
Math-Net.Ru
All Russian mathematical portal

V. I. Korzyuk, N. V. Vinh, N. T. Minh, Conservation law for the Cauchy–Navier
equation of elastodynamics wave via Fourier transform, Tr. Inst. Mat., 2016,
Volume 24, Number 1, 100–106

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms

of use

http://www.mathnet.ru/eng/agreement

Download details:

IP: 130.194.80.212

September 3, 2019, 02:26:49



Национальная академия наук Беларуси
Труды Института математики. 2016. Том 24. № 1. С. 100–106

УДК 517.956

CONSERVATION LAW FOR THE CAUCHY–NAVIER

EQUATION OF ELASTODYNAMICS WAVE VIA FOURIER

TRANSFORM

V. I. Korzyuk, N. V. Vinh, N. T. Minh

Белорусский государственный университет
e-mail: korzyuk@bsu.by, vinhnguyen0109@gmail.com, minhnguyen@yandex.ru

Поступила 28.04.2016

In this paper, we use the method of Fourier analysis to derive the formula of the total energy
for the Cauchy problem of the Cauchy–Navier elastodynamics wave equation describing the
motion of an isotropic elastic body. The conservation law of the total energy is obtained and
consequently, the global uniqueness of the solution to the problem is implied.

1. Introduction. Methods of Fourier analysis are widely used for studying the theory of partial
differential equations (PDEs). An important aspect is to find fundamental and classical solutions of
linear PDEs via Fourier transform. By the isometric property of Fourier transform, one can estimate
energy functionals of a solution to some concrete mathematical modelling problems in physics. Our
main work is to derive the formula of the total energy for the Cauchy problem of the Cauchy–Navier
elastodynamics wave equation describing the motion of an isotropic elastic body. For explanations
about physical context related to the mathematical theory of linear elasticity, we refer the readers
to [4, 5, 6].

Let us resume about the mathematical formulation and some necessary notations. Remark that,
the Newton’s second law leads to the Cauchy’s motion equation of an elastic body, which takes
the form

∇ · σ + f = ρ
∂2u

∂t2
, (1)

where σ = (σij(x, t))i,j=1,n is the Cauchy stress tensor field, u = (ui(x, t))i=1,n is the displacement
vector field, f = (fi(x, t))i=1,n is the vector field of body force per unit volume, ρ is the mass density

and
∂2u

∂t2
=

(
∂2u1
∂t2

,
∂2u2
∂t2

, . . . ,
∂2un
∂t2

)
. The infinitesimal strain tensor field is given by the equation

ε =
1

2
[∇u+ (∇u)T ], (2)

where (∇u)T — transformation matrix of ∇u.

Moreover, the Hooke’s law for homogeneous isotropic bodies has the form

σ = λ trace(ε) I+ 2µ ε, (3)
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where λ, µ > 0 are Lamé’s parameters, trace(ε) — trace of matrix (ε) and I is the second-order
identity tensor. Substituting the strain-displacement equation (2) and the Hooke’s equation (3) into
the equilibrium equation (1), we obtain the Cauchy–Navier elastodynamic wave equation

(λ+ µ)∇ div(u) + µ∆u+ f = ρ
∂2u

∂t2
, (4)

where ∆ =
∂2

∂x21
+

∂2

∂x22
+ . . .+

∂2

∂x2n
.

This equation in the Cartesian coordinates has the form

(λ+ µ)
∂

∂xk

( n∑

j=1

∂uj
∂xj

)
+ µ∆uk + fk = ρ

∂2uk
∂t2

, k = 1, n.

The Cauchy problem consists in finding a vector function u = (u1, u2, . . . , un), which satisfies (4)
and the initial condition as follows

u(x, t)|t=0 = ϕ0(x),
∂u

∂t
(x, t)

∣∣∣∣
t=0

= ϕ1(x). (5)

It is easy to show that the Cauchy problem (4), (5) has a Cauchy–Kovalevski–Somigliana solution
in the following form

u =

(
∂2

∂t2
−
λ+ 2µ

ρ
∆

)
w +

λ+ µ

ρ
∇ div(w), (6)

where w is a solution to the Cauchy problem of the biwave equation
(
∂2

∂t2
−
λ+ 2µ

ρ
∆

)(
∂2

∂t2
−
µ

ρ
∆

)
w =

f

ρ
;

w|t=0 =
∂w

∂t

∣∣∣∣
t=0

= 0; (7)

∂2w

∂t2

∣∣∣∣
t=0

= ϕ0,
∂3w

∂t3

∣∣∣∣
t=0

= ϕ1.

Note that, in [3], a formula of exact solution to the Cauchy problem of the biwave equation is given
by using Fourier transform.

The total energy E(t) of a solution to the equation (4) is defined as the summation of the
kinetic energy and the potential energy, where the kinetic energy functional is given by

U(t) =
1

2

∫

Rn

ρ

∣∣∣∣
∂

∂t
u

∣∣∣∣
2

dx =
1

2

∫

Rn

ρ

n∑

k=1

(
∂uk
∂t

)2

dx,

and the potential energy functional or the strain energy has the following form

K(t) =

∫

Rn

(
1

2
λ trace(ε)2 + µ trace(ε2)

)
dx.

We denote by S(Rn) the space of Schwartz functions (seen by in [9] and [10]). Remark that an
indefinitely differentiable function φ is called Schwartz function when φ and all its derivatives are
required to be rapidly decreasing, i.e.

||φ||α,β = sup
x∈Rn

∣∣∣∣xα
(
∂

∂x

)β

φ(x)

∣∣∣∣ <∞,
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for every multi-index α and β. The Fourier transform of φ ∈ S(Rn) is defined by

F [φ](ξ) ≡ φ̂(ξ) =

∫

Rn

e−i⟨x,ξ⟩φ(x) dx.

It is well-known by the Plancherel theorem that the Fourier transform is an isometry in S(Rn) with
respect to L2 -norm, i.e. ∫

Rn

|φ(x)|2 dx =

∫

Rn

|φ̂(ξ)|2 dξ

for every φ ∈ S(Rn). The basic concepts of Fourier analysis and application for solving PDEs and
study the conservation law of energy can be found in [7, 8].

By using some Fourier analysis techniques, we will show the exact formula of the total energy,
which depends only on the initial data and is independent of time. Consequently, the global
uniqueness of the solution to the Cauchy problem of the Cauchy–Navier elastodynamics wave
equation is proved.

2. Main results. Let us denote a2 = (λ+ 2µ)/ρ, b2 = µ/ρ and assume that f = 0, then (4)
can be rewritten as the following homogeneous equation

(
∂2

∂t2
− b2∆

)
u− (a2 − b2)∇div(u) = 0, (8)

where div(u) =
∂u1
∂x1

+
∂u2
∂x2

+ . . .+
∂un
∂xn

.

Note that, if u(x, t) ∈ C4(Rn × [0,∞)) is a solution to the equations (5), (8), then it is also a
solution to the homogeneous biwave equation

(
∂2

∂t2
− a2∆

)(
∂2

∂t2
− b2∆

)
u = 0, x ∈ R

n, t > 0, (9)

together the initial condition

u|t=0 = ϕ0,
∂u

∂t

∣∣∣∣
t=0

= ϕ1,

∂2u

∂t2

∣∣∣∣
t=0

= ϕ2 = (a2 − b2)∇(divϕ0) + b2∇2ϕ0, (10)

∂3u

∂t3

∣∣∣∣
t=0

= ϕ3 = (a2 − b2)∇(divϕ1) + b2∇2ϕ1.

Indeed, taking divergent to the both side of (8), we have

∂2

∂t2
div(u)− a2∆div(u) = 0. (11)

Taking Laplacian and doubly differentiating with respect to t, we obtain that

(
∂2

∂t2
∆− b2∆2

)
u = (a2 − b2)∇∆div(u), (12)

(
∂4

∂t4
− b2∆

∂2

∂t2

)
u = (a2 − b2)∇

∂2

∂t2
div(u). (13)

102



From (11), (12), (13), we have

(
∂2

∂t2
∆− a2∆2

)(
∂2

∂t2
∆− b2∆2

)
u =

=

(
∂4

∂t4
− b2∆

∂2

∂t2

)
u− a2

(
∂2

∂t2
∆− b2∆2

)
u =

= (a2 − b2)∇

(
∂2

∂t2
div(u)− a2∆div(u)

)
= 0.

The initial conditions (10) is easily verified from (5), (8). For more important discussions about the
biwave equation, we refer to [1, 2] and [3].

Using the above connection, we will derive the formula of the total energy of a solution of (8), (5)
via Fourier transform. In the next sequence, we assume that u = (u1, . . . , un), ϕ0 = (ϕ0,1, . . . , ϕ0,n),
ϕ1 = (ϕ1,1, . . . , ϕ1,n) are vectors of Schwartz functions.

Lemma 1. The Fourier transform of solution to the homogeneous biwave equation (9), (10) has
the following form

û(ξ, t) =
cos(a|ξ|t)

|ξ|2
⟨ξ, ϕ̂0⟩ξ +

sin(a|ξ|t)

a|ξ|3
⟨ξ, ϕ̂1⟩ξ+

+
cos(b|ξ|t)

|ξ|2
(|ξ|2ϕ̂0 − ⟨ξ, ϕ̂0⟩ξ) +

sin(b|ξ|t)

b|ξ|3
(|ξ|2ϕ̂1 − ⟨ξ, ϕ̂1⟩ξ). (14)

Proof. Taking Fourier transform to the both sides of the equation (9), we obtain that

∂4

∂t4
û(ξ, t) + (a2 + b2)|ξ|2

∂2

∂t2
û(ξ, t) + a2b2|ξ|4û(ξ, t) = 0.

This fourth ODE has the general solution, which takes the form

û(ξ, t) = C1 cos(a|ξ|t) +C2 sin(a|ξ|t) +C3 cos(b|ξ|t) +C4 sin(b|ξ|t),

where vector of parameters C1, C2, C3, C4 are determined from the initial condition (10) by
solving a system of linear equations. After some simplifications, the Fourier transform of u is
calculated as

û(ξ, t) = −
b2|ξ|2ϕ̂0(ξ) + ϕ̂2(ξ)

(a2 − b2)|ξ|2
cos(a|ξ|t)−

b2|ξ|2ϕ̂1(ξ) + ϕ̂3(ξ)

(a3 − ab2)|ξ|3
sin(a|ξ|t)+

+
a2|ξ|2ϕ̂0(ξ) + ϕ̂2(ξ)

(a2 − b2)|ξ|2
cos(b|ξ|t) +

a2|ξ|2ϕ̂1(ξ) + ϕ̂3(ξ)

(a2b− b3)|ξ|3
sin(b|ξ|t). (15)

In the above formula, we note that

ϕ̂2 = −(a2 − b2)⟨ξ, ϕ̂0⟩ξ − b2|ξ|2ϕ̂0,
(16)

ϕ̂3 = −(a2 − b2)⟨ξ, ϕ̂1⟩ξ − b2|ξ|2ϕ̂1.

Substituting (16) into (15), we get the formula (14).
Theorem 1. Let u be a solution of (5), (8). Then the total energy of u takes the form

E(t) = E(0) =
1

2

∫

Rn

ρ

(
a2
( n∑

i=1

∂ϕ0,i

∂xi

)2

+
∑

i<j

b2
(
∂ϕ0,j

∂xi
−
∂ϕ0,i

∂xj

)2

+

n∑

i=1

ϕ2
1,i

)
dξ. (17)
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Proof. We only need to verify that the total energy of a solution of the biwave equation (9), (10)
also has the form (17). Applying Plancherel theorem, the strain energy functional can be rewritten as

K(t) =

∫

Rn

(
1

2
λ trace(ε̂)2 + µ trace(ε̂2)

)
dξ.

We note that

ε̂ =
1

2
(ξûT + ûξT ), ε̂

2 =
1

4
((ξûT )2 + (ûξT )2 + |û|2ξξT + |ξ|2ûûT ).

Hence

K(t) =
1

2

∫

Rn

(
λ⟨ξ, û⟩2 +

1

2
µ(⟨ξ, û⟩2 + |û|2|ξ|2)

)
dξ =

=
1

2

∫

Rn

ρ(a2⟨ξ, û⟩2 + b2(|û|2|ξ|2 − ⟨ξ, û⟩2)) dξ =
1

2

∫

Rn

ρ(a2⟨ξ, û⟩2 + b2|ξ × û|2) dξ =

=
1

2

∫

Rn

ρ(a2⟨ξ, ψ⟩2 + b2|ξ × η|2) dξ,

where we denote

ψ = cos(a|ξ|t)ϕ̂0 +
sin(a|ξ|t)

a|ξ|
ϕ̂1, η = cos(b|ξ|t)ϕ̂0 +

sin(b|ξ|t)

b|ξ|
ϕ̂1,

and for real vectors a = a1e1 + a2e2 + . . .+ anen, b = b1e1 + b2e2 + . . .+ bnen, where {ej}j=1,n

is the canonical basic of R
n, we use the notation of the exterior product

a× b =
∑

i<j

(aibj − ajbi)[ei × ej ] ∈ R
n(n−1)/2.

Note that a × a = 0 and we have the Lagrange’s identity |a × b|2 = |a|2|b|2 − ⟨a, b⟩2. Applying
Plancherel theorem again for the kinetic energy functional, we get that

U(t) =
1

2

∫

Rn

ρ

∣∣∣∣
∂

∂t
û(ξ, t)|2 dξ.

Moreover, we have
∂

∂t
û(ξ, t) =

⟨
ξ,−a

sin(a|ξ|t)

|ξ|
ϕ̂0 +

cos(a|ξ|t)

|ξ|2
ϕ̂1

⟩
ξ+

+ |ξ|2
(
−b

sin(b|ξ|t)

|ξ|
ϕ̂0 +

cos(b|ξ|t)

|ξ|2
ϕ̂1

)
−

⟨
ξ,−b

sin(b|ξ|t)

|ξ|
ϕ̂0 +

cos(b|ξ|t)

|ξ|2
ϕ̂1

⟩
ξ =

= ⟨ξ, α⟩ξ + |ξ|2β − ⟨ξ, β⟩ξ,

where

α = −a
sin(a|ξ|t)

|ξ|
ϕ̂0 +

cos(a|ξ|t)

|ξ|2
ϕ̂1,

β = −b
sin(b|ξ|t)

|ξ|
ϕ̂0 +

cos(b|ξ|t)

|ξ|2
ϕ̂1.
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Note that ⟨ξ, |ξ|2β − ⟨ξ, β⟩ξ⟩ = 0. Hence
∣∣∣∣
∂

∂t
û(ξ, t)

∣∣∣∣
2

= ⟨ξ, α⟩2|ξ|2 + ||ξ|2β − ⟨ξ, β⟩ξ|2 =

= ⟨ξ, α⟩2|ξ|2 + |ξ|4|β|2 + ⟨ξ, β⟩2|ξ|2 − 2⟨|ξ|2β, ⟨ξ, β⟩ξ⟩ =

= |ξ|2(⟨ξ, α⟩2 + |ξ|2|β|2 − ⟨ξ, β⟩2) = |ξ|2(⟨ξ, α⟩2 + |ξ × β|2).

Therefore, the total energy functional is calculated as

E(t) = K(t) + U(t) =
1

2

∫

Rn

ρ(a2⟨ξ, ψ⟩2 + b2|ξ × η|2 + |ξ|2(⟨ξ, α⟩2 + |ξ × β|2)) dξ.

Note that
a2⟨ξ, ψ⟩2 + |ξ|2⟨ξ, α⟩2 = ⟨ξ, aψ⟩2 + ⟨ξ, |ξ|α⟩2 =

=

⟨
ξ, a cos(a|ξ|t)ϕ̂0 +

sin(a|ξ|t)

|ξ|
ϕ̂1

⟩2

+

⟨
ξ,−a sin(a|ξ|t)ϕ̂0 +

cos(a|ξ|t)

|ξ|
ϕ̂1

⟩2

=

=

( n∑

i=1

ξi

(
a cos(a|ξ|t)ϕ̂0,i +

sin(a|ξ|t)

|ξ|
ϕ̂1,i

))2

+

+

( n∑

i=1

ξi

(
−a sin(a|ξ|t)ϕ̂0,i +

cos(a|ξ|t)

|ξ|
ϕ̂1,i

))2

=

=
n∑

i=1

ξ2i

(
a2ϕ̂2

0,i +
1

|ξ|2
ϕ̂2
1,i

)
+ 2

∑

i<j

ξiξj

(
a2ϕ̂0,iϕ̂0,j +

1

|ξ|2
ϕ̂1,iϕ̂1,j

)
=

= a2
( n∑

i=1

ξiϕ̂0,i

)2

+
1

|ξ|2

( n∑

i=1

ξiϕ̂1,i

)2

,

and
b2|ξ × η|2 + |ξ|2|ξ × β|2 = |ξ × bη|2 + |ξ × |ξ|β|2 =

=

∣∣∣∣ξ ×
(
b cos(b|ξ|t)ϕ̂0 +

sin(b|ξ|t)

|ξ|
ϕ̂1

)∣∣∣∣
2

+

∣∣∣∣ξ ×
(
−b sin(b|ξ|t)ϕ̂0 +

cos(b|ξ|t)

|ξ|
ϕ̂1

)∣∣∣∣
2

=

=
∑

i<j

(
ξi

(
b cos(b|ξ|t)ϕ̂0,j +

sin(b|ξ|t)

|ξ|
ϕ̂1,j

)
−

(
b cos(b|ξ|t)ϕ̂0,i +

sin(b|ξ|t)

|ξ|
ϕ̂1,i

)
ξj

)2

+

+
∑

i<j

(
ξi

(
−b sin(b|ξ|t)ϕ̂0,j +

cos(b|ξ|t)

|ξ|
ϕ̂1,j

)
−

(
−b sin(b|ξ|t)ϕ̂0,i +

cos(b|ξ|t)

|ξ|
ϕ̂1,i

)
ξj

)2

=

=
∑

i<j

(
ξ2i

(
b2ϕ̂2

0,j +
1

|ξ|2
ϕ̂2
1,j

)
+ ξ2j

(
b2ϕ̂2

0,i +
1

|ξ|2
ϕ̂2
1,i

)
− 2ξiξj

(
b2ϕ̂0,jϕ̂0,i +

1

|ξ|2
ϕ̂1,jϕ̂1,i

))
=

=
∑

i<j

(
b2(ξiϕ̂0,j − ξjϕ̂0,i)

2 +
1

|ξ|2
(ξiϕ̂1,j − ξjϕ̂1,i)

2

)
.

So we obtain that

E(t) =
1

2

∫

Rn

ρ

(
a2
( n∑

i=1

ξiϕ̂0,i

)2

+
1

|ξ|2

( n∑

i=1

ξiϕ̂1,i

)2

+

+
∑

i<j

(
b2(ξiϕ̂0,j − ξjϕ̂0,i)

2 +
1

|ξ|2
(ξiϕ̂1,j − ξjϕ̂1,i)

2

))
dξ =
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=
1

2

∫

Rn

ρ

(
a2
( n∑

i=1

ξiϕ̂0,i

)2

+
∑

i<j

b2(ξiϕ̂0,j − ξjϕ̂0,i)
2 +

n∑

i=1

ϕ̂2
1,i

)
dξ =

=
1

2

∫

Rn

ρ

(
a2
( n∑

i=1

∂ϕ0,i

∂xi

)2

+
∑

i<j

b2
(
∂ϕ0,j

∂xi
−
∂ϕ0,i

∂xj

)2

+

n∑

i=1

ϕ2
1,i

)
dξ = E(0).

Corollary. Assume that ϕ0, ϕ1, and f are vectors of Schwartz functions. Then, the solution
to the elastodynamics wave equation (4) with the initial condition (5) is unique.

Proof. Suppose that u and u
′ are two solutions of (4), (5). It is clear that w = u − u

′ is a
solution of the following homogeneous equation

(
∂2

∂t2
− b2∆

)
w − (a2 − b2)∇div(w) = 0,

w(x, t)|t=0 =
∂w

∂t
(x, t)

∣∣∣∣
t=0

= 0.

Applying Theorem 1, we obtain that the energy of w is equal to E(0) = 0. It implies that w = 0
a.e., so we have completed the proof.
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Conservation law for the Cauchy–Navier

equation of elastodynamics wave via Fourier transform

Summary

In this paper, we use the method of Fourier analysis to derive the formula of the total energy for the

Cauchy problem of the Cauchy–Navier elastodynamics wave equation describing the motion of an isotropic

elastic body. The conservation law of the total energy is obtained and consequently, the global uniqueness

of the solution to the problem is implied.
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