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Purpose: Impaired GABAergic inhibition has been implicated in the pathophysiology of epilepsy. The
possibility of a paradoxical excitatory effect of GABA in epilepsy has been suggested, but has not been
investigated in vivo. We investigated pre- and post-synaptic GABAergic mechanisms in patients with
idiopathic generalised epilepsy (IGE).

Method: In 10 patients and 12 control subjects we explored short- and long-interval intracortical
inhibition (SICI, LICI; post-synaptic GABAs and GABAg-mediated respectively) and long-interval
intracortical facilitation (LICF; pre-synaptic disinhibition) using transcranial magnetic stimulation.
Results: While post-synaptic GABAg-mediated inhibition was unchanged in IGE (p = 0.09), LICF was
reduced compared to controls (controls: 141 + 17% of baseline; untreated patients: 107 + 12%, p = 0.2;
treated patients: 79 £+ 10%, p =0.003). GABAx-mediated inhibition was reduced in untreated patients
(response amplitude 56 + 4% of baseline vs. 26 & 6% in controls, p = 0.004) and normalised with treatment
(37 £12%, p = 0.5 vs. controls). When measured during LICI, GABAs-mediated inhibition became excitatory
in untreated IGE (response amplitude 120 + 10% of baseline, p = 0.017), but not in treated patients.
Conclusion: Pre- and post-synaptic GABA-mediated inhibitory mechanisms are altered in IGE. The
findings lend in vivo support to evidence from experimental models and in vitro studies of human

epileptic brain tissue that GABA may have a paradoxical excitatory role in ictogenesis.
© 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

Abbreviations: AED, anti-epileptic drug; AEDyo, IGE not on AEDs (subject group);
AEDop, IGE on AEDs (subject group); CS, conditioning stimulus; EEG, electroen-
cephalography; EMG, electromyography; FDI, first dorsal interosseous (muscle);
GABAR, GABA receptor; GABAAR, GABA, receptor; GABAgR, GABAg receptor; I my,
intensity needed to evoke a MEP of 1 mV amplitude; IGE, idiopathic generalised
epilepsy; IS, inter-stimulus interval; IPSP, inhibitory post-synaptic potential; JME,
juvenile myoclonic epilepsy; KCC2, K*/Cl~ cotransporter 2; LCD, late cortical
disinhibition; LICF, long-interval intracortical facilitation; LICI, long-interval
intracortical inhibition; MEP, motor evoked potential; NKCC1, Na*/K*/2Cl~
cotransporter 1; PS, priming stimulus; RMT, resting motor threshold; SICI, short-
interval intracortical inhibition; TLE, temporal lobe epilepsy; TMS, transcranial
magnetic stimulation; TS, test stimulus; TS*, adjusted test stimulus.
* Corresponding author at: M518, University of Western Australia, Nedlands,
Western Australia 6009, Australia. Tel.: +61 8 9346 4479; fax: +61 8 9346 3487.
E-mail address: gary.thickbroom@gmail.com (G.W. Thickbroom).
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1. Introduction

Epilepsy is characterised by neuronal hyperexcitability and
hypersynchronicity which manifests as recurrent seizures
[1,2]. The pathophysiological processes underlying epilepsy in
its various forms remain incompletely understood (for reviews, see
Engelborghs et al. [1] and McCormick and Contreras [2]) but an
imbalance between excitatory and inhibitory neuronal inputs is
usually implicated. Critical to understanding the pathophysiology
of epileptogenesis and ictogenesis are abnormalities in synaptic
transmission, and in particular in the activity of GABAergic
synaptic networks [2-5]. An improved understanding of in vivo
synaptic function in epilepsy may inform diagnosis and clinical
management.

1059-1311/© 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
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Within the central nervous system, GABAergic activity can
regulate neuronal firing, synchronicity and network oscillations
[6]. At a cellular level, activation of post-synaptic GABA receptors
results in rapid transient (GABAsR-mediated) and longer-lasting
(GABAgR-mediated) inhibitory post-synaptic potentials that can
modulate or gate firing of the post-synaptic neuron [7-9]. Pre-
synaptic GABAgRs remain active for longer than post-synaptic
GABAgRs, and regulate (reduce) further GABA release by inhibiting
Ca?" influx, resulting in disinhibition [8,10,11].

In human motor cortex, the activation of GABARs can be
measured with TMS using paired-pulse stimulation. SICI occurs
when a sub-threshold conditioning pulse is delivered ~2 to 6 ms
before a supra-threshold test pulse; the conditioning pulse elicits a
GABA,R-mediated IPSP and thereby reduces the amplitude of the
MEP to the test pulse [12,13]. The ratio of the amplitude of the
conditioned MEP to the MEP for the test pulse alone can be used as
an index of GABAAR activation. A supra-threshold conditioning
pulse results in activation of post-synaptic GABAgRs, reducing test
MEP amplitudes for conditioned-test ISIs of up to ~150 ms (LICI)
[14-16]. Pre-synaptic GABAgRs activated by the conditioning pulse
limit further GABA release, and as they remain active for longer
than post-synaptic GABAgRs a period arises beyond LICI when
disinhibition dominates (LCD), and during which MEP amplitude is
increased (LICF) and SICI reduced [17-19].

As pre- and post-synaptic GABARs can exert widespread
influence over neuronal firing, their dysfunction has been implicated
in the processes of epileptogenesis and ictogenesis [2,4,5,20]. Previ-
ous TMS studies in patients with untreated IGE have reported
reduced levels of SICI compared to non-epileptic control subjects
[21-25], suggesting a state of cortical hyperexcitability with altered
(decreased) cortical GABA4 activity. Normal levels of SICI have been
consistently reported in patients with IGE who are well controlled
on AED therapy [21-25], apart from those with JME in whom SICI
may [23,26] or may not [27,28] return to normal levels. The effect of
IGE on LICI is not certain. Although not yet explored in human IGE in
vivo, impaired GABAgR-mediated auto-inhibition has been demon-
strated in in vitro studies of human brain tissue obtained from
patients undergoing surgery for pharmaco-resistant temporal lobe
epilepsy [10,29]. While GABA mediates cortical inhibition and
disinhibition in adults, it is known to have excitatory effects early in
development [30]. An excitatory role for GABA in epilepsy has also
been suggested on the basis of findings in animal models and
surgically resected human brain tissue [31-33].

Table 1
Demographics of patients with idiopathic generalised epilepsy.

In the present study we used TMS to compare the strengths of
short- and long-interval intracortical inhibition and disinhibition
in the motor cortex in patients with treated and untreated IGE and
in controls.

2. Methods
2.1. Subjects

Ten patients diagnosed with IGE (16-37 years of age, mean
23 years; four male, all right hand dominant) were recruited from
the Royal Perth Hospital First Seizure Clinic and from a private
epilepsy clinic. The diagnosis of IGE was made by an epileptologist
(JWD, NDL or PLS) on the basis of clinical assessment and EEG.
Patients were divided into two groups according to whether or not
they were currently being treated with an AED (not on treatment:
AEDyo, on treatment: AEDgy). Further patient details are presented
in Table 1. Patients taking multiple AEDs were not recruited. Four
patients underwent repeat studies (at least two weeks apart) after
commencing (patients #1, #2 and #4) or ceasing (patient #5) AED
treatment as part of their prescribed epilepsy management. In
total, seven sets of measurements (three unique, four crossover)
were obtained from patients off treatment, and seven from
patients on AED treatment (three unique, four crossover). Apart
from patient #6, all patients were seizure-free for at least 3 months
following testing. Twelve healthy individuals (19-32 years of age,
mean 23 years; nine male, all right hand dominant) without a
history of epilepsy in first-degree relatives were recruited as a
control group. Approval for the clinical arm of the study was
obtained from the Royal Perth Hospital Human Ethics Committee,
and University of Western Australia Human Research Ethics
Committee granted approval for control measurements. All
participants provided written informed consent according to the
Declaration of Helsinki.

Testing was performed at 9 AM, after a minimum of seven hours
uninterrupted sleep the night before. Participants abstained from
alcohol in the 24 h prior to testing and from stimulant drinks (e.g.
coffee, ‘energy drinks’) on the day of testing. The IGE group were
tested at least one week after their last generalised tonic-clonic
seizure, and at least 24 h after any other clinical seizure type. No
participants were taking medications known to alter seizure
threshold (other than a single AED).

Patient Gender Age AED Months on Epilepsy Inter-ictal EEG Months since
current AED” syndrome last seizure

AEDyo

1° F 16 - IGETCS GSW 3

27 M 22 - JME GSW 0.3

3 F 19 - IGETCS GSW 9

47 M 35 - JAE GSW 1

57 M 22 - IGETCS GSW 27

6 F 26 - JME GSW, PPR 0.25

7 F 37 - IGETCS GSW 14

AEDon

12 F 17 LTG 3 IGETCS GSW 7

27 M 22 VPA 0.5 JME GSW 1

4 M 36 VPA 8 JAE GSW 6

57 M 21 LTG 17 IGETCS GSW 24

8 M 18 VPA 10 IGETCS GSW 5

9 F 18 LTG 8 JAE GSW 36

10 F 18 LTG 10 JAE GSW 6

GSW: sporadic generalised spike and wave pattern, IGETCS: idiopathic generalised epilepsy with tonic-clonic seizures, JAE: juvenile absence epilepsy, LTG: lamotrigine, PPR:

photoparoxysmal response, VPA: sodium valproate.
2 Subject tested both on and off AEDs.
b ‘Current AED’ refers to both medication and dosage.
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2.2. TMS

MEPs were recorded from the right FDI by surface EMG (sample
rate 10 kHz, amplification 500x, filtering 0.02-20 kHz). TMS was
delivered through a 7 cm figure-of-eight coil connected to three
magnetic stimulators (Magstim 200%; Magstim Co., UK) linked
through a custom-built device. The coil was held tangential to the
head and positioned in the parasagittal plane at the optimal site for
activation of the right FDI (determined from initial exploration over
a 1 cm grid). Stimuli were delivered at 0.2 Hz with the FDI relaxed,
and peak-peak MEP amplitude was measured. RMT was determined
according to the Rossini-Rothwell criterion [34]. As recommended
by safety guidelines, in all IGE subjects surface EMG of the right
deltoid muscle was monitored so as to detect intracortical spread of
excitation [35], and a neurologist (PLS) was present for all testing. No
adverse events occurred during testing.

2.3. LICI/LICF

LICI and LICF curves were generated using paired-pulse TMS.
The single-pulse TMS intensity needed to evoke a MEP of 1 mV
amplitude was first determined (I; nv), and both stimuli in the
paired-pulse were set to this intensity. The first pulse in a pair was
designated the priming stimulus and the second pulse the test
stimulus (Fig. 1). Paired-pulses were delivered at 14 ISIs spaced so
as to encompass the periods of LICI and LICF (100, 150, 170, 180,
190, 200, 210, 220, 230, 240, 250, 275, 300, 350 ms). ISIs were
pseudo-randomised and divided into four blocks, with eight
stimuli for each ISI. At each ISI the mean TS-MEP amplitude was
calculated as a percentage of the mean PS-MEP. The ISIs
corresponding to each subject’s greatest LICI and LICF were used
in the triple-pulse SICI measurements (SICIj;c; and SIClycg). In
participants with IGE who did not show LICF, the ISI with greatest
PS-TS amplitude was used to evaluate SICIycf.

2.4. SIcl

Triple-pulse TMS was used to measure SICI during LICI and LICF
(Fig. 1). A supra-threshold PS (at I ,,v) was followed by a paired-
pulse stimulus designed to elicit SICI, consisting of a sub-threshold
conditioning stimulus followed 2 ms later by a supra-threshold
test stimulus (TS*) that was intensity-adjusted so as to give a MEP
of 1 mV in the presence of LICI or LICF. The CS was delivered at
three intensities: 0.7, 0.8 and 0.9 RMT. An ISI of 2 ms was chosen to
avoid contamination of SICI by SICF [36]. Unprimed SICI was
measured in the absence of a PS, with TS at I; ,,,v, and calculated from
the ratio (expressed as a percentage) of mean conditioned MEP
amplitude (10 stimuli) to mean unconditioned test MEP amplitude
(10 stimuli). SICIy;¢; and SICI ;g were measured in the presence of a
PS, and calculated from mean conditioned TS* MEP amplitude to
mean unconditioned TS* amplitude (10 stimuli). Stimuli were
delivered in blocks of 40 for each of unprimed SICI, SICIy;¢; and
SICIy;cr, comprised of 10 conditioned stimuli at each level of RMT and
10 unconditioned stimuli, interspersed pseudo-randomly.

2.5. Data analysis

Data was compared between Controls, AEDyo and AEDgn. All
data are expressed as mean + standard deviation.

2.5.1. LICI/LICF

Mixed model analysis with random individual effects was used to
compare responses between groups, and to compare each group’s
responses to baseline. Data was log transformed where required to
better approximate normality for inference purposes. Adjustment
for possible differences in baseline values did not alter results.

PS ——= TS (ms post-PS)

LICI/ LICF

Unprimed TS (control)

PS-TS
PS TS 2
Primed TS i i
+—>
ISl
SICI - Unprimed TS
Unconditioned TS (control) b][.
CS-TS
CSTS I
Conditioned TS 4
SICl,,/ SICI .. PS TS*
Primed TS* (control) l l i l

rls csuTs* Pees1s”

Fig. 1. Protocol diagram. TOP: LICI/LICF curves were generated from paired-pulse
TMS, made up of a supra-threshold PS followed by TS (1 mV MEP) delivered 100-
350 ms later. This curve was used to identify the timing of strongest LICI (V) and
LICF (A) for each individual. BOTTOM: Paired- and triple-pulse TMS was used to
measure LICI, LICF, and SICI during both LICI and LICF. LICI/LICF was calculated at
each ISI from the amplitude ratio of primed-to-unprimed TS. Unprimed SICI was
calculated from the amplitude ratio of unconditioned-to-conditioned TS at ISI 2 ms.
At the two post-PS intervals corresponding to LICI and LICF, TS intensity was
adjusted to restore MEP amplitude to 1 mV (TS*) in the presence of PS and SICI was
then measured by delivering a CS prior to TS*.

Primed conditioned TS*

2.5.2. SICI

Mixed model repeated measures analysis was performed with
factors GROUP and RMT for each CONDITION (unprimed SICI,
SIClycy, SICI cr). Responses were compared between groups, and
within each group responses were compared to baseline for each
condition. Adjustment for possible differences in baseline values
did not alter results.

3. Results
3.1. LICI and LICF

RMT was similar between groups (p = 0.496). There was no
significant difference between baseline MEP amplitudes for
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Fig. 2. LICI/LICF curves: mean paired-pulse (PS-TS) MEP amplitudes at each ISI, expressed as a percentage of single-pulse baseline. Error bars represent standard error. (A) All

subject groups; (B) subjects in AEDon only, according to specific AEDs.

Controls (1.60 +£0.30 mV), AEDno (1.19 £0.15mV) and AEDgyn
(1.35 £ 0.09 mV; p = 0.46).

Fig. 2A presents the LICI/LICF curves for each group. LICI was of
similar magnitude in all groups at ISI 100-150 ms (p = 0.09), with a
significant overall reduction in MEP amplitude compared to
baseline (mean 46 + 8% of baseline, p < 0.001). At longer ISIs
(200-250 ms) the Control group demonstrated LICF as expected,
with MEP amplitude significantly increased compared to baseline
(mean 141 + 17% of baseline, p=0.015) and peaking at 210 ms
(151 £ 21% of baseline). At these longer ISIs there was no statistically
significant difference in amplitude compared to baseline for AEDyo
(107 &+ 12%, p = 0.56), while for AEDoy the amplitude was reduced,
but with marginal significance (79 +10% of baseline, p =0.045).
There were significant differences at ISI 200-250 ms when groups
were compared: amplitudes in AEDoy were lower than both AEDyo
(p <0.001) and Controls (p=0.003), while those for AEDyo and
Controls were not significantly different to each other (p=0.2).
Stratifying AEDoy according to specific AEDs (Fig. 2B) suggests that
the difference observed between AEDoy and AEDyo may be due to
lamotrigine. LICI and LICF values for patients tested both on and off
AED treatment are listed in Table 2.

3.2. SICI

There was no significant difference in TS*-MEP amplitude
between groups (mean 1.20 + 0.19 mV; p = 0.387), and no difference
between MEPs for PS and TS* (p = 0.245). The ISI for SIClc; was
100 ms in all participants, whereas the ISI for SICly;cr varied between
180 and 250 ms (median 210 ms, interquartile range 203-230 ms).
Fig. 3 shows SICI as a function of CS intensity (0.7-0.9 RMT) for each
group (Control, AEDno, AEDon) and each stimulus combination
(unprimed SICI, SICIy;c, SICl;cg). The mean values for unprimed SICI,

SICIycy, SICIcr in patients tested both on and off AED treatment are
listed in Table 2.

The overall mean unprimed SICI amplitude in the Control group
was 29 + 4% of baseline. Compared to this, SICI was significantly
reduced during LICI (68 4+ 11% of baseline, p < 0.001), and remained
reduced during LICF (53 + 7% of baseline, p < 0.001). The difference
between SICly;¢; and SICIycg was also significant (p = 0.02).

For the AEDgy group, SICIy;¢; (70 & 10% of baseline) and SICIcr
(55 4+ 14% of baseline) were significantly reduced compared to
unprimed SICI (37 +£12% of baseline; p<0.001 and p=0.03,
respectively). Unprimed SICI and SICly;c; in AEDgy were no different
to the Control group (p = 0.500 and p = 0.360, respectively).

For the AEDyo group, unprimed SICI was reduced compared to
AEDoy and Controls at CS = 0.8RMT (56 + 4% ofbaseline, p = 0.001 and
p = 0.004, respectively) and 0.9RMT (52 + 8% of baseline, p = 0.053 and
p =0.01, respectively). SICI;;c; was 120 + 10% of baseline, indicating
that CS increased TS* amplitude (p =0.017). This was significantly
different to the Control (p = 0.007) and AEDgy (p = 0.009) groups, in
which SICIy;¢; was less than 100%. During LICF, SICI in the AEDyo group
was reduced compared to unprimed SICI (72 4+ 5% of baseline,
p=0.015). Fig. 4 shows SICI MEP waveforms from a representative
participant, demonstrating the expected reduction in conditioned MEP
amplitude without PS, but that with PS the conditioned MEP is
increased in amplitude relative to the unconditioned MEP.

There was no difference in SIClcr between any groups
(p =0.980).

4. Discussion

The present study demonstrates significant differences in
cortical inhibition between individuals with IGE and healthy
control subjects. Although LICI was unchanged in IGE, there was no

Table 2

LICI, LICF and SICI in subjects tested both on and off AED treatment.
Patient LICI LICF Unprimed SICI SICIycr SIClyycr

off On Off On Off On Off On Off On

1 53% 90% 148% 116% 35% 7% —15% 12% 25% 13%
2 51% 63% 157% 118% 70% 88% 30% 18% 36% 65%
4 3% 12% 117% 75% 46% 41% —28% 4% 35% 17%
5 1% 4% 65% 63% 44% 73% —60% @ 43% —4%

LICI values correspond to ISI 100 ms, and LICF values correspond to each subject’s peak ISIs (as described under Section 2). All SICI values are averaged across CS 0.7-0.9RMT.
2 Unable to measure SICl};c; as maximum stimulator output reached.
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Fig. 3. SICI curves: mean conditioned MEP amplitudes expressed as a percentage of unconditioned amplitudes. Values <100% indicate inhibition (0% corresponds to complete
suppression of MEPs), and values >100% indicate a facilitatory response. Error bars represent standard error.

evidence for the post-LICI period of facilitation (LICF) that is
present in healthy individuals. The strength of SICI was also
reduced, and when measured during LICI, the SICI protocol elicited
a paradoxical excitatory rather than an inhibitory response in
untreated epileptics. Treatment with AEDs was associated with
restoration of normal levels of SICI. These findings point to altered
function of GABAergic inhibition in epilepsy, and suggest that
under some circumstances GABA may have an excitatory rather
than an inhibitory action in the cortex in IGE.

The conventional GABA hypothesis of epilepsy suggests that “a
reduction of GABAergic inhibition results in epilepsy while an

Test

SICI

SICI

LiCl

enhancement of GABAergic inhibition results in an antiepileptic
effect” [37]. In recent years this hypothesis has been challenged by
reports of GABAARs with excitatory effects, likely due to alterations
in chloride homeostasis (for reviews, see [4,31-33,38-40]).
Activation of the GABAAR opens Cl~ channels allowing a flow of
ions down their electrochemical gradient. The direction of this
gradient is set by the neuronal membrane cotransporters NKCC1
(influx of ions) and KCC2 (efflux of ions) [41]. In utero, relative over-
expression of NKCC1 results in high intracellular CI~ concentration,
and thus opening of the GABAAR Cl~ channel results in a
depolarising (outward) ion flow [42-46]. In normal early human

Conditioned

Fig. 4. MEP waveforms (overlay of 3) from a representative IGE patient (Subject 1, AEDno). Without the priming stimulus (top row), conditioned MEP amplitude (CS-TS) is
reduced compared to unconditioned (TS) amplitude. Measurements made after a PS (during LICI) show the conditioned MEP amplitude to be greater than for the

unconditioned MEP.
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infant life the relative expression of NKCC1 and KCC2 reverses,
with over-expression of KCC2, thereby lowering intracellular Cl~
concentration such that GABA4R activation induces hyperpolar-
isation [47,48]. In vitro studies of adult human brain tissue resected
for treatment of pharmaco-resistant TLE demonstrate pathological
over-expression of NKCC1 and under-expression of KCC2, in which
case activation of GABAsRs may lead to Cl~ efflux and neuronal
depolarisation [49-53]. These same findings have also been
reported in epileptogenic peritumoural adult human brain tissue
[54], and in combination with data from animal models suggest a
potentially epileptogenic/ictogenic role for GABAARs in epilepsy
[4,41]. Recent studies have also identified mutations affecting
GABAergic signalling in some individuals with familial IGE,
including loss-of-function mutations in ClI~ channels resulting in
abnormally elevated intracellular CI~ concentration [55-57].

One possible explanation as to why SICly ¢ facilitated MEPs is
that LICI may contribute to a reversal of the chloride gradient.
During LICI, the GABAgR IPSP (which is mediated by K* outflow
[7,58,59]) may reduce KCC2 activity (which depends on the K*
gradient to transport Cl~ out of the cell) and result in a temporarily
higher intracellular CI~ concentration [41,60-63]. A sufficiently
high concentration could lead to ClI~ efflux when GABAaRs are
activated, and therefore a depolarising response to SICI. Collapse of
the Cl~ gradient with subsequent depolarising responses has been
demonstrated in animal models of focal and generalised epilepsy
[64-66] and in adult (focal) epileptic human brain tissue
[10,29]. Changes in K*/Cl- dynamics are thought to contribute
to ictal and inter-ictal activity in epilepsy [4,40,67], and may
underlie the process of ictogenesis by converting a negative
(inhibitory) feedback loop (pyramidal cell activation of inhibitory
interneurons) into a positive (excitatory) loop [41,68,69].

In keeping with our previous findings [19], in healthy
individuals LICI at ISIs of 100-150 ms was followed by a period
of intracortical facilitation (LICF) between 200 and 250 ms, and
disinhibition (detectable as a reduction in SICI) was present
throughout both of these periods. This pattern was not observed in
IGE, where LICF was absent in both treated and untreated groups of
patients, although disinhibition (as determined by SICl;cg) was
present albeit weaker for AEDyo. A reduction in the strength (and
possibly duration) of pre-synaptic GABAgR activity has been
demonstrated in surgically resected brain tissue from adults with
focal epilepsy [29], and this could explain the absence of LICF with
weaker SIClycr in our patients.

Consistent with previous studies in IGE [21-25] and one study
of patients with generalised epilepsy secondary to GABAAR subunit
mutation (conferring partial loss of function) [70], we found a
reduction in the strength of unprimed SICI in untreated epilepsy
patients compared to healthy controls, and interpret this as
evidence of impaired GABAAR function. While this was restored by
AED treatment, the number of AEDs in relation to sample size does
not enable this restoration of GABAAR function to be interpreted
pharmacologically. However, in contrast to Badawy et al. [21-
24,71,72] we did not observe LICF in IGE. Badaway et al. found no
evidence of LICI in their healthy controls, whereas we found LICI in
both controls and IGE, suggesting that there may be an
interrelationship between the presence of LICI and LICF [19]. As
LICI is a well-established phenomenon in healthy individuals, its
absence in the Badaway et al. control groups complicates
comparison with the present findings.

The abnormalities in GABA-mediated measurements in the
present study warrant further investigation and may have clinical
applications for the diagnosis and treatment of IGE. The diagnosis
of IGE is primarily clinical based on history and examination,
with EEG performed to support the diagnosis and aid in
syndromal subclassification and prognostication [73]. However,
up to ~50% of individuals who present with a seizure will have a

normal inter-ictal EEG (which does not exclude the diagnosis of
epilepsy) and in others the EEG may be abnormal yet non-
diagnostic [74,75]. In these individuals, if the history is not clearly
diagnostic of IGE then measurement of LICF and SICI;;c; may be a
useful diagnostic adjunct.

In conclusion, we investigated the relationship between pre-
synaptic disinhibition and post-synaptic inhibition in the motor
cortex of treated and untreated IGE, and find that, during the
period of post-synaptic inhibition, activation of GABAsRs may have
excitatory effects. The findings lend in vivo support to a growing
body of evidence from experimental models and in vitro studies of
human epileptic brain tissue that GABA may have an excitatory
role in epilepsy. Coupled with alterations in disinhibition, the
present findings point to a complex modulation of pre- and post-
synaptic GABAergic mechanisms in epilepsy.
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