Structural basis for the recognition of nectin-like protein-5 by the human activating immune receptor, DNAM-1

Felix A Deuss¹, Gabrielle M Watson¹,², Katharine J Goodall³, Isobel Leece³, Sayantani Chatterjee⁴, Zhihui Fu¹, Morten Thaysen-Andersen⁴, Daniel M Andrews³, Jamie Rossjohn¹,²,⁵ & Richard Berry¹,² *

Running title: Immune recognition of nectin adhesion molecules

¹Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
²Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
³Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.
⁴Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University NSW 2109 Australia
⁵Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.

* joint senior and corresponding authors.

To whom correspondence should be addressed: Richard Berry, Tel.: +61-3-9902-9239; E-mail: Richard.berry@monash.edu; or Jamie Rossjohn, Tel.: +61-3-9902-9236; Fax: 99054699; E-mail: Jamie.rossjohn@monash.edu

Keywords: natural killer cells, immunology, protein structure, immunoglobulin fold, cell adhesion, DNAX accessory molecule-1 (DNAM-1), cancer immunotherapy, CD226 molecule, nectin-like protein-5 (NECL-5), PVR cell adhesion molecule

ABSTRACT

Nectin and nectin-like (NECL) adhesion molecules are broadly overexpressed in a wide range of cancers. By binding to these adhesion molecules, the immunoreceptors DNAX accessory molecule-1 (DNAM-1), CD96 molecule (CD96), and T cell immunoreceptor with Ig and ITIM domains (TIGIT) play a crucial role in regulating the anticancer activities of immune effector cells. However, within this axis, it remains unclear how DNAM-1 recognizes its cognate ligands. Here, we determined the structure of human DNAM-1 in complex with nectin-like protein-5 (NECL-5) at 2.8 Å resolution. Unexpectedly, we found that the two extracellular domains (D1–D2) of DNAM-1 adopt an unconventional “collapsed” arrangement that is markedly distinct from those in other immunoglobulin-based immunoreceptors. The DNAM-1:NECL-5 interaction was underpinned by conserved lock-and-key motifs located within their respective D1 domains, but also included a distinct interface derived from DNAM-1 D2. Mutation of the signature DNAM-1 “key” motif within the D1 domain attenuated NECL-5 binding and natural killer cell–mediated cytotoxicity. Altogether, our results have implications for understanding the binding mode of an immune receptor family that is emerging as a viable candidate for cancer immunotherapy.

The activity of immune effector cells is tightly regulated to enable the identification and elimination of infected, transformed or stressed cells whilst preventing autoimmunity towards the surrounding healthy tissue. This specificity is achieved by the coordinated activity of a variety of cell surface bound receptors that either stimulate or dampen immune cell
Immune recognition of nectin adhesion molecules

activation. For example, Natural Killer (NK) cell function is regulated by the integration of signals derived from a variety of paired receptor families that include the Ly49 receptors in rodents (1), the killer cell and leukocyte immunoglobulin receptors (KIRs and LIRs respectively) in humans (2,3) and the CD94-NKG2 (4) and NKR-P1 (5) families in both species. Within these systems, the inhibitory receptors typically recognise ‘self’ molecules that are broadly expressed on the surface of healthy cells (6-10), while their stimulatory counterparts predominantly bind to non-self or stress-induced ligands (11-13).

Alternatively, some paired receptor families comprise members that exhibit overlapping ligand specificities, and as such compete with each other to fine tune the immune response. For example, the nectin receptors DNAM-1 (CD226), CD96 (TACTILE) and T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (TIGIT) are expressed on T and NK cells, where they mediate effector-target cell adhesion, immune synapse formation and regulate effector function (14). Within this context, DNAM-1 is a stimulatory receptor that was first identified by its ability to activate T cells independently of T cell receptor engagement (15-19). DNAM-1 has since been shown to be critical for tumour immune-surveillance, as demonstrated in mouse models of chemically-induced tumours, and by DNAM-1−/− mice, which exhibit accelerated tumour growth (17). In contrast, TIGIT is an inhibitory receptor (20-22) and CD96 is able to counter-balance DNAM-1 function in mice (16), although human CD96 has been reported to stimulate NK cell cytotoxicity (23).

Nectin receptor function is dependent on their capacity to recognize certain nectin and nectin-like (necl) adhesion molecules, namely nectin-2 (CD112) and necl-5 (CD155), which are broadly overexpressed in a wide range of cancers (24-27). During homeostasis, nectin (like) proteins tether adjacent cells together via the formation of homo- and hetero-dimers. These interactions rely on signature ‘lock’ (AX₆G) and ‘key’ (T(F/Y)P) motifs located within their most membrane distal (D1) domains (28). The nectin receptors also contain similar lock and key motifs within their D1 domains, although they differ in the complexity of their ectodomains. Namely, TIGIT, DNAM-1 and CD96 possess one, two and three extracellular Ig domains, respectively. Structural studies of TIGIT and CD96 have indicated that their D1 domains, which are sufficient for ligand binding, engage their cognate ligands by a docking mode that mimics nectin homo/hetero-dimerisation (29-31). A recent structure of mouse DNAM-1 bound to human necl-5 supports this proposition, but also indicated that the second DNAM-1 domain (D2) can modulate the interaction (32). However, the molecular basis underpinning recognition of necl-5 by human DNAM-1 remains unclear.

Here we determined the structure of human DNAM-1 in complex with one of its cognate ligands, necl-5. DNAM-1 bound necl-5 in a 1:1 stoichiometry via a docking mode that enabled the interaction between signature ‘lock’ and ‘key’ motifs within their respective D1 domains. The unconventional ‘collapsed’ architecture of the two extracellular domains of DNAM-1 positioned the D2 domain such that it made direct contacts with necl-5. Binding and functional studies indicated that residues within DNAM-1 D2 did not modulate the interaction with ligands, or functional response of DNAM-1 to necl-5/nectin-2 expressing target cells. In contrast, the D1-localised key residue was critical for DNAM-1-dependent ligand binding and NK cell cytotoxicity. Altogether, these data expand our understanding of the molecular features that govern nectin receptor-ligand interactions.

RESULTS

Structural determination of the DNAM-1:necl-5 complex - While the mode of interaction of TIGIT and CD96 with their cognate ligands has been established (29-31), the structural basis for human DNAM-1 ligand recognition is unknown. To address this gap in our knowledge, we expressed the extracellular Ig domains of human DNAM-1 (D1-D2) and
Immune recognition of nectin adhesion molecules

necl-5 (D1-D3) in human embryonic kidney (HEK)-293S and Hi5 insect cells, respectively. DNAM-1 behaved as a heavily glycosylated monomeric species, as judged by its apparent migration during SDS-PAGE analysis and size exclusion chromatography (Supplementary Fig. 1). Necl-5 also appeared to be a glycosylated monomer, consistent with previously studies (30). To aid in crystallisation, we treated DNAM-1 with endoglycosidase H (endo H), which trims high mannose N-glycans that are the only glycoforms produced by HEK-293S cells to a single N-acetylglucosamine (GlcNAc) residue, prior to mixing with a 1:1 molar ratio of necl-5. Using this approach, we generated crystals of the DNAM-1:necl-5 co-complex and determined the structure to 2.8 Å resolution (Supplementary Table I). The crystallographic asymmetric unit comprised two molecules of DNAM-1 and two molecules of necl-5 that formed two similar DNAM-1:necl-5 heterodimeric complexes (root mean square deviation (r.m.s.d) 1.78 over 430 Cα atoms). Although one of the DNAM-1:necl-5 complexes (chains B and D) was relatively poorly resolved, the electron density for the other heterodimer (chains A and C) was clear, allowing the building of the entire polypeptide chains encompassing the D1 and D2 domains of DNAM-1 (Glu19-Ala241) and the D1-D3 domains of necl-5 (Glu27-Val327), with the exception of a single loop in DNAM-1 D1 (Ser84-Ser89) and two loops within necl-5 D3 (Asp252-Gln259 and Val302-Thr308), none of which were located at the DNAM-1:necl-5 interface. Indeed, the structure refined well (Supplementary Fig. 2) to an Rfree of 20.8 % and 23.0 % respectively, thereby permitting a detailed understanding of the interactions that governed DNAM-1:necl-5 recognition.

DNAM-1 comprises an atypical configuration of two tandem Ig domains-
DNAM-1 was comprised of two Ig-variable domains that were tethered together by a relatively long 12 amino acid linker region (Gln126-Asn137) (Fig. 1A). Six individual GlcNAc residues were visible attached to Asn residues 32, 83, 90 and 97 within D1 and Asn147 and 186 within D2. The DNAM-1 D1 domain was composed of one small (sheet I:BED) and one large (sheet II:AGFCC'C') β-sheet that were bridged by a single disulfide bond located between the B and F-strands (Cys37-Cys108) (Fig. 1B). DNAM-1 D2 was organised similarly to the D1 domain (r.m.s.d 2.6 Å over 63 Cα atoms), whereby it possessed a canonical disulfide bond, linking the B and F-strands (Cys152-Cys222). However, within the D2 domain, the regions equivalent to the C' and D-strand were no longer H-bonded to sheet I and II respectively, in part due to an additional disulfide bond that attached the C'-D linker (Cys179-Cys199).

Within the DNAM-1 structure, the D1 and D2 domains were collapsed on each other in an unusual side-by-side arrangement, such that the β-strands of D1 and D2 formed a single extended β-sheet (Fig. 1A and 1B). This unexpected architecture, where D2 was rotated relative to D1 by ~100°, was facilitated by the extended nature of the inter-domain linker that connected the G-strand of D1 to the A-strand of D2. The DNAM-1 D1:D2 interface occupied a moderate solvent inaccessible surface area (≈ 900 Å²) and was primarily hydrophobic in nature (Fig. 1C). The core of the interaction zone was derived from the A-strand of D1 and the C'-strand of D2, where four contiguous H-bonds between the main chain atoms of Trp23-Val27 (D1) and Ile173-Leu175 (D2) formed an anti-parallel β-sheet that stitched the D1 and D2 domains together (Fig. 1D and Supplementary Table II). The interface was further supported by the DNAM-1 N-terminus, where Leu22-His24 interacted with several residues that spanned the length of the C and C' strands of D2 (Fig. 1E).

Notably, the relative juxtapositioning of DNAM-1 domains is completely distinct to the ‘beads-on-a-string’ arrangement evident within the nectin (like) ligands (Fig. 2), to which the nectin receptors were previously considered to be closely structurally related. Indeed, while many immune receptors are comprised of multiple tandem Ig domains, the inter-domain angles are typically large (> 75°),
resulting in either linear (PD1-L2) (33), perpendicular (LIR-B1) (34) or open V-shaped (NKp46 and KIR3DL1) (9,35) configurations (Fig. 2). Among immune receptors, the DNAM-1 architecture is most similar to that found in FcyRIIA (36), although the rotational angle between D1 and D2 domains within these two receptors is quite distinct. Notably, the overall architecture of DNAM-1 reported here is similar to that of (unliganded) human and mouse DNAM-1 recently reported by Wang et al (r.m.s.d 0.79 and 1.37 Å over 170 and 185 aligned Ca atoms , respectively) (32), indicating that this unusual domain configuration represents the bona fide native state of DNAM-1. Accordingly, DNAM-1 possessed a collapsed side-by-side architecture that is atypical among immune receptors whose structures have been solved to date.

Overview of the DNAM-1:necl-5 heterodimer- DNAM-1 bound exclusively to the D1 domain of necl-5 via an extensive interface that buried a total solvent inaccessible surface area of ~1,880 Å² and was characterised by high shape complementarity (Sc = 0.79). Within the complex, necl-5 adopted a linear configuration of its three Ig domains, such that the D2 and D3 domains projected away from DNAM-1 and did not participate in the interaction (Fig. 3A). Although some subtle differences in the inter-domain angle were evident, the overall architecture of necl-5 was similar to that previously described for the unbound and CD96 bound forms (Supplementary Fig. 3) (28,30). In this arrangement, the C-termini of both receptor and ligand are positioned at opposing ends of the complex (Fig. 3A). Accordingly, the DNAM-1:necl-5 interaction could conceivably occur either in cis or in trans; i.e. between molecules located on a single, or adjacent cellular membranes, respectively (Fig. 3B). Although a higher order hetero-tetrameric arrangement was visible within the crystal lattice (Supplementary Fig 4), we do not consider this to be a physiologically relevant assembly because the interface was mediated solely by interactions between two DNAM-1 monomers, and DNAM-1 was judged to be monomeric in solution (Supplementary Fig. 1A).

DNAM-1 D1 binds to necl-5 via a conserved docking mode- The DNAM-1:necl-5 interface was primarily centred around DNAM-1 D1, which engaged necl-5 via a head-to-head docking mode reminiscent of that utilised by TIGIT and CD96 (29,31) (Supplementary Fig. 5). Here, DNAM-1 D1 interacted with necl-5 in an orthogonal orientation across the breadth of their respective AGFCC’C’’ sheets, giving this region of the interface a pseudo two-fold symmetrical appearance (Fig 3A). The defining feature of this region of the interface was derived from the signature ‘lock’ and ‘key’ motifs, whereby aromatic key residues within the F-G loop of both DNAM-1 (Tyr113) and necl-5 (Phe128) were inserted into hydrophobic pockets formed by the C’-C” loops of their respective binding partner (Fig 3C, 3D and Supplementary Table III). These interactions were further stabilised by the C-C’ loop of each molecule, which flexed inward to enable a single residue (Gln57 in DNAM-1 and Ser74 in necl-5) to make interactions with the G-strand of the binding partner (Fig. 3E). Together, these two major points of contact served to latch the molecules together at the periphery of the interface. However, residues located within the central region of this interface also played a prominent role, and accounted for 8 out of the 11 total H-bonds (Fig. 3F). Here, several residues within the central C, F and G-strands of DNAM-1 and necl-5 projected directly towards the opposing sheet where they primarily made H-bond interactions with main chain atoms of their binding partner. Thus, the D1 domain of DNAM-1 binds to necl-5 via a conserved docking topology that is characteristic of the nectin receptor family.

DNAM-1 D2 makes direct interactions with necl-5- In addition to the conventional interface derived from their respective D1 domains, we observed an interaction site located between DNAM-1 D2 and necl-5 D1. This interface contributed a relatively small fraction (13%) of the total buried surface area (Fig. 3G) but involved a cluster of direct contacts centred on Asn186 of DNAM-1 (Fig.
Immune recognition of nectin adhesion molecules

Here, Asn186 lay against the C-C’ loop of necl-5, where it was involved in multiple interactions with the backbone of Gly70, Glu71 and Ser72. Surprisingly, the GlcNAc remnant of the elongated N-linked glycan of Asn186 also made direct interactions with necl-5, including an H-bond with Ser72. The presence of a glycan attached to Asn186 was clearly supported by the unbiased electron density (Supplementary Fig. 6A) and glycopeptide and glycan analyses of recombinantly produced DNAM-1 without prior endo H treatment (Supplementary Fig. 6B).

Comparison to the mouse DNAM-1:necl-5 structure- Overall the docking mode of DNAM-1 on to necl-5 is conserved between human and mouse DNAM-1 (r.m.s.d 1.44 Å over 216 aligned Ca atoms) (Supplementary Fig 7A). However, closer inspection of the interface reveals several subtle differences. In particular, of the 22 human DNAM-1 residues that formed interactions with necl-5, only 7 are conserved in mouse DNAM-1 (Supplementary Fig 7B). This includes the signature aromatic key (Tyr113), which is a phenylalanine in mouse DNAM-1. Within the interface, the differences between mouse and human DNAM-1 are most obvious in the D2 domain, where the C’-D loop, which lacks a glycan consensus motif in mouse DNAM-1, adopts distinct conformations within the two structures resulting in altered interactions with the C-C’ loop of necl-5 (Supplementary Fig 7A).

Mutations within DNAM-1 D1 but not D2 impact binding to nectin-2 and necl-5- Next, to investigate the energetic contribution of DNAM-1 D2 to ligand binding, we first attempted to express the DNAM-1 D1 domain in isolation. However, we were unable to produce this truncated protein using mammalian cells, most probably due to instability associated with the exposure of a hydrophobic surface that would normally reside at the D1:D2 interface (Fig. 1C). Instead, we generated a panel of DNAM-1 point mutants and assessed their interaction with nectin-2 and necl-5 using surface plasmon resonance (SPR). Here, both necl-5 and nectin-2 bound to wild type HEK-293S produced DNAM-1 with comparable affinity ($K_D = 1.8 \pm 0.6 \mu M$ and $2.9 \pm 0.8 \mu M$, respectively) (Fig. 4A). Although we were only able to couple lower amounts on to the SPR chip, mutation of the DNAM-1 ‘key’ residue (Y113A) within the D1 domain drastically reduced nectin-2/necl-5 binding when compared to a control mutation (R96A) in a surface exposed DNAM-1 residue that was distal to the necl-5 binding site (Fig 4A). However, mutations within DNAM-1 D2 that disrupted Asn186 and its associated N-glycan (N186A), or the glycosylation consensus motif, defined as NxS/T, where x≠P (T188A), did not markedly impact the binding affinity of DNAM-1 for either nectin-2 or necl-5 ($K_D = 2.0-2.5 \mu M$) (Fig. 4A). To further confirm that the nature of the glycan chain attached to Asn186 did not impact on the interaction with necl-5/nectin-2, we also tested the binding of recombinant DNAM-1 produced in HEK-293T cells, which was decorated with a variety of complex N-glycans similar to those that would be expected to occur in vivo, as opposed to the more homogeneous high mannose N-glycans of HEK-293S produced DNAM-1 (Supplementary Fig 6B). However, the binding of HEK-293T-produced DNAM-1 to necl-5 and nectin-2 was of similar affinity to DNAM-1 produced in HEK-293S cells (Fig. 4A).

To further probe the impact of DNAM-1 mutants in a cellular system, we also tetramerised the biotinylated DNAM-1 mutants and assessed their ability to bind human myelogenous leukemia (K562) cells, which express necl-5 and nectin-2 (Fig. 4B) by flow cytometry. Whilst no binding was observed using a control murine cell line lacking human DNAM-1 ligands, wild type DNAM-1 bound well to the K562 cells (Fig. 4C and 4D). With the exception of the T188A mutant, which exhibited a 68 % increase in binding, the overall pattern of binding of the mutant or variant forms of DNAM-1 closely matched that obtained by SPR. Namely, the R96A and N186A mutations as well as HEK-293T-produced DNAM-1 bound equivalently to HEK-293S DNAM-1, whereas the Y113A mutation reduced binding to the K562 cells. Thus, the aromatic key residue of DNAM-1 is
critical for the interaction with necl-5/nectin-2, while Asn186 and its associated N-glycan appear to be dispensable for ligand binding under these experimental conditions.

Mutations within DNAM-1 D1, but not D2, impact NK cell killing—Lastly, to investigate the functional relevance of DNAM-1 D2:necl-5 interactions, we transfected wild type DNAM-1 (and mutants thereof) into an NK cell line (NK-92) that lacked endogenous DNAM-1 expression (Fig. 5A) and co-incubated these cells with K562 cells at a range of NK:target cell ratios (Fig. 5B). Analysis of the expression of DNAM-1 in these cell lines demonstrated that DNAM-1-N186A could not be detected using the anti-DNAM-1 antibody 11A8. Thus, we confirmed the expression of DNAM-1-N186A in these cells using nectin-2 tetramers. Similar to the observations with DNAM-1 tetramer staining of K562 cells, (Fig. 4C), nectin-2 tetramers bound to each DNAM expressing cell line with the exception of NK92DNAM-1 Y113A cells (Fig. 5A). Given that NK-92 cells preferentially kill via NKG2D, we performed the killing assays in the presence of the NKG2D blocking antibody 1D11. Here, expression of wild-type DNAM-1 markedly improved NK cell cytotoxicity compared to the parental line, indicating that within this experimental system, killing was DNAM-1 dependent (Fig. 5B). While the functional capacity of NK-92 cells transduced with the control R96A DNAM-1 mutant was identical to that of wild type DNAM-1, introduction of the Y113A mutation significantly reduced killing across all NK:target cell ratios, highlighting the importance of the conserved aromatic ‘key’ residue (Fig. 5B). In contrast, mutations within DNAM-1 D2 (N186A and T188A) had no effect on NK cell killing at any effector:target cell ratio (Fig. 5B). Thus, in this NK cell assay, interactions derived from Asn186 or its associated N-glycan chain did not influence DNAM-1-mediated cytotoxicity of nectin-2/necl-5 expressing target cells.

DISCUSSION

The nectin receptors are emerging as a critical regulatory checkpoint governing immune effector function. For example, over-expression of nectin-2 and necl-5 on tumours has been reported to dampen T and NK cell responses via TIGIT and CD96 (16-19), while recognition of these same ligands by DNAM-1 promotes tumour immunosurveillance and clearance (15,37-41). Moreover, DNAM-1 has been associated with a number of adverse autoimmune pathologies (42-44) and directly drives the allo-immune response in graft versus host disease (45). Thus, understanding the factors governing recognition within this paired receptor family has the potential to inform future strategies for therapeutic intervention in a range of human diseases.

The last few years have seen considerable progress in our understanding of the molecular basis underpinning nectin receptor recognition, in part due to the determination of multiple receptor:ligand complexes including TIGIT:necl-5 (31), TIGIT:nectin-2 (29) and CD96 D1:necl-5 (30). Altogether, these studies have highlighted the important role that the D1 domain of each receptor, and in particular the signature ‘lock and key’ motifs, play in ligand binding. However, while TIGIT is comprised of only a single Ig domain, DNAM-1 and CD96 possess
two and three Ig domains, respectively, raising questions as to the evolutionary driving force behind this increased complexity, particularly since the isolated CD96 D1 domain is sufficient for ligand binding (30).

Here, we extend these findings by reporting the structure of the entire ectodomain of human DNAM-1 bound to necl-5. DNAM-1 adopted an unusual stacked configuration of its two Ig domains that differed markedly from the linear arrangement observed within the nectin adhesion molecules. This collapsed architecture placed the D2 domain of DNAM-1 adjacent to necl-5, such that Asn186 and its associated N-glycan made direct interactions with the C-C' loop of the ligand. Although we were only able to visualise a single GlcNAc moiety at the interface due to our inability to obtain crystals of natively glycosylated DNAM-1, mass spectrometry-based glycopeptide and glycan analyses established that Asn186 of recombinant DNAM-1 was extensively decorated with a heterogeneous mixture of large, complex N-glycans. Although our SPR and tetramer staining experiments demonstrated robust binding of fully glycosylated DNAM-1 to both nectin-2 and necl-5, precisely how extended glycan chains attached to Asn186 are accommodated at the relatively tight juncture between DNAM-1 D1, D2 and necl-5 D1 is at this stage unclear. Indeed, mutation of Asn186 or removal of its associated N-glycan had no impact on DNAM-1 ligand binding affinity or DNAM-1-mediated NK cell cytotoxicity. In this regard, it is important to note that Arg185 of DNAM-1 D2 also makes interactions with Gly70 of necl-5. However, because these contacts were restricted to the main chain atoms of the receptor and ligand, we were unable to test their functional importance using mutagenesis. Thus, while at this stage we have no evidence that DNAM-1 D2 contributes to ligand recognition, we cannot exclude this possibility entirely.

Our data raises new questions regarding the function of the D2 domain within the nectin receptor family. Since TIGIT comprises just a single extracellular Ig domain, it seems unlikely that the D2 domain is required as a structural scaffold to place the D1 domain in the appropriate position/orientation for ligand binding. Whether the D2 domain can impact recognition of other, as of yet unidentified nectin receptor ligands or ancillary molecules that are directly associated with DNAM-1, such as leukocyte function-associated antigen-1 (LFA-1) will be an interesting avenue for future investigation. Moreover, it will also be insightful to identify whether the CD96 D2 domain adopts a configuration similar to that observed in DNAM-1, particularly since human CD96 exists as two isoforms that differ by a 16 residue insertion within the D2 domain, and this alteration has been reported to modulate necl-5 binding (48).

Overall, the structure described herein is similar to that of mouse DNAM-1 bound to human necl-5 recently reported by Wang et al (32). The close overall architecture and binding affinity of human and mouse DNAM-1 indicates the evolutionarily conserved nature of this receptor system. However, mouse and human DNAM-1 have diverged somewhat in regards to primary amino acid sequence (53% identity within the ectodomain) and indeed the nature of many of the interactions were distinct. While the D2 domain of both human and mouse DNAM-1 made interactions with necl-5, mouse DNAM-1 did so via a solitary interaction derived from Glu185 (equivalent to Gly184 in human DNAM-1), whereas human DNAM-1 formed a more extensive interface that included Arg185, Asn186 and its associated N-glycan. While the importance of Glu185 in mouse DNAM-1:necl-5 recognition was not formally tested, a truncated DNAM-1 construct comprising only the D1 domain exhibited reduced binding to necl-5 expressing cells, leading the authors to conclude that the D2 domain modulated the interaction with necl-5. This was in direct contrast to our binding and functional assays that indicated that mutation of contact residues within DNAM-1 D2 did not impact necl-5 binding or DNAM-1 function. These results can be reconciled by our observation that we were unable to express
properly folded DNAM-1 D1 in mammalian cells, indicating that the D2 domain might be important for stability of the receptor. Nevertheless, knowledge of these differences between human and mouse DNAM-1 will be important when interpreting data from mouse studies.

EXPERIMENTAL PROCEDURES

Cell Culture- HEK-293T and HEK-293S cells were maintained at 37°C and 5% CO₂ in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 4.5 g/L L-glucose, 0.5 mg/mL penicillin/streptomycin/L-glutamine (Gibco) and 10% (v/v) heat-inactivated foetal calf serum (FCS) (Sigma-Aldrich). For protein expression, DMEM was supplemented with 2 mM L-alanyl-L-glutamine dipeptide (GlutaMAX, Gibco) and non-essential amino acids (Gibco) and the concentration of FCS was reduced to 2%. K562 cells were cultured in RPMI supplemented with 10% FCS, penicillin and streptomycin. NK92 and NK-92 transfectants were cultured in alpha minimum essential media (MEM) supplemented with 20% FCS, 12.5% horse serum, 0.2 mM inositol, 0.02 mM folic acid, 5 mM glutamate, 7.5% sodium bicarbonate, 1 M HEPES (pH 7.0), 1.43 mM β-mercaptoethanol and 600 U/ml IL-2. K562 cells were seeded at 1 x 10⁵ cells/ml and allowed to divide until cell density reached approximately 1 x 10⁶ cells/ml. NK-92 cells were seeded at 5 x 10⁵ cells/ml and allowed to divide until cell density reached 2 x 10⁶ cells/ml.

Protein Expression and Purification- The construct encoding human DNAM-1 (amino acids 19-250) was codon optimised for human expression (Integrated DNA technologies) and cloned between AgeI and KpnI restriction sites into the pHLSec vector to include either a C-terminal hexa-histidine tag (for structural studies) or consensus site for the biotin protein ligase enzyme (BirA) followed by a hexa-histidine tag (for SPR and tetramerisation). The human nectin-2 ectodomain (residues 32-350) was cloned in the same manner. DNAM-1 (and mutants thereof) and nectin-2 were expressed via transient transfection in human embryonic kidney two hundred and ninety-three-S (HEK293S) cells. For some SPR, tetramer staining and mass spectrometry experiments, wild type DNAM-1 was also expressed in HEK-293T cells, where indicated. The human necl-5 ectodomain (residues 32-350 and 28-334) was codon optimised for expression in Trichoplusia Ni (Integrated DNA technologies) and cloned into the pFASTBac vector (Invitrogen) between XhoI and SpeI restriction sites to include a C-terminal a hexa-histidine tag. The plasmid was incorporated into a recombinant baculovirus and the viral titre was expanded in SF9 cells as described in the *Bac-to-Bac* manual (Invitrogen). Soluble necl-5 was obtained by infecting Hi5 cells with 2 % P3 virus. Secreted protein from mammalian and baculoviral systems was buffer exchanged into 10 mM Tris-HCl (pH 8.0), 500 mM NaCl and purified via nickel-affinity and size-exclusion chromatography using a Superdex S200 16/600 column (GE Healthcare) in a buffer comprising 10 mM Tris-HCl (pH 8.0), 150 mM NaCl. For biotinylation, purified BirA-tagged DNAM-1 was buffer exchanged into 10 mM Tris-HCl (pH 8.0) and biotinylated overnight at 4°C.

Crystallisation and Data Collection- For crystallisation, purified DNAM-1 was enzymatically digested with endoH in the presence of 10 mM sodium citrate (pH 5.0) at 4°C overnight, prior to being mixed with necl-5 in a 1:1 molar ratio at a total concentration of 10 mg/mL. Crystals were obtained using the hanging-drop vapour diffusion method using a reservoir solution comprising 20 % (v/v) PEG3350, 0.18 mM K₂SO₄, 10 mM EDTA and were cryo-protected in in the presence of 10 % (v/v) glycerol. X-ray diffraction data was recorded on a Quantum-315 CCD detector at the MX2 beamline of the Australian Synchrotron. Data were integrated by MOFLM and scaled using SCALA within the CCP4 suite of programs. Details of the data processing statistics are given in Supplementary Table I.

Structure Determination and Refinement- The structure was determined by molecular replacement using Phaser. Isolated models for each of the necl-5 D1, D2 and D3...
domains were generated from the unliganded structure (PDB ID: 4FQP) (28) using PyMOL (Schrödinger Inc) and used as search models for the D1, D2 and D3 domains of necl-5, respectively. Molecular replacement solutions for the DNAM-1 D1 and D2 domains were obtained using a model consisting of the isolated nectin-2 D1 (PDB ID: 5V52) as a search model. The structure was refined via iterative cycles of model building in Coot and refinement using Buster (http://globalphasing.com/buster/). N-linked glycans were manually incorporated into regions of positive density that correlated to the requisite sequence motif: NxS/T), where x is any amino acid except proline. The final structure comprised two molecules of DNAM-1 and two molecules of necl-5 within the asymmetric unit that were arranged into two heterodimers (heterodimer 1, chains A and C; heterodimer 2, chains B and D). Structural analysis was restricted to heterodimer 1 as the electron density surrounding chains A and C was better defined than that of chains B and D. The final structure refined to final R_{free} values of 20.8 and 23.0. Details of the refinement statistics are given in Supplementary Table I. The structure factor file and associated atomic coordinates for the DNAM-1:necl-5 structure have been deposited within the Protein Data Bank with the accession code 6O3O.

Surface Plasmon Resonance (SPR)- SPR experiments were performed using a BIAcore 3000 system (GE Healthcare) at 25 °C with a buffer comprising 10 mM Tris-HCl (pH 8.0), 150 mM NaCl and 0.005 % (v/v) surfactant P20. Varying response units (RU) of wild type biotinylated DNAM-1 or mutants thereof (see Fig. 4 for details) were immobilised onto streptavidin coated sensor chips (GE Healthcare) and flow cells were quenched with 10 µL free D-biotin (1 mg/mL) at a flow rate of 5 µL/min prior to injection of analyte. Varying concentrations of soluble nectin-2 and necl-5 were passed over the flow cells for 30-60 s, in duplicate, at a flow rate of 10 µL/min. The final responses were doubled referenced by subtracting responses from an “empty” flow cell containing biotin-blocked streptavidin as well as from buffer only injections. The responses at equilibrium were used to construct equilibrium binding curves that fit by a single-site binding model. The calculated equilibrium dissociation constants represent the mean ± standard error of the mean from n=3 (for wild type DNAM-1 produced in HEK-293S and HEK-293T) or n=2 (for all others) independent experiments. Data were analysed with Scrubber2.0 (BioLogic Software, Campbell, ACT, Australia) and Prism 7.0 (GraphPad Software, CA).

Fluorescence Activated Cell Sorting (FACS) analysis- K562 and NK92 cells were harvested and washed in PBS-FCS (1%) and Fc receptors were blocked using 10% normal goat serum. K562 cells were then washed and stained with DNAM-1 tetramers, anti-CD155 (TX24; Biolegend, San Diego, CA, 92121, USA) or anti-CD112 (TX31; Biolegend) for 30 minutes at 4 degrees. After staining with DNAM-1 tetramers, cells were directly fixed by the addition of paraformaldehyde (10% in PBS) for 20 minutes at 4 °C. K562 cells stained with antibodies were not fixed. NK92 cells were stained with anti-DNAM antibody (11A8; Biolegend) or nectin-2 tetramers for 30 minutes at 4 °C. After staining with nectin-2 tetramers, cells were directly fixed by the addition of paraformaldehyde (10% in PBS) for 20 minutes at 4 °C. After staining/fixation, K562 and NK-92 cells were washed twice in phosphate buffered saline (PBS)-FCS and prepared for FACS. For acquisition, events were electronically gated on FSC-A vs FSC-H (singlets), followed by FSC-A and SSC-A (to exclude doublets and debris). Among the remaining population at least 5000 electronic events of interest were collected using an LSR-II or X-20 Fortessa (BD Biosciences, Franklin Lakes, NJ).

Protein denaturation- The cysteine residues of recombinant human DNAM-1 expressed in HEK293T or HEK-293S cells were reduced using 10 mM aqueous dithiothreitol (DTT), 45 min, 56°C and then carbamidomethylated using 25 mM aqueous iodoacetamide, 30 min in the dark, 20°C. The
Immune recognition of nectin adhesion molecules

alkylation reaction was quenched using 30 mM aqueous DTT (final concentrations stated).

*N-glycan preparation- All reagents were obtained from Sigma-Aldrich unless otherwise stated. The water used for all experimental procedures was of ultra-high purity (MilliQ filtration system, Millipore). The DNAM-1 *N*-glycans were released and prepared for glycomics as previously described (49). In brief, DNAM-1 (20 μg) was immobilised in triplicate spots on a primed 0.45 μm polyvinylidene fluoride (PVDF) membrane (Merck-Millipore). The dried PVDF spots were stained with Direct Blue, excised, transferred to separate wells in a flat bottom polypropylene 96-well plate (Corning Life Sciences), blocked with 1% (w/v) polyvinylpyrrolidone in 50% (v/v) aqueous methanol and washed with water. De-*N*-glycosylation was performed using 2 U *Elizabethkingia miricola N*-glycosidase F (Promega) per 20 μg DNAM-1 in 10 μl water/well, 16 h, 37°C. The released *N*-glycans were transferred into fresh tubes and hydroxylated by the addition of 100 mM aqueous ammonium acetate, pH 5, 1 h, 20°C. The glycans were reduced using 1 M sodium borohydride in 50 mM aqueous potassium hydroxide, 3 h, 50°C. The reaction was quenched using glacial acetic acid. Dual desalting of the reduced *N*-glycans was performed using first strong cation exchange resin (where the *N*-glycans are not retained) and then porous graphitised carbon (PGC) (where *N*-glycans are retained) packed as micro-columns on top of C18 discs in P10 solid-phase extraction (SPE) formats. The *N*-glycans were eluted from the PGC micro-columns using 0.05% trifluoroacetic acid (TFA): 40% acetonitrile (ACN): 59.95% water (v/v/v), dried and redissolved in 10 μl water for LC-MS/MS analysis. Bovine fetuin was included as a sample handling and LC-MS/MS control.

*N-glycan analysis- The *N*-glycans were separated on a Hypercarb PGC column (particle size 3 μm, column length 100 mm, inner diameter 0.18 mm Thermo Scientific) heated to 27°C over an 83 min gradient of 0-45% (v/v) ACN (solvent B) in 10 mM aqueous NH₄HCO₃ (solvent A) at a flow of 2 μl/min delivered by a Dionex Ultimate-3000 HPLC (Dionex, CA). The glycans were detected using a LTQ Velos Pro ion trap mass spectrometer (Thermo Scientific, CA) in negative ion polarity mode with a source voltage of 3.2 kV. The MS1 scan range was *m/z* 550-2,000 with a zoom scan resolution of *m/z* 0.25 (FWHM). The automatic gain control (AGC) for the MS1 scan was 5 x 10⁴ with a maximum accumulation time of 50 ms. Data-dependent tandem mass spectrometry (MS/MS) was performed using collision-induced dissociation (CID) at a normalised collision energy (NCE) of 33% of the 10 most abundant precursors in each MS1 scan. For the MS2 events, the resolution was set to *m/z* 0.35 (FWHM), the AGC was 2 x 10⁴ and the maximum accumulation time was 300 ms. Dynamic exclusion was disabled. All MS and MS/MS spectra were acquired in profile mode. The LC-MS/MS instrument was tuned and calibrated and its performance bench marked using bovine fetuin *N*-glycans prior to use. The raw LC-MS/MS data was browsed and annotated using Xcalibur v2.2 (Thermo Scientific) using assisting software i.e. GlycoMod and GlycoWorkBench and manual *de novo* glycan sequencing as previously published (50). The relative abundances of the individual *N*-glycans were determined from relative area-under-the-curve (AUC) measurements based on extracted ion chromatograms (EICs) performed for the monoisotopic *m/z* values using Skyline (51).

*N-glycopeptide preparation- DNAM-1 was digested in solution using 1:30 (w/w, enzyme/substrate) sequencing-grade porcine trypsin (Promega) in 50 mM aqueous NH₄HCO₃, pH 8.4, 16 h, 37°C. The peptide mixture was dried and redissolved in 80% ACN:1% TFA:19% water(v/v/v). The tryptic glycopeptides and other hydrophilic DNAM-1 peptides were enriched using hydrophilic interaction liquid chromatography solid phase extraction (HILIC-SPE) as previously described (52). In brief, HILIC-SPE micro-columns (10 mm column height) were prepared using zwitterionic HILIC (ZIC-HILIC) silica resin (10 μm particle size, 200 Å pore size, kindly provided by Merck-Millipore) packed...
Immune recognition of nectin adhesion molecules

into GELoader tips (Eppendorf) on top of C8 Empore SPE discs. The HILIC-SPE micro-columns were equilibrated using loading solvent consisting of 80% ACN:1% TFA:19% water (v/v/v). The peptide mixtures were loaded (and reloaded once) on the columns using an ordinary bench top micro-centrifuge operated at low speed. The retained DNAM-1 peptides were eluted by applying 2 x 50 µl 1% (v/v) aqueous TFA, dried and redissolved in 10 µl water for LC-MS/MS analysis.

N-glycopeptide analysis- The enriched N-glycopeptides were separated on a nano-flow reversed phase Helo C18 column (particle size 2.7 µm, column length 100 mm, inner diameter 75 µm, Thermo Scientific) heated to 50°C. A gradient over 70 min of 0-60% (v/v) solvent B (0.1% (v/v) formic acid (FA) in ACN) was applied (solvent A was 0.1% (v/v) aqueous FA). A constant flow rate of 450 nl/min was delivered by an Eksigent nano-400 LC system (SCIEX). The glycopeptides were detected using an Orbitrap Elite mass spectrometer (Thermo Scientific) in positive polarity mode with a source voltage of 3 kV. The MS1 scan range was m/z 500-2,000, AGC was 1 x 10^6, and the maximum accumulation time was 50 ms. The ten most abundant precursors in each MS1 scan were selected for data-dependent MS/MS acquisition (m/z 110-2,000) using higher energy C-trap dissociation (HCD) at a NCE of 35%. The AGC was 5 x 10^4 and the maximum accumulation time was 200 ms for the HCD-MS/MS events. Dynamic exclusion was enabled with a maximum repeat count of 3 for every 30 s. All MS and MS/MS spectra were acquired in profile mode. The LC-MS/MS instrument was tuned and calibrated and its performance bench marked using bovine serum albumin peptides prior to use. The raw LC-MS/MS data was browsed and annotated using Xcalibur v2.2 (Thermo Scientific) using assisting software i.e. GPMAW v10 (Lighthouse Data, Denmark) and Byonic v2.3 (Protein Metrics, CA) and manual de novo glycopeptide sequencing (53). The relative abundances of the individual N-glycopeptides were determined from relative AUC measurements based on monoisotopic m/z EICs performed manually using Xcalibur v2.2 (Thermo Scientific).

Generation NK92-DNAM-1 cell lines- The full-length sequences of wild type and mutated DNAM-1 were cloned into the MSCV plasmid and retroviral supernatants generated using HEK-293T cells. For NK-92 transduction, 50 µg/ml retronectin was coated onto a non-treated plate for 2 hours at room temperature prior to washing (x2) and blocking with 2% BSA in PBS for 30 minutes. Plates were then washed with PBS (x2) and viral supernatant added to the wells after filtration through 0.45 µm filters. Virus was adhered to the plates by centrifugation at 1500 x g (2 hours at room temperature). Supernatant was then removed and the wells washed with PBS-0.1% BSA prior to addition of NK-92 cells at 1 x 10^5 cells/ml. Cells and virus were integrated by centrifugation at 200 x g for 5 minutes at room temperature. NK-92 cells infected with retrovirus were sorted on the basis of GFP expression. Populations were sorted until stable with insertion of DNAM-1 determined by FACS.

NK cell killing assays- K562 cells were labelled with Cell Trace Violet according to the manufacturers (Thermofisher, Waltham, MA, 02451, USA) instructions. NK-92 cells were co-cultured with K562 cells in the presence of a saturating amount (10 µg/ml) of anti-NKG2D antibody (1D11; Biolegend). Different ratios of cells were added to U-bottom plates and centrifuged at 1400 rpm for 1 minute. The co-cultures were then incubated for 4 hours at 37 degrees at which time they were washed and labelled with Zombie NR. For acquisition, events were electronically gated on FSC-A and SSC-A to detect live and dead cells. Effectors were excluded in the GFP channel and targets identified on the V450/50 channel. Among the remaining population in this channel at least 200 viable electronic events of interest (CTV+/Zombie NR-) were collected using an LSR-II or X-20 Fortessa (BD Biosciences, Franklin Lakes, NJ, 07097, USA).

Acknowledgements
Immune recognition of nectin adhesion molecules

We would like to thank the staff at the Monash Macromolecular Crystallization Facility and the Australian Synchrotron for their expert assistance. We would also like to acknowledge staff from the A+ Flow Cytometry Core Facility for their expert assistance with cell sorting and acquisition. MTA was supported by a Macquarie University Research Seeding Grant. SC is supported by an international Macquarie University Research Excellence Scholarship (iMQRES 2017152). JR is supported by an Australian Research Council Laureate Fellowship (FL160100049). RB is supported by a Career Development Fellowship from the National Health and Medical Research Council of Australia (APP1109901).

Conflict of Interest
The authors declare that they have no conflicts of interest with the contents of this article.

References

bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. *Proceedings of the National Academy of Sciences of the United States of America* 109, 5399-5404

Immune recognition of nectin adhesion molecules

Figure 1. The atypical stacked architecture of DNAM-1. (A) Overview of the structure of human DNAM-1. The β-strands of D1 and D2 are coloured in dark and light blue respectively, helices are coloured red, disulfide bonds are shown as orange sticks and N-linked glycans are represented by green sticks. Cylinders represent the axis of inertia of each domain. (B) Topology diagram of DNAM-1 coloured as in (A). (C) Electrostatic surface potential of DNAM-1 D1 and D2 domains (blue, electropositive; red, electronegative). Residues that are involved in the D1:D2 interface are shown as sticks. (D-E) Close up views of the DNAM-1 D1:D2 interface. Dashed lines represent H-bonds.
Figure 2. Structural comparison of immune receptors that comprise multiple tandem Ig domains. From left to right, PDB IDs: 6O3O (DNAM-1), 4FPQ (necl-5), 3BP5 (PD1-L2), 4NO0 (LIR-B1), 1P6F (NKp46), 3VH8 (KIR3DL1) and 1FCG (FcyRIIa).
Figure 3. The DNAM-1:necl-5 complex. (A) Overview of the structure of DNAM-1 (D1 and D2 coloured dark and light blue, respectively) bound to necl-5 (tan). The aromatic key residues (Tyr113 in DNAM-1; F128 in necl-5) and N-glycans are labelled and shown as sticks. Asterisks denote the C-termini. (B) Schematic showing how the DNAM-1:necl-5 complex could exist on the cell surface. (C-F) Close up views of the DNAM-1 D1:necl-5 interactions focused on the DNAM-1 key (C), the necl-5 key (D), the C-C’ loops (E) and the centrally-located residues (F). (G) Binding footprint of DNAM-1 D1 (dark blue) and D2 (light blue) on necl-5 D1 (tan). (H) View of the DNAM-1 D2:necl-5 interface focused on Asn186. H-bonds are represented by dashed lines.
Figure 4. Binding studies of DNAM-1 mutants. (A) Sensorgrams (left) and the corresponding equilibrium binding curves (right) showing the binding of nectin-2 and necl-5 to immobilised DNAM-1 and mutants thereof, as indicated. Sensorgrams and equilibrium binding curves show one representative of three (for wild type DNAM-1 produced in HEK-293S and HEK-293T) or two (for all others) independent experiments, each performed in duplicate. Equilibrium dissociation constants (K_D) ± standard error of the mean were calculated from the independent experiments. The amount of DNAM-1 coupled to the chip and the predicted maximal response (R_max) are indicated for each representative experiment shown. ND indicates not determined. (B-D) Binding of DNAM-1 mutant tetramers to K562 cells. (B) K562 cells were stained with nectin-2 and necl-5 specific antibodies as indicated. Histograms of nectin-2 and necl-5 binding are representative of 3 independent experiments. For each panel, the filled black histogram is the isotype control and the filled grey histogram is the specific antibody. The histograms are overlayed and are modal between samples. (C) Binding of wild type and mutant DNAM tetramers to K562 cells. Histograms are representative of 4 independent experiments. The histograms have been offset and are modal. (D) Analysis of the median fluorescent intensity of the 4 independent tetramer staining experiments. **** indicates P<0.0001 as determined using ANOVA with Tukeys post-hoc test.
Figure 5. Cytotoxic activity of NK-92 cells transduced with DNAM-1 mutants. (A) NK-92 cells expressing wild type and mutant DNAM-1 were generated and the expression of DNAM-1 assessed by flow cytometry using an anti-DNAM-1 antibody (top) or nectin-2 tetramer (bottom). For each panel, the filled black histogram is either isotype control (top) or streptavidin-PE (bottom) and the filled grey histogram is the specific reagent. The histograms are overlayed and are modal between samples. (B) Parental NK-92 cells as well as transfected cells expressing full length DNAM-1 and the mutant forms were used in cytotoxicity assays. All experiments were performed in the presence of saturating amounts of anti-NKG2D. NK-92 cells expressing DNAM-1 demonstrate increased killing of K562 cells relative to parental NK-92 cells (left panel). Killing of all DNAM-1 mutants are shown relative to wild type DNAM-1. Significant differences (determined by the Mann Whitney test) at each effector:target ratio are indicated by asterisks (* P<0.05, ** P < 0.005). The results from the killing assays are pooled from 2 (N=6 for NK-92, NK92-DNAM-1, NK92-DNAM-1R96A, NK92-DNAM-1Y113A, NK92-DNAM-1N186A) or 4 (NK92-DNAM-1T188A) independent experiments performed in triplicate.
Structural basis for the recognition of nectin-like protein-5 by the human activating immune receptor, DNAM-1
Felix A. Deuss, Gabrielle M Watson, Katharine J Goodall, Isobel Leece, Sayantani Chatterjee, Zhihui Fu, Morten Thaysen-Andersen, Daniel M Andrews, Jamie Rossjohn and Richard Berry

J. Biol. Chem. published online June 28, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.009261

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts