Magnetohydrodynamic micropolar fluid flow in presence of nanoparticles through porous plate: A numerical study

S.M. Arifuzzaman¹, Md. Farid Uddin Mehedi², Abdullah Al-Mamun³, Pronab Biswas¹, Md. Rafiqul Islam⁴, Md. Shakhaaoath Khan⁵

¹Mathematics Discipline, Khulna University, Khulna 9208, Bangladesh
²Department of Thermal Science & Energy Engineering, University of Science & Technology of China, Anhui 230026, China
³Physics Discipline, Khulna University, Khulna-9208, Bangladesh
⁴Department of Mathematics, Pabna University of Science & Technology, Pabna 6600, Bangladesh
⁵School of Engineering, RMIT University, GPO Box 2476, Melbourne 3001, VIC, Australia

Corresponding Author Email: mohammad.shakhaoath.khan@rmit.edu.au

https://doi.org/10.18280/ijht.360321

Received: 11 December 2017
Accepted: 15 September 2018

Keywords:
micropolar fluid, nanoparticles, radiation absorption, chemical reaction, thermal radiation, stability and convergence analysis

ABSTRACT

This study numerically investigates Magnetohydrodynamic (MHD) convective and chemically reactive unsteady micropolar fluid flow with nanoparticles through the vertical porous plate with mass diffusion, thermal radiation, radiation absorption and heat source. A flow model is established by employing the well-known boundary layer approximations. To obtain the non-similar equation, the boundary layer governing equations including continuity, momentum, energy and concentration balance were nondimensionalised by usual transformation. A non-similar approach is applied to the flow model. To optimize the parametric values, the stability and convergence analysis (SCA) have been analysed for the Prandtl number (Pr) and Lewis number (Le). It is observed that with initial boundary conditions, \(U = V = T = C = 0 \) and for \(\Delta T = 0.005, \Delta X = 0.20 \) and \(\Delta Y = 0.25 \), the system converged at Prandtl number, \(P_r \geq 0.356 \) and Lewis number, \(Le \geq 0.16 \). The coupled non-linear partial differential equations are solved by explicit finite difference method (EFDM) and the numerical results have been calculated by Compaq Visual FORTRAN 6.6a. Evaluation of the thermal and momentum boundary layer thickness with isotherms and streamlines analysis of boundary layer flows have been shown for the thermal radiation parameter \(R \). The effects of various parameters entering the problem on velocity, angular velocity, temperature and concentration are shown graphically.

1. INTRODUCTION

Micropolar fluids are well known as the fluids with microstructure. The theory of micropolar fluids introduced by Eringen [1] is one of the best theories of fluids to describe the structured fluids and these fluids consist of rigid particles which can rotate with their own spins and microrotations. The concentration laws of mass, momentum and fundamental relationships distinguish the fluid motion of the micropolar fluid and it’s describing the effect of couple stress, spin-inertia and micromotion which are very important in micropolar fluids. After the investigation of micropolar theory, there are many researchers especially focus on industrial applications and extend the study in many ways to include various physical effects.

The summary of the theory of micropolar fluid lies in particle suspension [2], liquid crystals [3]; animal blood [4], exotic lubricants [5], etc. Recently, lots of researchers focus on physical and engineering problems which involves of micropolar fluid and mainly they concern on suction or injection in boundary conditions, heat transfer by free or mixed convection, stagnation point flow, the stretching / shrinking sheet problems, magnetohydrodynamics, velocity slip and even also the flow and heat transfer of micropolar fluid through a horizontal or vertical channel. Micropolar fluid plays a practical role in the biological science and in manufacturing, chemical and food industry, bio-medical science etc. An excellent review of the different applications of micropolar fluid mechanics was presented by Ariman et al. [6].

The importance of Boundary layer flow over a stretching in various engineering processes, as an example, materials manufactured by extrusion. A stretching sheet interacts with the ambient fluid both thermally and mechanically during this process. Crane [7] was initiated the study of boundary layer flow caused by a stretching surface. By a porous stretching sheet, the effect of surface conditions on the micropolar flow was studied by Kelson et al. [8]. Mohammadein et al. [9] examined the flow of micropolar fluid over a stretching sheet with prescribed wall heat flux, viscous dissipation and internal heat generation. Hussain et al. [10] presented a model-based analysis of micropolar nanofluid flow over a stretching surface. Nazar et al. [11-12] investigated the stagnation point and unsteady boundary layer flow over a stretching sheet in a micropolar fluid. Bhargava et al. [13] examined the flow of a mixed convection micropolar fluid driven by a porous stretching sheet with uniform section and later, Bhargava and et al. [14] investigated the same flow of a micropolar flow over a nonlinearly stretching sheet. In many engineering activities, the process of suction is used such as thermal oil recovery, removal of reactants etc. Erickson et al. [15] and Fox et al. [16] was studied the effect of suction or injection at a stretching
surface. In recent time, several works on the dynamic of the boundary layer flow over a stretching surface have appeared in the literature [17-19]. Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet was studied by Latiff [20]. In the industrial process, the heat generation and absorption are an enormous phenomenon. Recently, Abel et al. [21] numerically analysed the hydromagnetic micropolar fluid flow due to horizontal/vertical stretching sheet using a shooting method. They highlighted a scientific approach for the choice of the missing initial values on which the convergence of the shooting method highly depends. Afterwards, Abbas et al. [22] analysed the heat transfer for stretching flow over a curved surface with a magnetic field. Naveed et al. [23] investigated hydromagnetic flow over an unsteady but it was curved stretching surface. Later, Naveed et al. [24] studied the magnetohydrodynamic flow of a micropolar fluid in the presence of thermal radiation over a curved stretching sheet. Boundary layer flow of magneto-micropolar nanofluid flow with Hall and ion-slip effects using variable thermal diffusivity was examined by Bilal [25].

In recent time, Arifuzzaman et al. [26] analyzed unsteady chemically reactive micropolar fluid through an infinite vertical plate with the influence of thermal radiation, porous medium, thermal and mass diffusion with heat and mass transfer and showed the velocity, angular velocity, temperature and concentration across the boundary layer. Afterwards, in presence of nanoparticle, Arifuzzaman et al. [27] studied chemically reactive viscoelastic fluid flow through the porous stretching sheet. Khan et al. [28], Biswas et al. [29] and Arifuzzaman et al. [30] investigated impacts of magnetic field and radiation absorption on mixed convective and radiative of Williamson fluid, Jeffery nanofluid and Maxwell fluid flow over a linear or vertical stretching sheet with stability and convergence analysis (SCA). Arifuzzaman et al. [31] investigated the momentum boundary layer and thermal boundary layer thickness with streamlines and isotherms variation of transient MHD natural convective and chemically reactive high-speed fluid flow through an oscillatory vertical porous plate in presence of heat and radiation absorption. The heat exchange in conditions of free convection for the heat radiator, Wernik et al. [33] validated the results of numerical simulations using thermovision for three heat flux values. Oravec et al. [34] have investigated the improvement of control performance and increase of energy savings using the soft-constrained robust MPC with integral action for a laboratory plate heat exchanger.

In this paper, our prime objective is to investigate naturally convective and chemically reactive unsteady micropolar fluid flow with nanoparticles through a vertical porous plate with mass diffusion, MHD, thermal radiation, radiation absorption and heat source. By using the well-known boundary layer approximations, a flow model is established.

- The governing systems of partial equations have been transformed to set of coupled ordinary differential equations with the help of suitable non-similar transformations.
- Coupled non-linear dimensionless flow equations have been solved numerically by EFDM.
- The accuracy of our method to study, the stability and convergence analysis for the Prandtl number (Pr) and Lewis number (Le) have been analyzed to determine the parametric values.
- The results have been discussed in detail to study and shown graphically with the influence of various non-dimensional governing parameters on velocity, temperature and concentration.
- Evaluation of the thermal and momentum boundary layer thickness with isotherms and streamlines analysis of boundary layer flows have been shown for the thermal radiation parameter (R).

2. MATHEMATICAL FLOW MODEL

The fluid with both micro-rotation and micro-inertia properties is known as micropolar fluid. Unsteady heat and mass transfer flow of viscoelastic fluid along a semi-infinite vertical porous plate are considered in the presence of a uniform thermal radiation and magnetic field. The flow is in the X-direction which is taken along the plate in the upward x-direction and y-axis is normal to it. When the plate velocity $U(t)$ is given as $u=0$. In an initial step, it is considered that the plate, as well as the fluid particle, is at rest at the same temperature $T(=T_0)$ and the same concentration level $C(=C_0)$ at all points. It is also assumed that a magnetic field $B_y = B_0^\text{uniform}$ is applied normal to the flow region along the y-axis. When $S = 0$, then $\overline{N} = 0$ which represents no-slip condition i.e., the microelements in a concentrated particle flow close to the wall are not able to rotate. The case $S = 1/2$ represents vanishing of the anti-symmetric part of the stress tensor and represents weak concentration. In a fine particle suspension of the particle, spin is equal to the fluid velocity at the wall. The case $S = 1$ represents turbulent boundary layer flow.

Continuity Equation:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}$$

Momentum Equation,

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{1}{\rho} \frac{\partial \tau_{xx}}{\partial x} + \frac{1}{\rho} \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} \tag{2}$$

Angular Momentum Equation,

$$\frac{\partial \overline{N}}{\partial t} + u \frac{\partial \overline{N}}{\partial x} + v \frac{\partial \overline{N}}{\partial y} = \frac{\rho}{\mu} \left(\frac{\partial^2 \overline{N}}{\partial y^2} \right) - \frac{\chi}{\mu} \left(\frac{\partial \overline{N}}{\partial y} \right) \tag{3}$$

Figure A1. Physical configuration and coordinate system.
Energy Equation,
\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \kappa \frac{\partial^2 T}{\partial x^2} + \frac{\kappa}{\rho c_p} \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\kappa}{\rho c_p} \left(\frac{\partial T}{\partial y} \right)^2 + \frac{Q_i}{\rho c_p} (T - T_w) + \frac{Q_i}{\rho c_p} (C - C_w) \quad (4)
\]

Concentration Equation,
\[
\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_a \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} \right) + D_r \frac{\partial^2 T}{\partial x^2} - K_c (C - C_w) \quad (5)
\]

With boundary condition,
\[
u = 0, \quad \dot{\overline{N}} = -S \frac{\partial u}{\partial y}, \quad x = T_w, \quad C = C_w \quad \text{at} \quad y = 0
\]
\[
u = 0, \quad \dot{\overline{N}} \rightarrow N, \quad T \rightarrow T_r, \quad C \rightarrow C_s \quad \text{at} \quad y \rightarrow \infty
\]

where, \(u \) and \(v \) denotes the velocity component, \(B_0 \) is the magnetic field component, \(\beta \) is thermal expansion coefficient, \(\beta^* \) is concentration expansion coefficient, \(\sigma^* \) electric conductivity, \(T_w \) is the wall temperature, \(C_w \) is the species concentration at the wall, \(\nu \) is the kinematic viscosity, \(\rho \) is density, \(\kappa \) is thermal conductivity, \(c_p \) is specific heat at constant pressure, \(Q_i \) denotes the heat source, \(Q_i \) denotes the radiation absorption, \(q_i \) denotes the unidirectional radiative heat flux, \(K_c \) is the chemical reaction, \(D_a \) denotes Brownian diffusion coefficient, \(D_r \) thermophoresis diffusion coefficient. The radiative heat flux term by using the Rosseland approximation is given by,
\[q_i = \frac{4\sigma^*_r \alpha^* \alpha^* \alpha^*}{3} \cdot \frac{\partial^2 T}{\partial y^2} \]

where, \(\sigma_r \) denotes Stefan-Boltzmann constant and \(k_c \) mean absorption coefficient, respectively. If temperature differences within the flow are sufficiently small and after neglecting higher order terms takes the form by, then \(q_i \) can be linearized by expanding \(T^3 \) into the Taylor series about \(T_w \).

Dimensionless form and the dimensionless quantities are,
\[
X = \frac{xu_0}{v}, \quad Y = \frac{yu_0}{v}, \quad U = \frac{u}{u_0}, \quad V = \frac{v}{u_0},
\]
\[
\tau = \frac{\mu u^2}{\nu}, \quad N = \frac{\nu N}{\nu u_0}, \quad \theta = \frac{T - T_w}{T_w - T_{\infty}}, \quad \phi = \frac{C - C_w}{C_w - C_{\infty}}
\]

So,
\[
x = \frac{xu_0}{u_0}, \quad y = \frac{yu_0}{u_0}, \quad t = \frac{tu}{u_0}, \quad T = T_w + \theta(T_w - T_{\infty}) \quad \text{and} \quad C = C_w + \phi(C_w - C_{\infty})
\]

The dimensionless equations are obtained as follows:

Dimensionless Continuity Equation,
\[
\frac{\partial U}{\partial \tau} + \frac{\partial V}{\partial \gamma} = 0 \quad (7)
\]

Dimensionless Momentum Equation,
\[
\frac{\partial U}{\partial \tau} + U \frac{\partial U}{\partial \tau} + V \frac{\partial U}{\partial \gamma} = \frac{G^* \theta + G^* \phi + (1 + \Gamma) \frac{\partial^2 U}{\partial \gamma^2}}{1 \quad (8)}
\]

Dimensionless Energy Equation,
\[
\frac{\partial \theta}{\partial \tau} + U \frac{\partial \theta}{\partial \tau} + V \frac{\partial \theta}{\partial \gamma} = \frac{1}{P_e} \left[\frac{1}{3} \frac{16R}{3} \frac{\partial^2 \theta}{\partial \gamma^2} \right] + \frac{Q_i \phi}{\rho c_p} \left[\frac{\partial U}{\partial \gamma} \right]^2 + \frac{Q_i \phi}{\rho c_p} \left[\frac{\partial V}{\partial \gamma} \right]^2 + \frac{N_i \phi}{\rho c_p} \left[\frac{\partial \phi}{\partial \gamma} \right]^2 \quad (9)
\]

Dimensionless Concentration Equation,
\[
\frac{\partial \phi}{\partial \tau} + U \frac{\partial \phi}{\partial \tau} + V \frac{\partial \phi}{\partial \gamma} = \frac{1}{K_c} \left[\frac{\partial^2 \phi}{\partial \gamma^2} + \frac{N_i \phi}{\rho c_p} \frac{\partial^2 \theta}{\partial \gamma^2} \right] - K_c \phi^p \quad (10)
\]

Boundary conditions,
\[
\tau \leq 0, \quad U = 0, \quad V = 0, \quad \theta = 0, \quad \phi = 0 \quad \text{everywhere}
\]
\[
\tau > 0, \quad U = 0, \quad V = 0, \quad \theta = 0, \quad \phi = 0 \quad \text{at} \quad X = 0
\]
\[
U = 0, \quad N = -\frac{\epsilon_{uu}}{2}, \quad T = 1, \quad C = 1 \quad \text{at} \quad y = 0
\]
\[
U = 0, \quad N = 0, \quad \gamma = 0, \quad \theta = 0, \quad \phi = 0 \quad \text{at} \quad y \rightarrow \infty
\]

where the obtained physical parameters are given below:
Grashof number, \(G_r = \frac{g \beta (T_w - T_0) \omega}{\nu u_0^2} \), mass Grashof number.
\[
G_e = \frac{g \beta (C_e - C_o) \rho}{U_0}, \quad \text{micro-rotational number, } \Gamma = \frac{K}{\rho U_0}.
\]

magnetic parameter, \(M = \frac{\sigma B_e \mu}{\rho U_0} \), Darcy number, \(D_e = \frac{K U_e^2}{\rho U_0^3} \), Spin Gradient viscosity, \(\Lambda = \frac{\gamma}{\rho j \mu} \) and Vortex number, \(D_f = \frac{D_{0e}}{\rho c_p \mu} \), Prandtl number, \(\Lambda = \frac{Y}{\rho j \mu} \) and Vortex number, \(D_f = \frac{D_{0e}}{\rho c_p \mu} \), radiation parameter, \(R = \frac{\sigma T^3}{k_i} \), heat sink parameter, \(Q = \frac{Q_{0e}}{\rho^2 \mu c_p} \), Forchheimer number, Eckert number, \(E_s = \frac{U_2 \rho}{\mu} \) and Brownian parameter, \(N_b = \frac{\Gamma D_{0e} (C_e - C_o)}{\nu} \), thermophoresis parameter \(N_t = \frac{\Gamma \Delta T}{T_1 (T_w - T_c)} \).

3. SHEAR STRESS, NUSSELT NUMBER AND SHERWOOD NUMBER

The effects of various parameters on the local and average shear stress have been calculated. The following equations represent the local and average shear stress at the plate. Local shear stress \(\tau_l = \mu \left(\frac{\partial u}{\partial y} \right)_{y=0} \) and average shear stress \(\tau_a = \mu \int \left(\frac{\partial u}{\partial y} \right)_{y=0} dx \) which is proportional to \(\int \left(\frac{\partial U}{\partial y} \right)_{y=0} dx \) respectively. From the temperature field, the effects of various parameters on the local and average heat transfer coefficients have been investigated. The following equations represent the local and average heat transfer rate, which is well known Nusselt number. Local Nusselt number, \(N_u = \mu \left(\frac{\partial T}{\partial y} \right)_{y=0} \) and average Nusselt number, \(N_{uA} = \mu \int \left(\frac{\partial T}{\partial y} \right)_{y=0} dx \) which is proportional to \(\int \left(\frac{\partial \theta}{\partial y} \right)_{y=0} dx \) respectively. From the concentration field, the effects of various parameters on the local and average mass transfer coefficients have been analysed. The following equations represent the local and average mass transfer rate that is well known Sherwood number. Local Sherwood number, \(S_{hl} = \mu \left(\frac{\partial C}{\partial y} \right)_{y=0} \) and Average Sherwood number, \(S_{hA} = \mu \int \left(\frac{\partial C}{\partial y} \right)_{y=0} dx \) which is proportional to \(\int \left(\frac{\partial \varphi}{\partial y} \right)_{y=0} dx \) respectively.

4. NUMERICAL SOLUTION

To solve the governing coupled non-dimensional partial differential equations with the associated initial and boundary conditions EFDM has been applied. The explicit finite difference method has been used to solve (6) - (9) subject to the initial and boundary conditions. For this reason, the area within the boundary layer is divided by some perpendicular lines of \(Y \)-axis, where the normal of the medium is \(Y \)-axis as shown in Figure A2. It is assumed that the maximum length of the boundary layer \(Y_{max} = 20 \) as corresponds to \(Y \rightarrow \infty \) i.e. \(Y \) vary from 0 to 20 and the number of grid spacing in \(Y \) directions are \(m = 100 \) and \(n = 100 \), with the smaller time step \(\Delta \tau = 0.005 \). Using the explicit finite difference approximation, we have,

Continuity Equation,

\[
\frac{U_{i,j} - U_{i,j-1} + V_{i,j} - V_{i,j-1}}{\Delta Y} = 0
\]

Momentum Equation,

\[
\frac{U_{i,j} - U_{i,j-1} + U_{i,j} - U_{i,j-1} + V_{i,j} - V_{i,j-1} + V_{i,j+1} - V_{i,j}}{\Delta X} = \frac{U_{i,j+1} - 2U_{i,j} + U_{i,j-1} + \frac{G_i \theta_{i,j}}{\Delta Y} + G_e \phi_{i,j}}{(\Delta Y)^2} + (1 + \Gamma) \frac{U_{i,j+1} - 2U_{i,j} + U_{i,j-1} + \Gamma \frac{N_{i,j+1} - N_{i,j}}{\Delta Y}}{(\Delta Y)^2}
\]

Angular Momentum Equation,

\[
\frac{\theta_{i,j} - \theta_{i,j+1} + U_{i,j} \left(\theta_{i,j} - \theta_{i,j+1} + V_{i,j} \right) - \theta_{i,j} - V_{i,j}}{\Delta X} = \frac{\theta_{i,j} - 2\theta_{i,j} + \theta_{i,j-1}}{(\Delta Y)^2} + \left(\frac{N_{i,j+1} - N_{i,j}}{\Delta Y} \right)
\]

Energy Equation,

\[
\frac{\theta_{i,j} - \theta_{i,j+1} + U_{i,j} \left(\frac{\theta_{i,j} - \theta_{i,j+1} + V_{i,j} \theta_{i,j+1} - \theta_{i,j}}{\Delta Y} = \frac{Q_i \phi_{i,j}}{\Delta Y} + \frac{1}{P_r} + \frac{16}{3} \frac{R}{U_{i,j+1} - U_{i,j}} \left(\frac{U_{i,j+1} - 2U_{i,j} + U_{i,j-1}}{(\Delta Y)^2} \right) \left(\frac{N_{i,j+1} - N_{i,j}}{\Delta Y} \right)
\]

\[
\frac{\phi_{i,j} - \phi_{i,j+1} + \phi_{i,j-1}}{(\Delta Y)^2} + \left(\frac{N_{i,j+1} - N_{i,j}}{\Delta Y} \right) + \frac{N_e \left(\theta_{i,j+1} - \theta_{i,j} \phi_{i,j+1} - \phi_{i,j} \right)}{\Delta Y} + \frac{N_e \left(\theta_{i,j+1} - \theta_{i,j} \phi_{i,j+1} - \phi_{i,j} \right)}{\Delta Y}
\]

\[
\frac{\left(\theta_{i,j+1} - \theta_{i,j} \right)^2 + N_e \left(\phi_{i,j+1} - \phi_{i,j} \right)}{\Delta Y} + \frac{\left(\theta_{i,j+1} - \theta_{i,j} \phi_{i,j+1} - \phi_{i,j} \right)^2}{\Delta Y}
\]
and after a time step, these terms convert to

\[
\begin{align*}
U : & \quad \psi'_1(\tau)e^{i\alpha X}e^{i\beta Y} \\
W : & \quad \psi'_2(\tau)e^{i\alpha X}e^{i\beta Y} \\
\theta : & \quad \theta(\tau)e^{i\alpha X}e^{i\beta Y} \\
C : & \quad \phi(\tau)e^{i\alpha X}e^{i\beta Y}
\end{align*}
\]

(18)

Substituting (17) and (18) to the main equations (13) - (16) we get,

Then

\[
\begin{align*}
\psi'_{1}(\tau) - \psi'_{1}(\tau) & = \frac{U}{\Delta \tau} \psi'_{1}(\tau)(1 - e^{-i\alpha X}) + V \psi'_{1}(\tau)(e^{i\beta Y} - 1) \\
& = G \theta e^{i\alpha X}e^{i\beta Y} + G_\alpha \phi e^{i\alpha X}e^{i\beta Y} - (M + \frac{1}{D_u}) \psi_{1}(\tau)e^{i\alpha X}e^{i\beta Y} \\
& + (1 + \Delta) \psi'_{1}(\tau)e^{i\alpha X}e^{i\beta Y} - 2\psi'_{1}(\tau)e^{i\alpha X}e^{i\beta Y} + \psi'_{1}(\tau)e^{i\alpha X}e^{i\beta Y} \\
& \quad \frac{\Delta \psi'_{1}(\tau)e^{i\alpha X}e^{i\beta Y} - \psi_{1}(\tau)e^{i\alpha X}e^{i\beta Y}}{\Delta Y} \\
& \quad \frac{F_s}{D_s} \psi'(\tau)e^{i\alpha X}e^{i\beta Y}^2
\end{align*}
\]

(19)

where,

\[
A_1 = 1 + \Delta \tau (1 + \Delta) \frac{2 \cos \beta \Delta Y - 1}{(\Delta Y)^2} - \left(M + \frac{1}{D_u}\right) - \frac{F_s}{D_s}
\]

\[
A_2 = \Delta \tau \frac{(\Delta \alpha_{\beta}) - 1}{\Delta Y}, \quad A_3 = \Delta \tau G, \quad \text{and} \quad A_4 = \Delta \tau G_{m}
\]

For the angular velocity,

\[
\begin{align*}
\psi_{2}(\tau) - \psi_{2}(\tau) & = \frac{U}{\Delta \tau} \psi'_{2}(\tau)(1 - e^{-i\alpha X}) + V \psi'_{2}(\tau)(e^{i\beta Y} - 1) \\
& = \lambda \left[2\psi_{2}(\tau)e^{i\alpha X}e^{i\beta Y}(\cos \beta \Delta Y - 1) \right. \\
\end{align*}
\]

(20)

where,

\[
A_5 = 1 + \lambda \frac{2 \Delta \tau (\cos \beta \Delta Y - 1)}{(\Delta Y)^2} \\
- U \left(1 - e^{-i\alpha X}\right) - V \left(e^{i\beta Y} - 1\right) - 2 \Delta \tau \lambda \\
A_6 = \frac{\Delta \tau \lambda (e^{i\alpha X} - 1)}{\Delta Y}
\]

For temperature equation,
\[\theta = \theta + \Delta \tau \left[\frac{1}{P_e} \left(1 + \frac{16 R}{3} \right) \frac{2 \theta (\cos \beta \Delta Y - 1)}{(\Delta Y)^2} + D_n \frac{2 \varphi (\cos \beta \Delta Y - 1)}{(\Delta Y)^2} \right] \\
+ Q \theta - U \left(1 - e^{-\alpha X} \right) \frac{\Delta Y}{\Delta X} - V \left(e^{\alpha Y} - 1 \right) \frac{\alpha Y}{\Delta Y} + N_j \left(\frac{e^{\alpha Y} - 1}{\Delta Y} \right)^2 \\
+ N_i \left(\frac{e^{\alpha Y} - 1}{\Delta Y} \right)^2 \right] + \Delta \tau Q \varphi \\
+ \Delta \tau D_n \varphi = \Delta \tau \left(\cos \beta \Delta Y - 1 \right)^2 \left(\Delta Y \right)^2 \\
\theta' = \theta + \Delta \tau \left(\cos \beta \Delta Y - 1 \right)^2 \left(\Delta Y \right)^2 + \Delta \tau Q \varphi \\
A_n = D_n \frac{2 \Delta \tau (\cos \beta \Delta Y - 1)^2}{(\Delta Y)^2} + Q \varphi
\]

(21)

where,

For concentration equation,

\[\varphi' = \varphi + \Delta \tau \left[\frac{1}{L_e} \left(\frac{2 \phi (\cos \beta \Delta Y - 1)}{(\Delta Y)^2} + \frac{N_j}{N_i} \frac{2 \varphi (\cos \beta \Delta Y - 1)}{(\Delta Y)^2} \right) \right] \\
- \frac{U (1 - e^{-\alpha X})}{\Delta X} \varphi - \frac{V}{\Delta Y} \frac{e^{\alpha Y} - 1}{\Delta Y} \varphi - \frac{U \Delta \tau (1 - e^{-\alpha X})}{\Delta X} \\
- \frac{V \Delta \tau (e^{\alpha Y} - 1)}{\Delta Y} + \frac{N_j}{N_i} \frac{2 \cos \beta \Delta Y - 1}{(\Delta Y)^2} \theta \\
\varphi' = A_{n0} \varphi + A_n \theta
\]

(22)

where,

\[A_{n0} = 1 + \frac{2 \Delta \tau (\cos \beta \Delta Y - 1)}{L_e} - \Delta \tau K_r \\
A_n = \frac{U \Delta \tau (1 - e^{-\alpha X})}{\Delta X} - \frac{V \Delta \tau (e^{\alpha Y} - 1)}{\Delta Y}
\]

Equation (18) - (21) can be expressed in the Matrix form,

\[\begin{bmatrix} \psi_1' \\ \psi_2' \\ \theta' \\ \varphi' \end{bmatrix} = \begin{bmatrix} A_1 & A_2 & A_3 & A_4 \\ -A_2 & A_3 & 0 & 0 \\ A_4 & 0 & A_5 & 0 \\ 0 & 0 & A_6 & A_7 \end{bmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \\ \theta \\ \varphi \end{bmatrix} \]

i.e. \(\eta' = T' \eta \)

For obtaining the stability condition, Eigenvalues of the amplification matrix \(T' \) must be finding out. It is a fourth order square matrix. For this explicit finite difference solution, the dimensionless time difference \(\Delta \tau \) is very small i.e. tends to zero. Under this condition, \(A_1 \to 0, A_2 \to 0, A_3 \to 0, A_4 \to 0, A_5 \to 0, A_6 \to 0 \) and \(A_7 \to 0 \)

\[: T' = \begin{bmatrix} A_1 & 0 & 0 & 0 \\ 0 & A_2 & 0 & 0 \\ 0 & 0 & A_5 & 0 \\ 0 & 0 & 0 & A_7 \end{bmatrix} \]

After simplification of the matrix, the Eigenvalues are followed, The Eigenvalues of the amplification matrix \(T' \) are obtained, \(A_1 = \lambda_1, A_2 = \lambda_2, A_3 = \lambda_3 \) and \(A_7 = \lambda_7 \). For stability test, each of the Eigenvalues must not exceed unity in modulus. Under this consideration, the stability conditions are as follows

\[|A_1| \leq 1, |A_2| \leq 1, |A_5| \leq 1 \text{ and } |A_7| \leq 1 \]

Let,

\[a_i = \Delta \tau, b_i = U \left(\frac{\Delta \tau}{\Delta X} \right), c_i = -V \left(\frac{\Delta \tau}{\Delta Y} \right), d_i = 2 \left(\frac{\Delta \tau}{\Delta Y} \right)^2 \]

\[d_2 = \frac{\Delta \tau}{\Delta Y}, \quad d_3 = \frac{\Delta \tau}{\Delta Y} \quad \text{and} \quad d_4 = U \left(\frac{\Delta \tau}{\Delta X} \right)^2 \]

\[d_5 = V - 2 \left(\frac{\Delta \tau}{\Delta Y} \right)^2 \text{then, the coefficient of a, b and c are all non-negative. So the maximum modulus of } A_1, A_2, A_5 \text{ and } A_7 \text{ occurs when } \alpha \Delta Y = n \pi, \text{ where } n \text{ is an integer and hence } A_1, A_2, A_5 \text{ and } A_7 \text{ are real. The values of } |A_1|, |A_2| \text{ and } |A_5| \text{ are greater when } n \text{ is an odd integer, in which case; } \]

\[A_1 = 1 + \Delta d_1 + b_1 + c_2 - 2a_\lambda \]

\[A_2 = 1 - 2 \left[d_1 \left(\frac{1}{P_e} \left(1 + \frac{16 R}{3} \right) \right) + \frac{a_1}{2} Q + b_1 + c_1 \right] + \left(1 + \Gamma \right) E \left(d_2 \right)^2 + N_j \left(\frac{d_1}{2} + N_j \right) \left(\frac{d_1}{2} \right)^2 \]

\[A_5 = 1 - 2 \left[d_1 \left(\frac{1}{L_e} \right) + b_1 + c_1 + \frac{a_1}{2} K_e \right] \]

Hence the stability conditions of the methods are,

\[U \left(\frac{\Delta \tau}{\Delta X} \right) + V \left(\frac{\Delta \tau}{\Delta Y} \right) + \frac{2}{P_e} \left(1 + \frac{16 R}{3} \right) \left(\frac{\Delta \tau}{\Delta Y} \right) - \Delta \tau \left(\frac{\Delta \tau}{\Delta Y} \right)^2 \leq 1 \]

\[\frac{1}{L_e} \left(\frac{\Delta \tau}{\Delta Y} \right) + 2 N_j \left(\frac{\Delta \tau}{\Delta Y} \right)^2 + 2 N_j \left(\frac{\Delta \tau}{\Delta Y} \right)^2 \leq 1 \]

and \(\frac{1}{L_e} \left(\frac{\Delta \tau}{\Delta Y} \right) + 2 \left(\frac{\Delta \tau}{\Delta Y} \right)^2 + \Delta \tau K_e \leq 1 \)

When, \(\Delta \tau \) and \(\Delta Y \) approach to zero then the problem will be converged. With initial boundary conditions and for the values of \(\Delta \tau = 0.005 \), \(\Delta X = 0.20 \) and \(\Delta Y = 0.20 \) then the problem will be converged at \(P_e \geq 0.356 \) and \(L_e \geq 0.16 \). These converge solutions are shown graphically in Figs.1-24.

5. RESULTS AND DISCUSSIONS

The MHD naturally convective heat and mass transfer laminar flow of micropolar fluid in presence of nanofluids
flow over a vertical porous plate with the effect in presence of magnetic field, thermal radiation, heat source, micro-rotational, a chemical reaction have been studied numerically. In order to investigate the physical representation of the problem, the numerical values of velocity (U), angular velocity (N), temperature (θ) and species concentration (φ) with the boundary layer have been computed for different parameters. The graphs are illustrated with some fix parameters $Gr = 5.0$, $Gm = 5.0$, $Da = 1.0$, $Fs = 1.0$, $M = 1.20$, $\lambda = 2.00$, $\lambda = 1.50$, $Pr = 1.38$, $R = 0.70$, $EC = 0.00001$, $SC = 16.00$, $Kr = 0.50$, $S = 0.50$, $Nb = 0.10$ and $Nt = 0.10$. Figure 1 is sketched for the effect of Darcy number (Da). From this figure, it can be noticed that the velocity increase with increasing Da. This is because velocity profile near the wall flattens. The influence of similar parameter on angular velocity is illustrated in Figure 2. At first the angular velocity increase with the increment of Da ($1.0 \leq M \geq 4.0$) than at an increase of Da influenced of angular velocity diminish at $X = 0.1$. Then it has been showing an increasing pattern.

Figure 1. Impact of Da on velocity

Figure 2. Impact of Da on the angular velocity

Figure 3 and Figure 4 describe that, the increase of magnetic parameter (M) ($1.20 \leq M \geq 10.50$) with respect to decreasing pattern of velocity and angular velocity except initially in case of angular velocity. The fact behind this, the presence of a magnetic field in an electrically conducting fluid influenced by Lorentz force, which retracts the flow.

Figure 3. Impact of M on velocity

Figure 4. Impact of M on the angular velocity

The effect of radiation parameter (R) on temperature is illustrated in Figure 5. It is seen that temperature profile increase due to rising of R ($0.50 \leq R \geq 1.40$). Increasing estimation of R provides more heat to the fluid which raises the temperature and thermal boundary layer. Figure 6 and Figure 7 are plotted for the impact of velocity and angular velocity on R. The opposite behaviours have been shown as increase and decrement of velocity and angular velocity due to elevate of R are found in here. Figure 8 depicts the temperature
profiles for different values ($0.10 \leq Nb \geq 1.30$) of Brownian motion (Nb). It is observed that temperature increase with increasing Nb, which indicates enhances the nanoparticles concentration. Through Figure 9 and Figure 10, we elucidated the domination of thermophoresis parameter (Nt) on concentration and angular velocity. Here we detect a rise in the Nt ($0.10 \leq Nt \geq 1.30$) with enhance of concentration and angular velocity. In Figure 10, near the plate, the angular velocity diminishes with the soar of Nt and after few time near at $Y = 2.0$, $X = 0.0$ the profiles increase.

![Figure 6](image)
Figure 6. Impact of R on velocity

![Figure 7](image)
Figure 7. Impact of R on the angular velocity

The graph of Lewis number (Le) is depicted in Figure 11. We eye that an enrichment of Le ($10 \leq Le \leq 17$) depreciates the concentration distribution. The reason behind this Le expresses the relative contribution of thermal diffusion to mass diffusion in the boundary region. Impact of increasing value of Le will reduce thermal boundary layer thickness as well as concentration. Figure 12 elucidates the nature of concentration for ascending values of destructive chemical reaction (Kr). It is seen that decline of concentration with Kr. Physically, chemical reaction parameter expresses consumption of chemical therefore results shows the decreasing the concentration.

![Figure 8](image)
Figure 8. Impact of Nb on temperature

![Figure 9](image)
Figure 9. Impact of Nt on the concentration

The angular velocity versus vortex viscosity is demonstrated through Figure 13 Near the plate for an increase of vortex viscosity ($1.50 \leq \lambda \geq 7.0$), the angular profile decreases and after a time at $Y = 2.0$ and $X = 0.00$ the profiles increase. Here, the angular velocity distribution decreasing for
increasing value of vortex viscosity.

Figure 11. Impact of Nt on the concentration

Figure 12. Impact of Kr on the concentration

Figure 13. Impact of λ on angular velocity

Further, Figures 14 and 15 respectively show the ascending profile of micro-rotational number (\(\Gamma \)). It is seen that \(\Gamma \) ascents, velocity and angular velocity descent.

Figure 14. Impact of \(\Gamma \) on velocity

Figure 15. Impact of \(\Gamma \) on angular velocity

Figure 16. Isotherm lines for R = 0.20 with \(\tau = 1 - 10 \)
Figure 17. Isotherm lines for $R = 0.40$ with $\tau = 1 - 10$

Figure 16 and Figure 17 illustrate the thermal boundary thickness for the difference values of R (0.20 and 0.40). For the increase of thermal radiation (R), the thermal boundary layer thicknesses of fluid have been expanded for an increase of temperature. Figure 18 and Figure 19 illustrate the momentum boundary thickness for the difference values of R (0.20 and 0.40). For the increase of thermal radiation (R), the momentum boundary layer thicknesses of fluid have been expanded for an increase of temperature.

Figure 18. Steam lines for $R = 0.20$ with $\tau = 1 - 10$

Figure 19. Isotherm lines for $R = 0.40$ with $\tau = 1 - 10$

Figure 20. Impact of Du on Nusselt number

From Figure 20, it is noticed an increase in the values of Dufour number created in the reduction of the Nusselt number. The influence of Dufour number (D_u) on Sherwood number (S_h) is given in Figure 21. It is evident from this figure Du enhances by the increasing Sherwood number. Figure 22 Indicates the impact Lewis number on Sherwood number profiles with a rising pattern of S_h with respect to Lewis number. Skin friction increased with increasing of Darcy number is shown in Figure. 23 Magnetic parameter is addressed opposite pattern with respect to skin friction in Figure 24.

Table 1. Computations are showing the increase of Nusselt number (N_u) for the increase of N_f for $P_r = 0.71, L_e = 10.00$ and $\tau = 10.00$

<table>
<thead>
<tr>
<th>N_f</th>
<th>N_u</th>
<th>N_u</th>
<th>N_u</th>
<th>N_u</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_u = 0.10</td>
<td>0.05976</td>
<td>0.00297</td>
<td>0.02674</td>
<td>0.02267</td>
</tr>
<tr>
<td>N_u = 0.20</td>
<td>0.13674</td>
<td>0.04906</td>
<td>0.02674</td>
<td>0.02267</td>
</tr>
<tr>
<td>N_u = 0.30</td>
<td>0.20364</td>
<td>0.11765</td>
<td>0.02674</td>
<td>0.02267</td>
</tr>
<tr>
<td>N_u = 0.40</td>
<td>0.27813</td>
<td>0.11862</td>
<td>0.02674</td>
<td>0.02267</td>
</tr>
<tr>
<td>N_u = 0.50</td>
<td>0.31364</td>
<td>0.25804</td>
<td>0.02674</td>
<td>0.02267</td>
</tr>
</tbody>
</table>
6. CONCLUSIONS

The numerical solution of micropolar fluid with nanoparticles towards a moving semi-infinite vertical porous plate with thermal radiation, heat source, MHD is analysed. The results are presented graphically with various system parameters. Form the graphical representation, the following result deduced from our study:

- The behaviour of velocity distribution decrease for the raising value of magnetic parameter, radiation parameter, micro-rotational number and increase for Darcy number.
- The concentration parameter enhances for the improving values of thermophoresis parameter and it shows decreasing behaviour for Lewis number and chemical reaction.
- Angular velocity profile ascents for escalating Darcy number and thermophoresis parameter while it diminishes for enhancing magnetic parameter, radiation parameter and micro-rotational number.
- Nusselt number decrease for increasing Dufour number.
- Sherwood number decrease for increasing Dufour number and Lewis number.
- The Skin friction distribution increases for aiding Darcy number and decrease for opposing value of the magnetic parameter.

REFERENCES

NOMENCLATURE

\(B_c \) magnetic component, (Wb m\(^{-2}\))

\(C_f \) skin-friction, (-)

\(C_p \) specific heat at constant pressure, (J kg\(^{-1}\)K\(^{-1}\))

\(D_o \) Darcy number, (-)

\(D_B \) The Brownian diffusion coefficient, (-)

\(D_u \) Dufour number, (-)

\(E_c \) Eckert number, (-)

\(G_c \) Grashof number, (-)

\(G_c' \) modified Grashof number, (-)

\(j \) Micro-inertia density

\(K' \) the permeability of the porous medium, (-)

\(K_r \) chemical reaction parameter, (-)

\(k_e \) mean absorption coefficient

\(L_e \) Lewis number, (-)

\(N_B \) The Brownian parameter, (-)

\(N_I \) thermophoresis parameter, (-)

\(N_u \) local Nusselt number, (-)

\(\bar{N} \) Angular velocity

\(P_r \) Prandtl number, (-)

\(q_r \) unidirectional radiative heat flux, (kg m\(^{-2}\))

\(Q_i \) radiation absorption, (-)

\(Q_i' \) heat absorption quantity, (-)

\(S_h \) Sherwood number, (-)

\(T \) Fluid temperature, (K)

\(T_w \) The temperature at the plate surface, (K)

\(T_{\infty} \) ambient temperature as \(y \) tends to infinity, (K)

\(U \) uniform velocity

\(u, v \) velocity components

\(x, y \) Cartesian coordinates

\(\Omega \) angular velocity

\(\pi \) unidirectional radiative heat flux

\(\sigma \) Stefan-Boltzmann constant, 5.6697 \times 10^{-8} \ (W/m^2K^4)

\(\sigma' \) electric conductivity

\(\xi \) vortex viscosity

Greek symbols

\(\beta \) thermal expansion coefficient

\(\beta' \) concentration expansion co-efficient

\(\gamma \) spin gradient viscosity

\(\kappa \) thermal conductivity, (Wm\(^{-1}\)K\(^{-1}\))

\(\mu \) dynamic viscosities

\(\nu \) kinematic viscosity, (m\(^2\)s\(^{-1}\))

\(\rho \) the density of the fluid, (kg m\(^{-3}\))

\(\sigma \) Stefan-Boltzmann constant, 5.6697 \times 10^{-8} \ (W/m^2K^4)

\(\sigma' \) electric conductivity

\(\xi \) vortex viscosity