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ABSTRACT

Personalized predictive medicine necessitates the modeling of patient illness and care processes, which
inherently have long-term temporal dependencies. Healthcare observations, stored in electronic medical
records are episodic and irregular in time. We introduce DeepCare, an end-to-end deep dynamic neural
network that reads medical records, stores previous illness history, infers current illness states and pre-
dicts future medical outcomes. At the data level, DeepCare represents care episodes as vectors and mod-
els patient health state trajectories by the memory of historical records. Built on Long Short-Term
Memory (LSTM), DeepCare introduces methods to handle irregularly timed events by moderating the for-
getting and consolidation of memory. DeepCare also explicitly models medical interventions that change
the course of illness and shape future medical risk. Moving up to the health state level, historical and pre-
sent health states are then aggregated through multiscale temporal pooling, before passing through a
neural network that estimates future outcomes. We demonstrate the efficacy of DeepCare for disease pro-
gression modeling, intervention recommendation, and future risk prediction. On two important cohorts
with heavy social and economic burden - diabetes and mental health - the results show improved pre-

diction accuracy.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

When a patient is admitted to a hospital, there are two com-
monly asked questions: “what is happening?” and “what happens
next?” The first question is about illness diagnosis, the second is
about predicting future medical risk [43]. Whilst there are a wide
array of diagnostic tools to answer the first question, fewer tech-
nologies address the second [41]. Traditionally, the prognostic
question may be answered by experienced clinicians who have
seen many patients or by clinical prediction models with well-
defined risk factors. But both methods are expensive and restricted
in availability. Modern electronic medical records (EMRs) promise
a fast and cheap alternative. An EMR contains the history of hospi-
tal encounters, diagnoses, interventions, lab tests and clinical nar-
ratives. The wide adoption of EMRs has led to recent research to
build predictive models from this rich data source [26,45,48,49].

Answering prognostic inquiries necessitates modeling patient-
level temporal healthcare processes. Effective modeling must
address four open challenges: (i) Long-term dependencies in health-
care: the future illness and care may depend critically on historical
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illness and interventions. For example, the onset of diabetes in
middle age remains a risk factor for a person’s remaining life; can-
cers may recur after years; and a previous surgery may prevent
certain future interventions. (ii) Representation of admission infor-
mation: an admission episode consists of a variable-size discrete
set containing diagnoses and interventions. (iii) Episodic recording
and irregular timing: medical records vary greatly in length, are
inherently episodic in nature and irregular in time [47]. The data
is episodic because it is only recorded when the patient visits the
hospital and undergoes an episode of care. The episode is often
tightly packed in a short period, typically ranging from a day to
two weeks. The timing of arrivals is largely random. (iv) Confound-
ing interactions between disease progression and interventions.

We address the four challenges to construct a predictive system
that is both end-to-end and generic so that it can be deployed on
different hospital implementations of EMRs. An end-to-end system
requires minimal or no feature engineering, reads medical records,
infers present illness states and predicts future outcomes.

Existing methods are poor in handling such complexity. They
inadequately model variable length [45] and ignore the long-
term dependencies [24,31,51]. Temporal models based on the
Markovian assumption are limited to model temporal irregularity
and have no memory, and thus they may completely forget previ-
ous major illness given an irrelevant episode [1]. Deep learning,
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which has recently revolutionized cognitive fields such as speech
recognition, vision and computational linguistics, holds a great
potential in constructing end-to-end systems [27]. However, little
work has been done using deep learning for healthcare
[8,13,28,46]. While work in deep learning has been done to address
the challenge of long-term dependencies [5,7,29], the three other
challenges remain unsolved.

To this end, we introduce DeepCare, an end-to-end deep
dynamic memory neural network that addresses the four afore-
mentioned challenges [38]. DeepCare is built on Long Short-Term
Memory (LSTM) [15,21], a recurrent neural network equipped with
memory cells to store experiences. At each time-step, the LSTM
reads an input, updates the memory cell, and returns an output.
Memory is maintained through a forget gate that moderates the
passing of memory from one time step to another, and is updated
by seeing new input at each time step. The output is determined by
the memory and moderated by an output gate. In DeepCare, the
LSTM models the illness trajectory and healthcare processes of a
patient encapsulated in a time-stamped sequence of admissions.
The inputs to the LSTM are information extracted from admissions.
The outputs represent illness states at the time of admission. Mem-
ory maintenance enables capturing of long-term dependencies, thus
addressing the first challenge. In fact, this capacity has made LSTM
an ideal model for a variety of sequential domains [15,17,44].

Addressing the other three drawbacks, DeepCare introduces C-
LSTM as an extension of the standard LSTM unit (Fig. 1). For repre-
senting an admission, which is a set of discrete elements in differ-
ent types such as diagnoses and interventions, the solution is to
embed these elements into continuous vector spaces. Vectors of
the same type are then pooled into a single vector. Type-specific
pooled vectors are then concatenated to represent an admission.
In that way, variable-size admissions are embedded into continuous
distributed vector space. The admission vectors then serve as input
features for the C-LSTM. As the embedding is learned from data,
the model does not rely on manual feature engineering.

Informatics 69 (2017) 218-229 219

For irregular timing, the forget gate is extended to be a function of
irregular time gap between consecutive time steps. We introduce
two new forgetting mechanisms: monotonic decay and full time-
parameterization. The decay mimics natural forgetting when
learning a new concept in human. The parameterization accounts
for more complex dynamics of different diseases over time. The
resulting model is sparse in time and efficient to compute since
only observed records are incorporated, regardless of the irregular
time spacing. Finally, in DeepCare the confounding interaction
between disease progression and interventions is modeled as follows:
Interventions influence the output gate of current illness states and
the forget gate which moderates memory carried into the future.
As a result, the illness states (the output) are moderated by past
and current interventions.

Once illness states are outputted by the C-LSTM layer, they are
aggregated through a new time-decayed multiscale pooling strat-
egy for future projection. This allows further handling of time-
modulated memory. Finally at the top layer, pooled illness states
are passed through a neural network for future prognosis. (See
Fig. 1 for a graphical depict of DeepCare.) Overall, DeepCare is an
end-to-end prediction model that relies on no manual feature engi-
neering, is capable of reading generic medical records, memorizing
a long history, inferring current illness states and predicting the
future risk.

We demonstrate our DeepCare on answering a part of the ques-
tion “what happens next?”. In particular, we validate our model on
disease progression, intervention recommendation and future risk pre-
diction. Disease progression refers to the next disease occurrence
given the medical history. Intervention recommendation is about
predicting a subset of treatment procedures for the current diag-
noses. Future risk may involve readmission or mortality within a
predefined period after discharge. Our experiments are demon-
strated on two datasets of very different nature - diabetes (a
well-defined chronic condition) and mental health (a diverse mix-
ture of many acute and chronic conditions). The cohorts were col-
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Fig. 1. DeepCare architecture. Top: The healthcare dynamics are modelled as a sequence of C-LSTM units which model irregular timing and interventions (see Fig. 4 for more
detail). The symbols (e.g., stars, circles and triangles) in the bottom rectangles are diagnosis and interventions codes (see Section 2.2). Bottom: Predictive computation

summarized in an equation.
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lected from a large regional hospital in the period of 2002-2013.
We show that DeepCare outperforms state-of-the-art classification
methods.

Initial implementation of our framework has been conducted
and preliminarily reported in [38]. Here we provide a complete
account of the model and more comprehensive results on two
chronic cohorts (diabetes and mental health). To summarize,
through introducing DeepCare, we make four modeling contribu-
tions: (i) handling long-term dependencies in healthcare; (ii) intro-
ducing a novel representation of variable-size admission as fixed-
size continuous vectors; (iii) modeling episodic recording and
irregular timing; and (iv) capturing confounding interactions
between disease and interventions. We also contribute to the
healthcare analytic practice by demonstrating the effectiveness of
DeepCare on disease progression, intervention recommendation
and medical risk prediction.

The rest of this paper is organized as follows. Section 2 presents
preliminaries for DeepCare model: LSTM and the coding of EMRs.
DeepCare is described in Section 3 while the experiments and
results are reported in Section 4. Finally, Section 5 discusses further
and concludes the paper.

2. Preliminaries
2.1. Long Short-Term Memory

2.1.1. Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) is a neural network
repeated over time. In particular, an RNN allows self-loop connec-
tions and shared parameters across different time steps. While a
feedforward neural network maps an input vector into an output
vector, an RNN maps a sequence into a sequence (see Fig. 2 for a
graphical illustration).
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Fig. 2. (Left) A typical Recurrent Neural Network that recurrently reads new input
x, re-computes the hidden state h and returns the output y. (Right) an RNN
unfolded in time. Each RNN unit at time step t reads input ¥, and previous hidden
state h,_, generates output a, and predicts the label y,.
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Fig. 3. An LSTM unit that reads input x, and previous output state h; ; and
produces current output state h;. An unit has a memory cell ¢, an input gate i;, an
output gate o, and a forget gate f.

An RNN unit has three connections: a recurrent connection
from the previous hidden state to the current hidden state
(h:_1 — h;), an input-to-hidden-state connection (x; — h;) and a
hidden-state-to-output connection (h; — a;). At time step t, the
model reads the input x, ¢ RM and the previous hidden state
h,_; € R and compute the hidden state h,, where M and K are vec-
tor dimensions of input and hidden state at every step. Thus h;
summarizes information from all previous inputs xi,x;,...,X:.
The output a; € R] is generated by a transformation function of
h;, where n. is the number of classes in the classification tasks.
Many experiments have shown that learning long RNNs is difficult
due to vanishing or exploding gradients [4,36].

2.1.2. Long Short-Term Memory (LSTM)

LSTM is a RNN that effectively solves the vanishing gradient
problem [21]. Central to an LSTM is a linear self-loop memory cell
that allows gradients to flow through long sequences. The memory
cell is gated to moderate the information flow to or from the cell.
LSTMs have been successful in many applications, such as machine
translation [44], handwriting recognition [16] and speech recogni-
tion [18].

Fig. 3 describes an LSTM unit. Instead of a simple RNN unit, an
LSTM unit has a memory cell that has state ¢, € R¥ at time t. The
information flowing through the memory cell is controlled by
three gates: an input gate, a forget gate and an output gate. The
input gate i, € R controls the input flowing into the cell, the forget
gate f, € R¥ controls the forgetting of the memory cell, and the
output gate o, € RX moderates the output flowing from the mem-
ory cell. Before proceeding with technical details, we denote the
element-wise sigmoid function of a vector by ¢ and the element-
wise product of two vectors by x.

The three gates are all sigmoid units that set every element of
the gates to a value between 0 and 1:

i[ = G(WiX[ + Uiht7] + b;) (1)
ft = O'(WfX[ + Ufh[,] + bf) (2)
0, = (W, + Uoh_; + b,) 3)

where Wi oy, Ugisoy, biigoy are parameters. The gates control the
amount of information passing through: full flow when the gate
value is 1, to complete blockage when the value is 0.

At each time step t, the input features are first computed by
passing input ¥, € RM and the previous hidden state h, ; € R¥
through a squashing tanh function:

g, =tanh (Wx; + Uch._; +b,) 4)

The memory cell is updated through partial forgetting of the
previous memory cell and the moderated input features as follows:

C=fixCq+i g (5)

The memory cell sequence is additive, and thus the gradient is
also updated in a linear fashion through the chain rule. This effec-
tively prevents the gradient from vanishing or exploding. The
memory cell plays a crucial role in memorizing past experiences
through the learnable forgetting gates f,. On the contrary, f; — 1,
all the past memory is preserved, and new memory keeps updated
with new inputs. If f; — 0, only the new experience is updated and
the system becomes memoryless.

Finally, a hidden output state h; is computed based on the
memory ¢;, gated by the output gate o, as follows:

h, = o, = tanh (¢, (6)

Note that since the system dynamics are deterministic, h; is a
function of all previous inputs: h, = LSTM(x1.¢). The output states
are then used to generate outputs.



T. Pham et al./Journal of Biomedical Informatics 69 (2017) 218-229 221

Legend

g, input

fi: forget gate
i input gate
o, output gate

memory

OLD LSTM
Diagnoses Procedures
Medications
Admission t

(a)

prev. illness state { A’

pooling = nnet
h

I current illness state

t

o
*
-]

NEW IN
DEEPCARE

. intervention
current diagnoses

time lapsed, parameterized

(b)

Fig. 4. (a) Code embedding. (b) C-LSTM (Care-LSTM) unit as a carrier of illness history. Compared to the original LSTM unit (Fig. 3), the new C-LSTM unit models times,

admission methods, diagnoses and intervention.
2.2. EMR coding

An electronic medical record (EMR) is a digital version of a
patient’s health information. A wide range of information can be
stored in EMRs, such as detailed records of symptoms, data from
monitoring devices and clinician’s observations [37]. A typical
EMR contains information about a sequence of admissions for a
patient. There are two types of admission methods: planned (rou-
tine) and unplanned (emergency). Unplanned admission refers to
transfer from the emergency department. EMRs typically store
admitted time, discharge time, lab tests, diagnoses, procedures,
medications and clinical narratives. Diagnoses, procedures and
medications are typically coded in standardized formats. Diagnoses
are represented using WHQO’s ICD-10 (International Classification of
Diseases) coding schemes.! For example, in ICD-10, E10 encodes
Type 1 diabetes mellitus, E11 encodes Type 2 diabetes mellitus while
F32 indicates depressive episode. The procedures are coded in CPT
(Current Procedural Terminology) or ICHI (International Classifica-
tion of Health Interventions) schemes.”? Medication names can be
mapped into the ATC (Anatomical Therapeutic Chemical) scheme.’

3. DeepCare: a Deep learning framework for Care episodes

In this section, we present our main contribution: DeepCare for
modeling illness trajectories and predicting future outcomes.
DeepCare is built upon LSTM to exploit its ability to model long-
term dependencies in sequences. We extend the LSTM unit to C-
LSTM unit to address the three major challenges: (i) variable-size
discrete inputs, (ii) confounding interactions between disease progres-
sion and intervention, and (iii) irregular timing.

3.1. Model overview

DeepCare (see Fig. 1) is a deep dynamic neural network that has
three main layers. The bottom layer is built on C-LSTM whose
memory cells are modified to handle irregular timing and interven-
tions, the capacity not seen in standard LSTM units (see Fig. 4).

1 http://apps.who.int/classifications/icd10/browse/2016/en.
2 http://www.who.int/classifications/ichi/en/.
3 http://www.whocc.no/atc_ddd_index/.

More specifically, the input is a sequence of admissions. Each
admission t contains a set of diagnosis codes (which is then formu-
lated as a feature vector x; € RM), a set of intervention codes
(which is further formulated as a feature vector p, € R, where
M is the vector dimension of x; and p,), the admission method
m; € R and the elapsed time At between the current admission
and its previous one. Denote by uy,u,, ..., u, the input sequence,
where u; = [x;, p,, m,, At], the C-LSTM computes the corresponding
sequence of distributed illness states hy,h;, ..., h,, where h; ¢ R¥
and K is the vector dimension (see Fig. 4b). The middle layer aggre-
gates illness states through multiscale weighted pooling
h = pool{h;,hy,... h,}, where h € R* for s scales.

The top layer is a neural network (nnet, ) that takes pooled states
and other statistics to estimate the final outcome probability, as

P(yjuy.,) = P(nnet, (h))

The probability P(y|ui.,) depends on the nature of outputs and the
choice of statistical structure. For example, for binary outcomes,
Py = 1|u1,) is a logistic function; for multiclass outcomes,
P(ylu1n) is a softmax function; and for continuous outcomes,
P(y|luy,;) is a Gaussian. In what follows, we describe the first two
layers in greater detail.

3.2. Representing variable-size admissions

An admission contains multiple diagnoses and interventions.
Interventions include procedures and medications. Diagnoses, pro-
cedures and medications are coded using coding schemes which are
described in Section 2.2. Our approach is to embed admissions into
vectors (see Fig. 4a). An admission is a variable-size set of codes
(diagnoses and interventions). Let Z be the set of diagnosis codes
and .# be the set of intervention codes. The two sets are indexed
from 1 to |2| and from 1 to |.7|, respectively. Denote the diagnosis
embedding matrix by A € RM*?I and the intervention embedding
matrix by B € RM*“I, Let A’ be the jth column and A/ be the element
at the jth column and the ith row of the matrix A. Each admission ¢t
contains h diagnoses: di,d,,...,d, € {1,2,...,]|2|} and k interven-
tions: s1,S,,...,5 € {1,2,...,].#|}. Codes are first embedded into
vectors. The embedded vectors for diagnosis and intervention codes
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are A", ... A%and B",...,B%. We then pool all the present diagno-
sis vectors to derive X, € RV, Likewise, we derive a pooled interven-
tion vector p, € RM. Finally, an admission embedding is a 2M-dim
vector [x;,p,]. The two embedding matrices are first randomly ini-
tialized and then learned through training the prediction tasks.

3.2.1. Pooling

Let xi be the ith element of the vector %, and pi be the ith ele-
ment of the vector p,. The admission is pooled by max, sum or
mean pooling as:

e Max pooling admission (max adm.). The pooling is element-wise
as follows:

i_ di pdy dp
xtfmax(Ai A A )

p. = max (B}',B?,...,B})

fori=1,...,M. This is analogous to paying selective attention to
the element of highest impact among the diagnoses and the
interventions. It also resembles the usual coding practice that
one diagnosis is picked as the primary reason for admission.

e Normalized sum pooling admission (sum adm.). A patient with
multiple diseases (multiple comorbidities) is more likely to be
at risk than those with a single condition. We propose the fol-
lowing normalized sum pooling:

. Al A" 4 AT
-
\/\Afl FAR 4 Al

B?]+B?Z+~~-+Bfk
\/IB?+B§2+---+B§W

for i=1,...,M. The normalization reduces the effect of large
diagnosis and intervention sets.

e Mean pooling admission (mean adm.). In absence of primary con-
ditions, a mean pooling could be a sensible choice:

AN A" 4 AT
xt: h

7le+352+--~+35"

b k

3.2.2. Admission as input

Once admission embedding has been derived, the diagnosis
component is used as input for the C-LSTM. As interventions are
designed to reduce illness, their effect is modeled separately in Sec-
tion 3.3.1. Recall from Section 2.2, there are two main types of
admission: planned and unplanned. Unplanned admissions refer
to transfer from emergency attendances, which typically indicates
higher risk. Recall from Eqs. (1) and (4) that the input gate i controls
how much new information is updated into memory c. The gate is
modified to reflect the risk level of admission type as follows:

. 1

ir = —o(Wix; + Uih,_, + b;) (7)
m;

where m; = 1 if the admission method is unplanned, m; > 1 other-

wise, and ¢ is the element-wise sigmoid function of a vector. (See

Supplementary A.5 for more details about the effect of m,.)

3.3. C-LSTM unit

We now describe C-LSTM, which stands for Care-LSTM, units. A
C-LSTM unit extends the LSTM unit to reflect the properties of

healthcare dynamics. In particular, C-LSTM units model the effect
of interventions and capture time irregularities. See Fig. 4b for a
graphical illustration.

3.3.1. Modeling effect of interventions

The intervention vector (p,) of an admission is modeled as illus-
trated in Fig. 4b. Since interventions are designed to cure diseases
or reduce patient’s illness, the output gate, which controls the ill-
ness states, is moderated by the current intervention as follows:

0 = G(WoXe + Uohe_1 + Pop, + by) 8)

where P, is the intervention weight matrix for the output gate and
P, is intervention at time step t.

Moreover, interventions may have long-term impacts (e.g., cur-
ing disease or introducing toxicity). This suggests the illness forget-
ting is moderated by previous intervention

Je =0 (WXt + Urhe 1 + Pp,_; + by) ®

where p, ; is intervention embedded vector at time step t — 1 and
Py is the intervention weight matrix for the forget gate.

3.3.2. Capturing time irregularity

When a patient’s history is modeled by LSTM (Section 2.1), the
memory cell carries the illness history. But this memory needs not
be constant as illness states change over time. In C-LSTM, we intro-
duce two mechanisms of forgetting the memory by modifying the
forget gate f, in Eq. (9):

Time decay. There are acute conditions that naturally reduce
their effect through time. This suggests a simple decay modeled
in the forget gate f;:

JFe —d(Acro)fe (10)

where A;_1. is the time passed between step t — 1 and step t, and
d(Ar_1¢) € (0,1] is a decay function, i.e., it monotonically decreases
in time. We found that the function d(A; 1) = [log(e+AH:[)]’]
works well, where A;_;.; is measured in days and e ~ 2.718 is the
base of the natural logarithm.

Parametric time. Time decay may not capture all conditions as
some conditions can get worse, and others can be chronic. This
suggests a more flexible parametric forgetting:

fi= 0<fot + Ush,_4 + Qsqy, ,, + PPy + bf) (11)

where q, _ is a vector derived from the time difference A, Qy is

the parametric time weight matrix. For example, we may have:
2

Q , = (Ago“ NEE (Agglsf)B) to model the third-degree forgetting

dynamics. A, 1. is measured in days and is divided by 60, 180 and
365 to prevent the vector q,,_,, from having large values.

3.4. Trajectory prediction

Once the C-LSTM units have been set up, at each time-step, the
hidden illness state h; is computed. The states are then used to pre-
dict the future trajectory. We consider three tasks: (1) next-step
disease progression, (2) intervention recommendation, and (3)
future risk prognosis. The first two tasks cover short-range predic-
tion (current and next admissions), but the third task looks far into
the future of any horizon.

3.4.1. Short-range disease progression

Disease progression refers to occurrence of future diseases in
the next time-step. It could be the progression from a stage to
another of the same disease, the recurrence of a disease, or the
transition to a new disease. The illness state h; can be used to pre-
dict a diagnosis code d;.; as follows
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P(d;.1 = cluy) = softmax(w_ h;) (12)

where softmax(z) = e?/3",€?, w, is code-specific parameter.

3.4.2. Short-range intervention recommendation

Intervention recommendation refers to predicting medications
and procedures for the current diagnoses. Similar to disease pro-
gression, an intervention code s; at time t can be generated as
follows

P(s; = cluy,) = softmax (v h;) (13)

where v, is code-specific parameter.

3.4.3. Long-range prognosis by pooling multiple temporal resolutions
Recall that the C-LSTM has two temporal characteristics:

o Integrating long-range information through gradually forgotten
memory. A consequence of forgetting is that recent information
affects the current illness state more, and this fits the nature of
healthcare processes.

e Representing a complex effect of time lapse between two
admissions from parameterization of time in the forget gate.

However, C-LSTM, like its ancestor LSTM, is not explicitly
designed to predict the far future. This because the memory is
updated at every admission but the global dynamics across multi-
ple admissions are not fully captured. For this reason, we propose
to impose a multiscale temporal structure on top of the C-LSTM
layer to predict the far future (see Fig. 1). It means to pool historical
illness states within multiple time-horizons. This is to reflect the
variable rates at which diseases progress.

e For state pooling per time-horizon, the simplest way is to use
mean-pooling, where h= pool{hy,} = ,11? St h.. However, this
does not reflect the recency in history. Here we introduce a sim-
ple attention scheme that weighs recent events more:

h= (Zf:rl rfht) /ZL“ 1, where

re = [m; +log (1 + Awp)] '

and A, is the elapsed time between the step t and the current
step n, measured in months; m; =1 if emergency admission,
m,; = 2 if routine admission. The starting time step t; is used
to control the length of look-back in the pooling, for example,
A, < 12 for one year look-back.

For multiple time-horizons, we employ multiple look-backs:
12 months, 24 months, and all available history. Finally, the
three pooled illness states are stacked into a vector:
h = [hi2, hos, by which is then fed to a neural network for
inferring about the future.

Once all the illness states are pooled and stacked into vector h, h
is then fed to a neural network to predict the future outcome y. The
design of the neural network is flexible with any depth as desirable
with or without parameter tying between layers (see for example,
recent work in [39]).

In this paper, we use a simple neural network with one hidden
layer, as follows:

a, = O'(Uhil+bh) (14)
z,=Uya, +b, (15)
P(y|tt1.n) = fpron (2y) (16)

The function f,(2,) depends on the nature of the future outcome.
For example, in the case of binary classification, f,;(2,) is a logistic

regression. Although not pursued here, this can be easily extended
to survival analysis setting, where fy(z,) is partial-likelihood.

In summary, computation steps in DeepCare can be summa-
rized as follows:

P(y|uy.4) = P(nnet, (pool{C ~ LSTM(u11.)})) (17)

where uy., is the input sequence of admission observations, y is the
outcome of interest (e.g., readmission), nnet, denotes estimate by
the neural network with respect to outcome y, and P is probabilistic
model of outcomes.

3.5. Model training

Recall that there are three prediction tasks - two short-range
(intervention recommendation and disease progression) and one
long-range prognosis. As the short-range tasks are indeed special
detailed cases of the long-range task, the models learned from
the short-range can be reused in the long-range. This is also known
as transfer learning. In particular, the short-range models will serve
as a pre-training step for the long-range task. See Supplementary
A.2 for more detail on pre-training.

o For short-range tasks, models are trained by minimizing the
log-loss L = -, log P(y,|u1.), where y, is either intervention
code s; in Eq. (13) or disease code d;.; in Eq. (12).

o For the long-range task, the loss is L = —log P(y|u;,,) where
P(y|uq.) is given in Eq. (16).

Despite having a complex structure, DeepCare’s loss functions
are fully differentiable, and thus can be minimized using standard
back-propagation and supported by current programming frame-
works with automatic differentiation facilities. The learning com-
plexity is linear with the number of parameters (see
Supplementary A.1 for model complexity analysis).

Algorithm 1 is an overview of our DeepCare forward pass. In
actual implementation, we also make use of recent techniques
such as dropouts [42] (see Supplementary A.3 for further detail).

Algorithm 1. DeepCare forward pass

1: Input: EMRs as sequences of sets of diagnosis, intervention
codes, admission type and time lapse.
2: for each step t
* (X, p;] = embedding(d,,...,dp,s1,...,S) (Section 3.2.1)
* Compute 3 gates: i; (Eq. (7)), o¢ (Eq. (8)),f: (Eq. (10) or Eq.
(11))
+* Compute ¢; (Eq. (5)) and h; (Eq. (6))
endfor
3: if the task is Disease progression
* Compute the predictive probability using Eq. (12)
+* Compute the log-loss.
endif
4: if the task is Intervention recommendation
+ Compute the predictive probability using Eq. (13)
+ Compute the log-loss.
endif
5: if the task is Future risk prediction
« Compute h (Section 3.4.3)
* Compute P(y|uo.,) (Eqs. (14)-(16))
+ Compute the log-loss.
endif
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4. Case studies on chronic diseases

In this section we report case studies for two chronic cohorts:
mental health and diabetes. For each cohort we modeled disease
progression, intervention recommendation and future risk predic-
tion. These diseases differ in causes and progression. Further
details of DeepCare implementation are given in Supplementary
A.4. Code for the experiments can be found in GitHub.*

4.1. Data

Data for both cohorts were collected for 12 years (2002-2013)
from a large regional Australian hospital. Diseases are coded using
ICD-10 (see Section 2.2 for a brief description). We preprocessed
the datasets by removing (i) admissions with incomplete patient
information; and (ii) patients with less than 2 admissions. The
vocabulary is defined as the set of diagnosis, procedure and medi-
cation codes. In diabetes cohort, there are 7153 diagnosis codes
and 1126 intervention codes while in mental health cohort, there
are 8127 diagnosis codes and 1351 intervention codes. The vocab-
ularies in both datasets are large that may lead to overfitting when
training the model. To reduce the vocabulary, we collapsed diag-
noses that share the first 2 characters into one diagnosis. For exam-
ple, E10.1 would be collapsed into E1. Likewise, the first digits in
the procedure block were used.

The diabetes cohort contained more than 12,000 patients (55.5%
males, median age 73). Data statistics are summarized in Fig. 5.
After preprocessing, the dataset contained 7191 patients with
53,208 admissions. The vocabulary consisted of 243 diagnoses,
773 procedures and 353 medication codes. The mental health

4 https://github.com/trangptm/DeepCare.

cohort contained more than 11,000 patients (49.4% males, median
age 37). Data statistics are summarized in Fig. 6. After preprocess-
ing, the mental health dataset contained 6109 patients and 52,049
admissions with the vocabulary of 247 diagnoses, 752 procedures
and 319 medication codes. The average age of diabetic patients is
much higher than the average age of mental patients (see
Figs. 5a and 6a).

For each dataset, 2/3 is used for parameter estimation, 1/6 is for
tuning, and 1/6 is for testing.

4.2. Disease progression

For disease progression, the model predicts the next n, diag-
noses at each discharge (see Section 3.4.1). For comparison, we
implemented two baselines: Markov models and plain RNNs. A
Markov model is a stochastic model used to model changing sys-
tems. A Markov model consists of a list of possible states, the pos-
sible transitions between those states and the probability of those
transitions. The future states depend only on the present state
(Markov assumption). The Markov model has memoryless disease

transition probabilities P(di\db) from disease d’ to d' at time t.
Given an admission with disease subset D;, the next disease prob-
ability is estimated as Q(di; t) = ﬁzjean@i\d{;l). Plain RNNs are
described in Section 2.1.

We use Precision at K (Precision@K) to measure the perfor-
mance of the models. Precision@K corresponds to the percentage
of relevant results in retrieved results. That means if the model
predicts n, diagnoses of the next readmission and n, diagnoses
among of them are relevant the model’s performance is

. n
Precision@n, = —~

p


https://github.com/trangptm/DeepCare

T. Pham et al./Journal of Biomedical Informatics 69 (2017) 218-229 225

(a) Age (b) Admission (c) Length of stay (days)
400 3000, 800
350 5500 700
600
2000 500
150 400
100 300
200
500 1

05710 15 20 25 30 35 40 20 40 60 80100

Other and mmﬁed HEALTH SERVICE AREA
C F§D PLACE OF DCCURRE NCE

PERSONAL HISTORY OF TOBAC%O U R TR "‘"’Unspecmed actlwty ~ CHEST PAN UNSPECIFED

o CCO USE CURRENT

URBARY TRAGT REFETION STE U0t S
asens o g

MARY) HYPERTENSION

CARRIER OF VIRAL HEFATITISC. CASORDES SPECFED
D . Other specified activi o v e UNSPECIFED PLAGE OF OCCURRENGE, -~ i oz

epressive episode_ = SCHIZOPHRENIA UNSPEGIFIED s VA Blacey 0 CHeomwats
PERSL H/0O NONCOMPLIANCE MED RX REGIMENVENT/BEH DISRD DT HARELL ALCOHOL USE- oo A T S~

B0 o oy e o€ VETe depressive episode without psychotlc symptpms

ok AFTECTIY, DECIRDER mav

TOBACCO USE CURRENT ** it e v

O SRS~ MENT/BEH DISRD DT ALCOHOL USE AC INTOX

ified activity
Severe depressive episode Tobacco use current Personal history of
Hypertension Mental /behavioral tobacco use disorder

disorder due to alcohol use

Fig. 6. Top row: Mental health cohort statistics (y axis: number of patients; x axis: (a) age, (b) number of admissions, (c) number of days); Mid row: Progression from pre-
mental diseases (upper diag. cloud) to post-mental diseases (lower diag. cloud). The size of a diagnosis in a cloud is proportional to its occurrence in the data; Bottom row:
Top diagnoses.

4.2.1. Dynamics of forgetting suggests that the time-based forgetting has a very small dimen-

Fig. 7(left) plots the contribution of time into the forget gate. sionality, and we will under-parameterize time using decay only
The contributions for all 40 states are computed using Q,q,, as in as in Eq. (10), and over-parameterize time using full parameteriza-
Eq. (11). There are two distinct patterns: decay and growing. This tion as in Eq. (11). A right balance is interesting to warrant a fur-
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Fig. 7. (Left) 40 channels of forgetting due to time elapsed. x axis is A; from 0 to 365 days and y axis is the values of parameterized time in forget gate Q;q, . (Right) 40
channels of the forget gates of a patient in the course of their illness.
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ther investigation. Fig. 7(right) shows the evolution of the forget
gates through the course of illness (2000 days) for a patient.

4.2.2. Diagnoses prediction result

Table 1 reports the Precision@n, for different values of n,. For
diabetes cohort, using plain RNN improves over memoryless Mar-
kov model by 8.8% with n, =1 and by 27.7% with np.q = 3. This
significant improvement demonstrates the role of modeling the
dynamics in sequential data. Modeling irregular timing and inter-
ventions in DeepCare gains a further 2% improvement. For mental
health cohort, Markov model fails to predict the next diagnoses
(9.5% for n, =1). Plain RNN gains 50% improvement in Preci-
sion@1, while and DeepCare demonstrates a 2% improvement in
Precision@1 over RNN.

4.3. Intervention recommendation

We first conducted experiments with DeepCare for intervention
recommendation task. The model predicts the current n, interven-
tions at each admission (see Section 4.3). As the current interven-

tions are now the output of the prediction, DeepCare only read the
current diagnoses and the previous interventions as input. Eq. (8)
now becomes

0; = 6(Wox; + Uohy_1 + b,)

Table 2 reports the results of current intervention prediction.
For all values of n,, RNN consistently outperforms Markov model
by a huge margin for both diabetes and mental health cohort.
DeepCare with sum-pooling outperforms other models in both dia-
betes and mental health datasets.

4.4. Predicting future risk

Next we demonstrate DeepCare on long-range risk prediction
(see Section 3.4.3). For each patient, a discharge is randomly cho-
sen as a prediction point, from which unplanned readmission and
high risk patients within X months will be predicted. A patient is
at high risk at a particular time T if he or she have at least three
unplanned readmissions within X months after time T. We choose

Diabetes

n, = 2 (95%Cls)

1, = 3 (95%Cls)

::::)cliesiln@n,, diagnoses prediction with the confidence interval (Cls), estimated using bootstrap.
Model
np =1 (95%Cls)
Markov 55.1(53.0-57.2)

Plain RNN (Section 2.1)
LSTM (Section 2.1)

DeepCare (time decay)
DeepCare (mean adm.)
DeepCare (sum adm.)
DeepCare (max adm.)

63.9 (62.3-65.4)
65.7 (64.2-67.4)

64.9 (63.4-64.4)
66.2 (64.6-67.7)
65.5 (64.0-67.2)
66.1 (64.6-67.6)

34.1 (32.5-35.7)
58.0 (56.5-59.5)
59.6(58.1-61.1)

58.9 (57.5-60.3)
59.6 (58.1-61.1)
59.3(57.8-60.9)
59.2 (57.7-60.7)

Mental

24.3 (23.2-25.5)
52.0 (50.5-53.4)
53.3 (51.8-54.8)

53.2 (51.8-54.6)
53.7 (52.3-55.2)
53.5 (52.1-55.0)
53.2 (51.7-54.7)

1, = 1(95%Cls)

1, = 2 (95%Cls)

1, = 3(95%Cls)

Markov
Plain RNN (Section 2.1)
LSTM (Section 2.1)

DeepCare (time decay)
DeepCare (mean adm.)
DeepCare (sum adm.)
DeepCare (max adm.)

9.5 (7.9-11.1)
50.7 (48.9-52.4)
51.0(49.1-52.9)

51.3 (49.6-53.0)
52.7 (50.8-54.4)
51.7 (49.9-53.5)
51.5 (49.6-53.3)

6.4(54-7.4)
45.7 (44.1-47.3)
46.4 (44.7-48.1)

46.4 (44.7-48.0)
46.9 (45.3-48.5)
46.2 (44.6-47.9)
46.7 (45.0-48.3)

4.4 (34-5.1)
39.5 (38.2-40.8)
40.0 (38.7-41.3)

39.8 (38.5-41.0)
40.2(39.0-41.4)
39.8 (38.5-41.1)
40.2(38.9-41.5)

Best results are in bold and confidence interval values are in italics.

Table 2

Precision@n, intervention prediction with the confidence interval (Cls), estimated using bootstrap.

Model

Diabetes

1, = 1(95%Cls)

n, = 2 (95%Cls)

1, = 3 (95%Cls)

Markov
Plain RNN (Section 2.1)
LSTM (Section 2.1)

DeepCare (time decay)
DeepCare (mean adm.)
DeepCare (sum adm.)
DeepCare (max adm.)

35.0(32.7-37.4)
77.7 (75.6-79.6)
78.2 (76.3-80.0)

77.0 (74.9-78.9)
77.8 (76.3-79.5)
78.7 (77.1-80.4)
78.4 (76.7-80.1)

17.6 (16.4-18.7)
54.8 (53.7-55.9)
54.7 (53.8-55.7)

54.2(53.1-55.3)
54.9 (53.9-55.9)
55.5 (54.5-56.5)
55.1 (54.1-56.1)

Mental

11.7 (10.9-12.5)
43.1 (42.1-44.2)
42.9 (42.0-43.9)

42.8 (41.7-43.8)
433 (42.3-44.3)
43.5 (42.4-44.6)
43.4(42.3-44.5)

n, =1 (95%Cls)

n, = 2 (95%Cls)

n, = 3(95%Cls)

Markov
Plain RNN (Section 2.1)
LSTM (Section 2.1)

DeepCare (time decay)
DeepCare (mean adm.)
DeepCare (sum adm.)
DeepCare (max adm.)

20.7 (18.2-234)
70.4 (67.6-73.2)
70.9 (68.3-73.3)

70.5(67.6-73.0)
70.3 (67.4-73.0)
71.0 (68.2-73.9)
70.0(67.3-72.6)

12.2(10.5-13.4)
55.4 (53.0-58.0)
55.6 (53.2-58.1)

55.5 (53.0-58.1)
55.7 (53.0-58.5)
55.8 (53.4-58.3)
55.2(52.8-57.9)

8.1(7.0-9.3)
43.7 (41.9-45.6)
44.2(42.5-45.9)

43.9 (42.0-45.7)
44.1 (42.3-46.0)
44.7(43.0-46.4)
43.9 (42.2-45.9)
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X =12 months for diabetes and X = 3 months for mental health.
Results are measured in F1-score.

For comparison, baselines are SVM and Random Forests run-
ning on standard non-temporal features engineering using one-
hot representation of diagnoses and intervention codes, and plain
RNN and LSTM running on sequences of admissions. One-hot rep-
resentation of a code is a vector with the dimension equal to the
vocabulary size, the value at the code index is 1 and all other
indices are 0. Then pooling is applied to aggregate over all existing
admissions for each patient. Two pooling strategies are tested: max
and sum. Max-pooling is equivalent to the presence-only strategy
in [1], and sum-pooling is akin to an uniform convolutional kernel
in [45]. This feature engineering strategy is equivalent to zeros-
forgetting — any risk factor occurring in the past is memorized.

4.4.1. Pretraining and regularization

Table 3 reports the effects of pretraining and regularization on
unplanned readmission prediction in diabetes dataset using Deep-
Care model. Pretraining and regularization improve the results of
all three admission pooling methods. While mean pooling admis-
sion is found to perform well with regularization, max pooling pro-
duces best results with pretraining and sum pooling produces best
results with both approaches. Further details of pretraining and
regularization are given in Appendices A.2 and A.3.

4.4.2. Unplanned readmission prediction results

Table 4 reports the F-scores of predicting unplanned readmis-
sion. For the diabetes cohort, the best baseline (non-temporal) is
Random Forests with sum pooling has a F-score of 71.4% [Row 4].
Using plain RNN with simple logistic regression improves over best
non-temporal methods by a 3.7% difference in 12-months predic-
tion [Row 5, ref: Sections 2.1 and 3.2]. Replacing RNN units by
LSTM units gains 4.5% improvement [Row 6, ref: Section 2.1]. Mov-
ing to deep models by using a neural network as classifier helps
with a gain of 5.1% improvement [Row 7, ref: Eq. (17)]. By carefully
modeling the irregular timing, interventions and recency + multi-
scale pooling, we gain 5.7% improvement [Row 8, ref: Sections
3.3.2 and 3.4.3]. Finally, with parametric time we arrive at 79.0%

Table 3
Effect of pretraining and regularization for unplanned readmission prediction using
DeepCare for diabetes dataset. The results are reported in F-score (%).

Approach Mean adm. Sum adm. Max adm.

None 77.8 77.9 783

Pretrain 78.3 78.6 78.9

Regularization 79.0 78.7 78.6

Both 78.4 78.9 78.8
Table 4

F-score, a 7.6% improvement over the best baselines [Row 9, ref:
Sections 3.3.2].

For the mental health dataset, the best non-temporal baseline is
sum-poolingRandom Forest with result of 67.9%. Plain RNN and
LSTM with logistic regression layer gain 2.6% and 3.8% improve-
ments, respectively. The best model is DeepCare with parametric
time with a gap of 6.8% improvement compared to sum-pooling
Random Forest.

4.4.3. High risk prediction results

In this part, we report the performance of DeepCare on high risk
patient prediction task. Fig. 8 reports the F-score of high risk pre-
diction. RNN improves the best non-temporal model (sum-pooling
SVM) over 10% F-score for both two cohorts. Max-pooling Deep-
Care performs best in the diabetes dataset with nearly 60% F-
score, while sum-pooling DeepCare wins in the mental health
cohort with 50.0% F-score.

5. Discussion
5.1. DeepCare as a model of healthcare memory

DeepCare makes use of embedding to represent the semantics
of diagnoses, interventions and admissions. In theory, this embed-
ding is agnostic to of the task at hand. Our previous work learns
diagnosis and patient embedding [46] using nonnegative restricted
Boltzmann machines [33] and known semantic relations and tem-
poral relations [34]. This method uses global contexts, unlike Deep-
Care, where only local contexts (e.g., next admission) are
considered.

It is interesting to see the performance of the model with differ-
ent pooling methods on embedding vectors. While mean pooling
performs best on diagnoses prediction, sum pooling performs best
on intervention prediction in both datasets. More evaluations and
analyses will be investigated to understand the results. However,
the recording practice may hinder a full explanation. For example,
codes are recorded for billing purposes, hence there are biases and
missing codes. There are also variations between coders. Mean-
pooling may be more robust against these potential noises (due
to law of large number), and this may explain the results in
next-disease prediction (Table 1). However, for treatment recom-
mendation (Table 2), as the treatments are disease-specific, the
sum of diseases (sum-pooling) explains the treatments better.

The memory cells in DeepCare are used to store, update, forget
and manipulate illness experiences over time-stamped episodes.
The inferred experiences are then pooled to reason about the cur-
rent illness states and the future prognosis. Like human memory,
healthcare risk also has a recency effect, that is, more recent events
contribute more towards future risk. In DeepCare, two recency
mechanisms are used. First, through forgetting, recent events in

Results of unplanned readmission prediction in F-score (%) with confidence interval (CIs) within 12 months for diabetes and 3 months for mental health patients. DeepCare 1 is
nnets + mean adm.; DeepCare 2 is [interven. + time decay| + recent.multi.pool. + nnets + mean adm.;DeepCare 3 is [interven. + param. time] + recent.multi.pool. + nnets + mean adm. ()
statistical significance over non-temporal models, and (xx) statistical significance over temporal models.

Model

Diabetes (95%Cls) Mental (95%Cls)

. SVM (max-pooling)
. SVM (sum-pooling)

Random Forests (max-pooling)
Random Forests (sum-pooling)

Plain RNN (Section 2.1) (logist. regress.)
LSTM (Section 2.1) (logit. regress.)

DeepCare 1
DeepCare 2
DeepCare 3

PoN OV AW N

64.0(62.2-65.8)
66.7 (64.9-68.4)

68.3 (66.2-70.5)
71.4 (69.4-73.4)

75.1 (73.4-76.9)
75.9 (74.1-77.7)

76.5* (74.7-78.2)
77.1% (75.4-78.9)
79.0"* (77.2-80.9)

64.7 (62.0-67.4)
65.9 (63.2-68.8)

63.7(61.1-66.6)
67.9 (65.2-70.6)

70.5 (68.0-73.0)
71.7(67.8-73.0)

72.8* (70.3-75.2)
745" (72.2-76.6)
75.4%(73.1-77.5)
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Fig. 8. Result of high risk prediction in F-score (%) within 12 months for diabetes (a) and 3 months for mental health (b). DC is DeepCare. Mean, sum, max are 3 admission

pooling methods.

DeepCare tend to contribute more to the current illness states. The
forgetting gate is influenced by the interventions. While it may
appear that the influence is only in short-term, but it is actually
not because the multiplicative nature of the forget gate, and the
long-range dependency of the memory. For example, if the forget
gate is turned off, then the entire illness history will be forgotten.
Second, multiscale pooling (Section 3.4.3) has weights that decay
over time.

DeepCare can be implemented for existing EMR systems. More
extensive evaluations on a variety of cohorts, sites and outcomes
will be necessary. This offers opportunities for domain adaptations
through parameter sharing among multiple cohorts and hospitals.

5.2. DeepCare in relations with existing models

Although healthcare is inherently episodic in nature, it has been
well-recognized that the entire illness trajectory is important
[14,23]. Nursing illness trajectory model was popularized by
Strauss and Corbin [10], but the model is qualitative and imprecise
in time [19]. Thus its predictive power is limited.

Electronic medical records (EMRs) offer a quantitative alterna-
tive with precise timing of events. However, EMRs are complex —
they reflect the interleaving between the illness processes and care
processes. The timing is irregular — patients only visit hospital
when the illness is beyond a certain threshold, even though the ill-
ness may have been present long before the visit. Existing work
that handles such irregularities includes interval-based extraction
[45], but this method is coarse and does not explicitly model the
illness dynamics.

Capturing disease progression has been of great interest [25,30],
and much effort has been spent on Markov models [24,50] and
dynamic Bayesian networks [35]. However, healthcare is inher-
ently non-Markovian due to the long-term dependencies. For
example, a routine admission with irrelevant medical information
would destroy the effect of severe illness [1], especially for chronic
conditions. Irregular timing and interventions have not been ade-
quately modeled to reflect their roles in disease progression [22].
Irregular-time Bayesian networks [40] offer a promise, but its
power has yet to be demonstrated. Further, assuming discrete
states are inefficient since the information pathway has only
log(K) bits for K states. Our work assumes distributed and contin-
uous states, thus offering a much larger state space.

Deep learning is currently at the center of a new revolution in
making sense of a large volume of data. It has achieved great suc-
cesses in cognitive domains such as speech, vision and NLP [27]. To
date, deep learning approach to healthcare has largely been an
unrealized promise, except for several very recent works
[6,9,28,29,46], where irregular timing is not property modeled. In
[32], time gaps are coded as a discrete word and temporal motifs
are detected using convolutional nets.

5.3. Limitations

We recognize several limitations. First DeepCare has been
designed primarily for coded data (diagnosis, procedure and med-
ication) at the admission level. Numerical data such as blood sugar
levels could be naturally incorporated, however. For time-series
data, we can extract a feature vector per series. Second DeepCare
is more powerful with long trajectories of many episodes, whereas
young patients typically have only one or two admissions. With
short trajectories, other architectures may be more appropriate
[6,32].

The choice of SVM and Random Forest for baselines of readmis-
sion task using one-hot representation of medical codes is naive.
Comparing SVM and Random Forests with non-temporal features
against temporal model (e.g., plain RNN and LSTM) is to emphasize
the effectiveness of modeling the temporal property. There is other
advanced work that can account for the temporality in healthcare,
such as [7,51]. Our DeepCare contributions against these temporal
models are modeling the irregular timing and the interventions.

5.4. Conclusion

In this paper we have introduced DeepCare, an end-to-end deep
dynamic memory neural network for personalized healthcare. It
frees model designers from manual feature extraction. DeepCare
reads medical records, memorizes illness trajectories and care pro-
cesses, estimates the present illness states, and predicts the future
risk. Our framework models disease progression, supports inter-
vention recommendation, and provides prognosis from electronic
medical records. To achieve precision and predictive power, Deep-
Care extends the classic Long Short-Term Memory by (i) embed-
ding variable-size discrete admissions into vector space, (ii)
parameterizing time to enable irregular timing, (iii) incorporating
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interventions to reflect their targeted influence in the course of ill-
ness and disease progression; (iv) using multiscale pooling over
time; and finally (v) augmenting a neural network to infer about
future outcomes. We have demonstrated DeepCare on predicting
next disease stages, recommending interventions, and estimating
unplanned readmission among diabetic and mental health
patients. The results are competitive against current state-of-the-
arts. DeepCare opens up a new principled approach to predictive
medicine.
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