or S28 S28 menstruat* or menstrual* S27 (MH "Menstruation") S26 S22 and S25 S25 S23 or S24 S24 female* or wom#n or girl* S23 (MH "Female") S22 S20 or S21 S21 (teen* or adolescen* or puberty or pubescen* or adult* or middle age*) S20 (AG adolescent) OR (AG middle aged) OR (AG adult) Limiters - Age Groups: Adult: 19-44 years, Middle Aged: 45-64 years S19 S17 or S18 \$18 (iron N3 dose*) or (iron N3 dosage) or (iron N3 administer*) or (iron N3 administration) or (iron N3 frequency) S17 S11 and S16 S16 S12 or S13 or S14 or S15 S15 (day or daily or week* or biweek* or bi-week* or bi week* or intermittent* or alternat*) S14 (MH "Time Factors") S13 (MH "Dose-Response Relationship, Drug") S12 (MH "Drug Administration Schedule") S11 S1 or S2 or S3 or S4 or S5 or S6 or S7 or S8 or S9 or S10 $\,$ S10 micro-nutrient* or micronutrient* or micro nutrient* multi-nutrient* or multinutrient* or multi nutrient* S9 ferrous* or ferric* or "fe" S8 diet* N3 supplement* S7 folic* or folate* or folvite* or folacin* or pteroylglutamic* S6 iron* S5 (MH "Micronutrients") S4 (MH "Trace Elements") S3 (MH "Dietary Supplements") S2 (MH "Folic Acid") S1 (MH "Iron") OR (MH "Anemia, Iron Deficiency") OR (MH "Iron Compounds") OR (MH "Ferric Compounds") OR (MH

"Ferrous Compounds")

Conference Proceedings Citation Index - Science (CPCI-S; Web of Science)

1990 to 2 March 2012, searched 6 March 2012 [154 records]
1990 to 12 September 2014, searched 17 September 2014 [5 records]
1990 to current, searched 12 November 2015 [2 records]
8 #7 AND #6 AND #3
7 TS=(random* or RCT or trial* or allocat* or assign* or placebo* or cross-over or crossover or "cross over" or factorial* or "double blind*" or "single blind")
6 #5 OR #4
5 TS=(menstruat* or menstrual*)
4 TS=(women or woman or female* or girl*)
3 #1 or #2
2 TS= (iron near/3 (dose* or dosage or administer* or administration or frequency or regimen*))
1 TS=((iron or ferrous or ferric or micronutrient* or multinutrient* or micro-nutrient* or multi-nutrient* or folic* or folate* or folvite* or folacin* or placeho* or intermittent or biweek* or supplement*

Science Citation Index (SCI; Web of Science)

1970 to 2 March 2012, searched 6 March 2012 [1802 records]

1970 to 12 September 2014, searched 17 September 2014 [301 records]

1970 to 10 November 2015, searched 12 November 2015 [185 records]

8 #7 AND #6 AND #3

7 TS=(random* or RCT or trial* or allocat* or assign* or placebo* or cross-over or crossover or "cross over" or factorial* or "double blind*" or "single blind")

6 #5 OR #4

5 TS=(menstruat* or menstrual*)

4 TS=(women or woman or female* or girl*)

3 #1 or #2

2 TS= (iron near/3 (dose* or dosage or administer* or administration or frequency or regimen*))

1 TS=((iron or ferrous or ferric or micronutrient* or multinutrient* or micro-nutrient* or multi-nutrient* or folic* or folate* or folvite* or folacin* or pteroylglutamic*) NEAR/5 (alternate* or week* or intermittent or biweek* or supplement*))

Popline

(popline.org)

All available years, searched 6 March 2012 [33 records]

All available years, searched 18 September 2014 [21 records]

All available years, searched 12 November 2015 [14 records]

Advanced search: All fields : iron* OR folic* OR folate OR ferrous OR fe AND women OR woman OR menstru* OR girl* OR female* AND day OR daily OR week* OR biweek* OR bi weekly OR intermittent* OR alternat* AND random* OR trial* OR control* OR placebo*

World Health Organization (WHO) Regional Indexes

(globalhealthlibrary.net/php/index.php)

The following WHO regional indexes were searched for all available years on 25 May 2015, and again on 8 December 2015. Literature in the Health Sciences in Latin America and the Caribbean (LILACS). African Index Medicus (AIM; all available). Western Pacific Region Index Medicus (WPRIM). Index Medicus for the Eastern Mediterranean Region (IMEMR). Index Medicus for South-East Asia Region (IMSEAR). Searched on: Title : Iron AND Women

Worldcat

Searched 25 May 2015, and again on 8 December 2015. Search on: Iron AND Women

DART-Europe E-theses Portal

Searched 25 May 2015, and again on 8 December 2015. Searched on: Iron AND Women

Australasian Digital Theses Program

Searched 25 May 2015, and again on 8 December 2015. Searched on: Iron AND Women

ProQuest Dissertations & Theses Global

Searched 25 May 2015, and again on 8 December 2015. Searched on: Iron AND Women

WHO International Clinical Trials Registry Platform (ICTRP)

(apps.who.int/trialsearch) Searched 25 May 2015, and again on 8 December 2015. Searched on: Iron AND Women

Appendix 2. Unused methods archived for future updates of this review

In future updates of this review, we will conduct a sensitivity analysis to examine the following.

- 1. The effects of different ICC values for cluster studies.
- 2. The risk of publication bias by excluding unpublished studies.

WHAT'S NEW

Date	Event	Description
27 April 2016	Amended	In the abstract, we added information on the number of women included in the single analysis on iron-deficiency anaemia. We also reversed the order in which we present the results from the analyses on hard stools/constipation and loose stools/diarrhoea so these are consistent with the order in which they appear in the 'Summary of findings' table. Finally, we corrected the 'Summary of findings' table to ensure consistency of contents with the heading of column three (i.e. Number of participants (studies))

CONTRIBUTIONS OF AUTHORS

LMD-R and SRP conceived and designed the review. CES, JS, MSYL SRP contributed to screening of studies and extraction of data. MSYL and SRP entered data into RevMan and undertook the analysis. LMD-R, MSYL and SRP wrote the manuscript. All authors read and approved the final manuscript. SRP has overall responsibility for this review.

DECLARATIONS OF INTEREST

The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Michael Sze Yuan Low is employed by Monash Health, an Australian government funded public hospital. MSYL has a PhD scholarship from the Royal Australasian College of Physicians/National Health and Medical Research Council Australia, which was used to fund research outside of this review.

Joanna Speedy is currently employed by the Australian Red Cross Blood Service, who sponsored and conducted one of the studies included in the review (Marks 2014), and was involved in conducting the study. Due to this potential conflict of interest Joanna Speedy was not involved in the decision to include this trial, extract data from this trial, or assess the risk of bias of this trial.

Claire E Styles is currently employed by the Australian Red Cross Blood Service, who sponsored and conducted one of the studies included in the review (Marks 2014), but was not involved in any aspect of this study.

Luz Maria De-Regil is a staff member of the Micronutrient Initiative (MI), an international not-for-profit organisation that delivers, with support of Global Affairs Canada, iron and folic acid through different programmes to children, women of reproductive age and pregnant women. None of these programmes met the inclusion criteria of this review and were not captured by the search process.

Sant-Rayn Pasricha's former institution received an unrestricted research grant in 2012, from Vifor Pharma Ltd for his work as a coinvestigator on a phase II trial of IV iron carboxymaltose in patients with iron-deficiency anaemia. The work is unrelated to this review and is not included in the review.

Disclaimer: Luz Maria De-Regil is a full-time staff member of the Micronutrient Initiative. Jo Speedy, Claire Styles and Sant-Rayn Pasricha are staff of the Australian Red Cross Blood Service. The authors alone are responsible for the views expressed in this publication, and they do not necessarily represent the official position, decisions, policy or views of these organisations.

SOURCES OF SUPPORT

Internal sources

• Evidence and Programme Guidance, Department of Nutrition for Health and Development, World Health Organization, Switzerland.

Provided training and mentorship for the project

External sources

• Victoria Fellowship, Government of Victoria, Australia.

Financial support for Dr Sant-Rayn Pasricha

• Royal Australasian College of Physician/National Health and Medical Research Council (NHMRC), Australia. Financial support for Dr Michael Low

• Monash Health, Australia.

Salary for Dr Michael Low

• CRB Blackburn Travelling Scholarship, The Royal Australasian College of Physicians, Australia. Financial support for Dr Sant-Rayn Pasricha

• University of Melbourne Overseas Research Experience Scholarship, Australia.

Financial support for Dr Sant-Rayn Pasricha

• New Investigator Fellowship, Haematology Society of Australia and New Zealand, Australia.

Financial support for Dr Sant-Rayn Prasricha

• NHMRC CJ Martin Early Career Fellowship, Australia.

Financial support for Dr Sant-Rayn Pasricha

• Bill and Melinda Gates Foundation, UK.

Financial support for Dr Sant-Rayn Pasricha

• CRB Blackburn Scholarship (National Health and Medical Research Council Gustav Nossal Award), Australia. Financial support for Dr Michael Low

DIFFERENCES BETWEEN PROTOCOL AND REVIEW

There were several differences between the pre-planned protocol (Pasricha 2012) and the review. These are as follows.

1. In the protocol, we planned three different comparisons: iron alone versus control/placebo alone; iron with a cointervention versus a cointervention alone; and overall iron versus control (combining these two comparisons). In the review, we opted to perform analysis on a single overall comparison (iron with or without a cointervention overall versus control/placebo with or without the same cointervention), and to treat the comparisons above as subgroups. This enabled a subgroup analysis to explore heterogeneity in effect sizes and outcomes, and simplifies the analysis for the reader. In addition, it increased the number of studies considered overall, especially for less commonly reported outcomes, and enabled us to provide an overall effect size of this intervention.

2. We formally assessed publication bias evident on funnel plots using statistical tests suggested by Egger, Peters and Harbord.

3. We added a subgroup of 'type of iron' (ferrous sulphate, ferrous fumarate, and others), as we have become aware through conversations with colleagues in the field that many potential users of our review were interested to discover whether different iron formulations could explain differences in efficacy and safety.

4. Given the rich data set of studies reporting on ferritin and the paucity of trials reporting on iron deficiency, we opted to undertake subgroup analysis reporting on this outcome in order to explore whether heterogeneity in this outcome could be explained by any of the pre-specified subgroups.

5. Finally, because of the availability of data and interest in the outcomes, we attempted to analyse the effects of iron on fatigue and on productivity.

INDEX TERMS

Medical Subject Headings (MeSH)

*Dietary Supplements [adverse effects]; Anemia, Iron-Deficiency [blood; *therapy]; Hemoglobin A; Iron [*administration & dosage; adverse effects; *deficiency]; Menstruation [*blood]; Randomized Controlled Trials as Topic

MeSH check words

Adolescent; Adult; Female; Humans; Middle Aged