accuracy of point-like drawings in different body regions: the lower distance (5.9 pixels) between D1 and D2 has been found in the anterior part of the arm, the larger distance (16.1 pixels) in the anterior part of the thigh. Overlapping of reported areas was not significantly different in different body regions.

Conclusion(s): The results of the present study showed that the two identical pressure stimuli were reported over a digital body chart in non-identical locations. Moreover, this phenomena has resulted different among different body parts.

Implications: It will be interesting to analyze if the same spatial acuity could be observed in patients with pain, in order to evaluate if pain is responsible of an alteration of this variable. Consequently, it will be also possible to assess more precisely pain drawings reliability.

Keywords: Body chart; Spatial acuity; Pressure stimuli

Funding acknowledgements: The authors certify they have NO affiliations with any organization with financial interest in subject matter discussed in this study.

Ethics approval: Reported procedures comply with the Declaration of Helsinki of WMA and CIOMS’ International Guidelines for Biomedical Research Involving Human Subjects.

http://dx.doi.org/10.1016/j.physio.2015.03.1901

Research Report Platform Presentation
Number: RR-PL-1479
Sunday 3 May 2015 16:11
Room 328–329

FALLS AND BALANCE DYSFUNCTION IN AMBULANT ADULTS WITH CEREBRAL PALSY—A NEGLECTED PROBLEM?
P. Morgan 1, A. Murphy 2, A. Opheim 3, D. Pogrebnoy 1,2, S. Kravstov 2, J. McGinley 4

1 Monash University, Physiotherapy, Melbourne, Australia; 2 Monash Health, Clinical Research Centre for Movement Disorders and Gait, Melbourne, Australia; 3 Sunnaas Rehabilitation Hospital, Physiotherapy, Nesoddtangen, Norway; 4 University of Melbourne, Physiotherapy, Melbourne, Australia

Background: Around 60–70% of individuals with cerebral palsy (CP) are able to walk independently or with aids when they enter adulthood. Maintaining the ability to walk or optimising flexible mobility options is important to enable societal participation, maintain employment and retain independence. However it is common for mobility to deteriorate in early and middle adulthood, with more than 25% of ambulant young to middle-aged adults with CP describing a decline in mobility. Most commonly, this decline is self-attributed to a reduction in balance. In older adults and other neurological populations, balance dysfunction has been associated with an increased prevalence of falls, triggering the implementa-
tion of falls prevention and balance training programs. Little attention to date has been directed to the issue of balance dysfunction and falls prevention strategies in ambulant adults with CP.

Purpose: The aim of this study was to explore the feasibility, safety and efficacy of a customised balance training program for ambulant adults with CP.

Methods: Ambulant adults with CP were randomly allocated to an 8-week, once weekly, small group training program (Balance Group) or seated attention control activity (Control Group). Balance training was individually tailored using the assessment findings of the Balance Evaluation systems test (BESTest). The primary focus of the study was feasibility, evaluated using indicators of recruitment, retention, adherence, and safety. Efficacy was primarily evaluated with the Ambulatory Self-Confidence questionnaire and the BESTest, at intervention, conclusion, and week 24 post intervention. Secondary outcomes included gait speed, walking distance, falls efficacy, fatigue, quality of life, and global impression of change.

Results: Seventeen adults with CP participated (10 males), with a mean age 37 years. Two participants were Level I Gross Motor Functional Classification System – Extended and Revised, ten were Level II and five were Level III. The interventions were safe and feasible with no major adverse events. Adherence was high (Balance Group – 86% of sessions attended, Control Group - 83% of sessions attended). At 24 weeks, there was a small, non-significant between-group difference in favour of the Balance Group for ambulatory self-confidence (mean 0.75; CI −0.45 to 1.9; effect size 0.14). At 8 and 24 weeks, there were negligible between-group differences in BESTest total. At 24 weeks there was a small, non-significant between group difference in favour of the Balance Group for falls efficacy (mean −9.6, CI −27.0 to 7.9; effect size 0.10), and fatigue (mean −8.9, CI −24.0 to 6.2; effect size 0.12). There were significant between-group differences for global impression of change, in favour of the Balance Group at weeks 8 and 24 (p < 0.05).

Conclusion(s): A customised balance program is feasible and safe in the ambulant CP population. Small effects from balance training in selected outcomes at weeks 8 and 24 occurred. Study replication with larger numbers to confirm efficacy is warranted.

Implications: As many adults with CP are experiencing decline in mobility and balance, greater attention should now be directed on the identification and confirmation of effective and evidence-based rehabilitation, and therapeutic interventions, such as balance training, for adults ageing with CP.

Keywords: Cerebral palsy; Balance; Exercise

Funding acknowledgements: This study was part funded by a 2013 Lions John Cockayne Memorial Trust Fund.

Ethics approval: Monash Health (12206B).

http://dx.doi.org/10.1016/j.physio.2015.03.1902