Unified framework for information integration based on information geometry

Masafumi Oizumi\(^{a,b,1}\), Naotsugu Tsuchiya (土谷 尚嗣)\(^{a,c,d}\), and Shun-ichi Amari\(^{a}\)

*RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; \(^{b}\)School of Psychological Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Melbourne VIC 3800, Australia; \(^{c}\)Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne VIC 3800, Australia; and \(^{d}\)Advanced Telecommunications Research Institute International, Hikaridai, Keihanna Science City, Kyoto 619-0288, Japan

Edited by William Bialek, Princeton University, Princeton, NJ, and approved October 26, 2016 (received for review March 8, 2016)

Assessment of causal influences is a ubiquitous and important subject across diverse research fields. Drawn from consciousness studies, integrated information is a measure that defines integration as the degree of causal influences among elements. Whereas pairwise causal influences between elements can be quantified with existing methods, quantifying multiple influences among many elements poses two major mathematical difficulties. First, overestimation occurs due to interdependence among influences if each influence is separately quantified in a part-based manner and then simply summed over. Second, it is difficult to isolate causal influences while avoiding noncausal confounding influences. To resolve these difficulties, we propose a theoretical framework based on information geometry for the quantification of multiple causal influences with a holistic approach. We derive a measure of integrated information, which is geometrically interpreted as the divergence between the actual probability distribution of a system and an approximated probability distribution where causal influences among elements are statistically disconnected. This framework provides intuitive geometric interpretations harmonizing various information theoretic measures in a unified manner, including mutual information, transfer entropy, stochastic interaction, and integrated information, each of which is characterized by how causal influences are disconnected. In addition to the mathematical assessment of consciousness, our framework should help to analyze causal relationships in complex systems in a complete and hierarchical manner.

Significance

Measuring the degree of causal influences among multiple elements of a system is a fundamental problem in physics and biology. We propose a unified framework for quantifying any combination of causal relationships between elements in a hierarchical manner based on information geometry. Our measure of integration, called geometrical integrated information, quantifies the strength of multiple causal influences among elements by projecting the probability distribution of a system onto a constrained manifold. This measure overcomes mathematical problems of existing measures and enables an intuitive understanding of the relationships between integrated information and other measures of causal influence such as transfer entropy. Inspired by the integration of neural activity in consciousness studies, our measure should have general utility in elucidating complex systems.

Author contributions: M.O. and S.A. designed research; M.O. and S.A. performed research; and M.O., N.T., and S.A. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Freely available online through the PNAS open access option.

\(^{1}\)To whom correspondence should be addressed. Email: oizumi@brain.riken.jp.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603583113/-/DCSupplemental.
\(X = \{ x_1, x_2, \ldots, x_N \} \) and \(Y = \{ y_1, y_2, \ldots, y_M \} \), respectively, where \(N \) is the number of elements in the system. Information about \(X \) is integrated by influences among elements and transmitted to \(Y \). The spatiotemporal influences of the system are fully characterized by the joint probability distribution \(p(X, Y) \).

We call \(p(X, Y) \) a “full model.” In a dynamical system characterized by \(p(X, Y) \), there are three different types of influences. Influences between elements at the same time (called equal-time influences) can be quantified by analyzing only the marginal distributions \(p(X) \) or \(p(Y) \). Influences across different time points (called across-time influences) can be further divided into those among different units (cross-influences) and those within the same unit (self-influences). The across-time influences can be quantified from the conditional probability distribution \(p(Y|X) \).

They are also known as causal influences (2, 8), in the sense of causality that is statistically inferred from conditional probability distributions although it does not necessarily mean actual physical causality (23). Here, we use the term causality in this context and focus on quantifying causal influences.

For quantifying causal influences (both self- and cross-influences) among elements of \(X \) and \(Y \), consider approximating the probability distribution \(p(X, Y) \) by another probability distribution \(q(X, Y) \) in which the influences of interest are statistically disconnected. We call \(q(X, Y) \) a “disconnected model.” The strength of influences can be quantified by to what extent the corresponding disconnected model \(q(X, Y) \) can approximate the full model \(p(X, Y) \). The goodness of the approximation can be evaluated by the difference between the two probability distributions \(p(X, Y) \) and \(q(X, Y) \). Minimizing a difference between \(p(X, Y) \) and \(q(X, Y) \) corresponds to finding the best approximation of \(p(X, Y) \) by a disconnected model \(q(X, Y) \). From this reasoning, we propose the first postulate as follows.

Postulate 1. Strength of influences is quantified by a minimized difference between the full model and a disconnected model.

The second postulate is used to define a disconnected model. Consider partitioning the elements of a system into \(m \) parts, \(X = \{ X_1, X_2, \ldots, X_m \} \) and \(Y = \{ Y_1, Y_2, \ldots, Y_m \} \), where \(X_i \) and \(Y_j \) contain the same elements in a system. To avoid the confounds of noncausal influences, we should minimally disconnect only the influences of interest without affecting the rest. To define such a minimal operation of statistically disconnecting influences from \(X_i \) to \(Y_j \), we propose the second postulate as follows.

Postulate 2. A disconnected model, where influences from \(X_i \) to \(Y_j \) are disconnected, satisfies the Markov condition \(X_i \rightarrow \tilde{X}_i \rightarrow Y_j \), where \(\tilde{X}_i \) is the complement of \(X_i \) in \(X \); that is, \(\tilde{X}_i = X - X_i \).

The Markov condition \(X_i \rightarrow \tilde{X}_i \rightarrow Y_j \) means that \(X_i \) and \(Y_j \) are conditionally independent given \(\tilde{X}_i \),

\[
q(X_i, Y_j|\tilde{X}_i) = q(X_i|\tilde{X}_i)q(Y_j|\tilde{X}_i). \tag{1}
\]

Under the Markov condition, there is no direct influence from \(X_i \) on \(Y_j \), given the states of the other elements \(\tilde{X}_i \) being fixed.

The third postulate defines the measure of a difference between the full model and a disconnected model, which is denoted by \(D[p : q] \). There are many possible ways to quantify the difference between two probability distributions (22, 24). We consider several theoretical requirements that the measure of difference should satisfy to have desirable mathematical properties (details in Supporting Information): (i) \(D[p : q] \) should be nonnegative and becomes 0 if and only if \(p = q \). (ii) \(D[p : q] \) should be invariant under invertible transformations of random variables. (iii) \(D[p : q] \) should be decomposable, and (iv) \(D[p : q] \) should be flat. We can prove that the only measure that satisfies all of the theoretical requirements is the well-known Kullback–Leibler (KL) divergence (22). Thus, we propose the third postulate as follows.

Postulate 3. A difference between the full model and a disconnected model is measured by KL divergence.

Taken together, the strength of causal influences from \(X_i \) to \(Y_j \), \(c_i[X_i \rightarrow Y_j] \), is quantified by the minimized KL divergence,

\[
c_i[X_i \rightarrow Y_j] = \min_{q(X, Y)} D_{KL}[p(X, Y)||q(X, Y)], \tag{2}
\]

under the constraint of the Markov condition given by Eq. 1.

A Unified Derivation of Existing Measures. In this section, we derive existing measures from the unified framework and provide the interpretations of them.

Total Causal Influences: Mutual Information. First, consider quantifying the total strength of causal influences between the past and present states. From the operation of disconnections given by Eq. 1, the influences from all elements \(X \) to \(Y \) are disconnected by forcing \(X \) and \(Y \) to be independent,

\[
q(X, Y) = q(X)q(Y). \tag{3}
\]

The disconnected model is graphically represented in Fig. 1A. To introduce the perspective of information geometry, consider a manifold of probability distributions \(\mathcal{M}_F \), where each point in the manifold represents a probability distribution \(p(X, Y) \) (a full model). Consider also a manifold \(\mathcal{M}_I \) where \(X \) and \(Y \) are independent, which means that there are no causal influences between \(X \) and \(Y \). A probability distribution \(q(X, Y) \) (a disconnected model) is represented as a point in the manifold \(\mathcal{M}_I \). In general, the actual probability distribution \(p(X, Y) \) is represented as a point outside the submanifold \(\mathcal{M}_I \) (Fig. 2). The difference between the two probability distributions is quantified by KL divergence,

\[
D_{KL}[p(X, Y)||q(X, Y)] = \sum_{X, Y} p(X, Y) \log \frac{p(X, Y)}{q(X, Y)}. \tag{4}
\]

We consider finding the closest point \(q^* \) to \(p \) within the submanifold \(\mathcal{M}_I \), which minimizes the KL divergence between \(p(X, Y) \) and \(q(X, Y) \) \(\in \mathcal{M}_I \) (Fig. 2). This corresponds to finding the best approximation of \(p(X, Y) \). The minimizer of KL divergence is derived by orthogonally projecting the point \(p(X, Y) \) to the manifold \(\mathcal{M}_I \) according to the projection

\[
\min_q D_{KL}(p||q)
\]
theorem in information geometry (22) (Supporting Information). In the present case, \(p \), the closest point \(q^* \), and any point \(q \) in \(M_t \) form an orthogonal triangle. Thus, the following Pythagorean relation holds: \(D(p||q) = D(p||q^*) + D(q^*||q) \). From the Pythagorean relation, we can find that the KL divergence is minimized when the marginal distributions of \(q^*(X, Y) \) over \(X \) and \(Y \) are both equal to those of the actual distribution \(p(X, Y) \); i.e., \(q^*(X) = p(X) \) and \(q^*(Y) = p(Y) \). The minimized KL divergence is given by

\[
\min_q D_{KL}(p||q) = H(Y) - H(Y|X),
\]

where \(H(Y) \) is the entropy of \(Y \), \(H(Y|X) \) is the conditional entropy of \(Y \) given \(X \), and \(I(X; Y) \) is the mutual information between \(X \) and \(Y \). From the derivation, we can interpret the mutual information as the degree of predictability of the present states given the past states and has been termed as predictive information (7).

Partial Causal Influences: Conditional Transfer Entropy

Next, consider quantifying a partial causal influence from one element to another in the system. From the operation of disconnections in Eq. 1, a partial causal influence from \(x_i \) to \(y_j \) is disconnected by \(q \), satisfying

\[
q(x_i, y_j|\tilde{x}) = q(x_i|\tilde{x})q(y_j|\tilde{x}),
\]

where \(\tilde{x} \) is the past states of all of the variables other than \(x_i \). Under the constraint, the KL divergence is minimized when \(q(X) = p(X), q(y_j|X) = p(y_j|X) \), and \(q(y_j|X, y_i) = p(y_j|X, y_i) \) (Supporting Information). The minimized KL divergence is found to be equal to the conditional transfer entropy,

\[
\min_q D_{KL}(p||q) = H(y_j|\tilde{x}) - H(y_j|X),
\]

where \(TE(x_i \rightarrow y_j|\tilde{x}) \) is the conditional transfer entropy from \(x_i \) to \(y_j \) given \(\tilde{x} \). Thus, we can interpret the conditional transfer entropy as the strength of the partial causal influence from \(x_i \) to \(y_j \).

A Measure of Integrated Information

Integrated information is defined as a measure to quantify the strength of all causal influences among parts of the system. In the case of two units, integrated information should quantify both of the causal influences from \(x_1 \) to \(y_2 \) and from \(x_2 \) to \(y_1 \). It aims to quantify the extent to which the whole system exerts synergistic influences on its future more than the parts of a system independently do and, thus, irreducibility of the whole system into independent parts (16). Accordingly, integrated information is theoretically required that it should be nonnegative and upper bounded by the total causal influences in the whole system, which is the mutual information between the past and present states \(I(X; Y) \) in our framework as shown above (20). Based on Postulates I–3, we uniquely derive a measure of integrated information by imposing the corresponding constraints, which naturally satisfies the theoretical requirement.

Consider again partitioning a system into \(m \) parts. By applying the operation in Eq. 1 for all pairs of \(i \) and \(j \) \((i \neq j)\), we can find that all causal influences among the parts are disconnected by the condition

\[
q(Y_i|X) = q(Y_i|X_i),
\]

To quantize integrated information, we consider a manifold \(M_G \) constrained by \(\Phi_G \).

The manifold \(M_G \) formed by the constraints for integrated information (Eq. 10) includes the manifold \(M_t \) formed by the constraints for mutual information (Eq. 3); i.e., \(M_t \subset M_G \).

Because minimizing the KL divergence in a larger space always leads to a smaller value, \(\Phi_G \) is always smaller than or equal to the mutual information \(I(X; Y) \):

\[
0 \leq \Phi_G \leq I(X; Y).
\]

Thus, \(\Phi_G \), uniquely derived from Postulates I–3, naturally satisfies the theoretical requirements as integrated information.

Comparisons with Other Measures

The Sum of Transfer Entropies

For simplicity, consider a system consisting of two variables (Fig. 1). Conceptually, a measure of integrated information should be designed to quantify the strength of two causal influences from \(x_1 \) to \(y_2 \) and from \(x_2 \) to \(y_1 \) (Fig. 1C). Because each causal influence is quantified by the transfer entropy, \(TE(x_1 \rightarrow y_2|x_2) \) or \(TE(x_2 \rightarrow y_1|x_1) \), one may naively think that the sum of transfer entropies can be used as a valid measure of integrated information and may be the same as \(\Phi_G \). In contrast with this naive intuition, the sum of transfer entropies is not equal to \(\Phi_G \); and moreover, it can exceed the mutual information between \(X \) and \(Y \), which violates the important theoretical requirement as a measure of integrated information (Eq. 12). When there is strong dependence between \(y_1 \) and \(y_2 \), simply taking the sum of transfer entropies leads to overestimation of the total strength of causal influences. An extreme case where such overestimation occurs is when \(y_1 \) and \(y_2 \) are copies of each other.

As a simple example, consider a system consisting of two binary units, each of which takes one of the two states, 0 or 1. Assume that the probability distribution of the past states of \(x_1 \) and \(x_2 \) is a uniform distribution; i.e., \(p(x_1, x_2) = 1/4 \). The
present state of unit 1, \(y_1 \), is determined by the AND operation of the past state \(x_1 \) and \(x_2 \), that is, \(y_1 = 1 \) if both \(x_1 \) and \(x_2 \) are 1, and it becomes 0 otherwise. On the other hand, \(y_2 \) is determined by a “noisy” AND operation where the state of \(y_2 \) flips with certain probability \(r \); i.e., \(p(y_2 = 1) = 1 - r \) if \((x_1, x_2) = (1, 1) \) and \(p(y_2 = 1) = r \) if \((x_1, x_2) = (0, 0), (0, 1), (1, 0) \), where \(r \) determines the noise level. As the noise level of the noisy AND operation decreases, the dependence between \(y_1 \) and \(y_2 \) gets stronger. When there is no noise, i.e., \(r = 0 \), \(y_1 \) and \(y_2 \) are completely equal. We varied the strength of dependence by changing the noise level and calculated transfer entropies and \(\Phi_G \) (see Supporting Information for the computation of \(\Phi_G \) in the binary case) (Fig. 3). As the noise level decreases, the transfer entropy from \(x_1 \) to \(y_2 \) increases but the mutual information stays the same because \(y_2 \), which is a noisy AND gate, does not add any additional information about the input \(X \) above the information already provided by \(y_1 \), which is the perfect AND gate. When the noise level is low and thus the dependence between \(y_1 \) and \(y_2 \) is strong, the sum of transfer entropies exceeds the amount of mutual information.

On the other hand, \(\Phi_G \) never exceeds the amount of mutual information (Fig. 3). \(\Phi_G \) avoids the overestimation by simultaneously evaluating the strength of multiple influences. In contrast, the sum of transfer entropies separately quantifies causal influences by considering only parts of the system. For example, when the transfer entropy from \(x_1 \) to \(y_2 \) is quantified, \(y_1 \) is not taken into consideration, which leads to the overestimation. To accurately evaluate the total strength of multiple influences, we need to take a holistic approach as we proposed to do with \(\Phi_G \). The flaw of the simple sum of transfer entropies illuminates the limitation of the part-based approach and the advantage of the holistic approach.

A related quantity with the sum of transfer entropies has been proposed as causal density (21). Originally, causal density was proposed as the normalized sum of the conditional Granger causality from one element to another (21). Because transfer entropy is equivalent to Granger causality for Gaussian variables (25), the normalized sum of the conditional transfer entropies can be considered as a generalization of causal density. Although a simple sum of Granger causality or transfer entropies is easy to evaluate and would be useful for approximately evaluating the total strength of causal influences, we need to be careful about the problem of overestimation.

Stochastic Interaction. Another measure, called stochastic interaction (9), was proposed as a different measure of integrated information (19). In the derivation of stochastic interaction, Aoyagi et al. (9) considered a manifold \(M_S \) where the conditional probability distribution of \(Y \) given \(X \) is decomposed into the product of the conditional probability distributions of each part (Fig. 1D):

\[
q(Y|X) = \prod_{i=1}^{m} q(Y_i|X_i). \tag{13}
\]

This constraint satisfies the constraint for the integrated information (Eq. 10). Thus, \(M_S \subset M_G \). In addition to that, this constraint further satisfies conditional independence among the present states of parts given the past states in the whole system \(X \):

\[
q(Y|X) = \prod_{i=1}^{m} q(Y_i|X_i). \tag{14}
\]

This constraint corresponds to disconnecting equal-time influences among the present states of the parts given the past states of the whole in addition to across-time influences (Fig. 1D). On the other hand, the constraint in Eq. 10 corresponds to disconnecting only across-time influences (Fig. 1C).

The KL divergence is minimized when \(q(X) = p(X) \) and \(q(Y_i|X_i) = p(Y_i|X_i) \) (9). The minimized KL divergence is equal to stochastic interaction \(SI(X; Y) \):

\[
\min_{q} D_{KL}[p||q] = \sum_{i} H(Y_i|X_i) - H(Y|X), \tag{15}
\]

\[
= SI(X; Y). \tag{16}
\]

In contrast to the manifold \(M_G \) considered for \(\Phi_G \), the manifold \(M_S \) formed by the constraints for stochastic interaction (Eq. 13) does not include the manifold \(M_I \) formed by the constraints for the mutual information between \(X \) and \(Y \) (Eq. 3). This is because not only causal influences but also equal-time influences are disconnected in \(M_S \) (Fig. 1D). Stochastic interaction can therefore exceed the total strength of causal influences in the whole system, which violates the theoretical requirement as a measure of integrated information (Eq. 12). Notably, stochastic interaction can be nonzero even when there are no causal influences, i.e., when the mutual information is 0 (20). To summarize, stochastic interaction does not purely quantify causal influences but rather quantifies the mixture of causal influences and simultaneous influences.

Analytical Calculation for Gaussian Variables

Although we cannot derive a simple analytical expression for \(\Phi_G \) in general, it is possible to derive it for Gaussian variables. In this section, we analytically compute \(\Phi_G \) when the probability distribution of a system \(p(X, Y) \) is Gaussian. We also show a close relationship between the proposed measure of integrated information \(\Phi_G \) and multivariate Granger causality. Consider the following multivariate autoregressive model,

\[
Y = AX + E, \tag{17}
\]

where \(X \) and \(Y \) are the past and present states of a system, \(A \) is the connectivity matrix, and \(E \) is Gaussian random variables with mean 0 and covariance matrix \(\Sigma(E) \), which are uncorrelated over time. The multivariate autoregressive model is the generative model of a multivariate Gaussian distribution. Regarding
For comparison, mutual information, transfer entropy, and stochastic interaction are given as \(I(X; Y) = \frac{1}{2} \log \frac{|X|}{|Y|} \), \(TE(x_t \to y_{t+1} | x_t) = \frac{1}{2} \log \frac{|E_{ij}|}{|E_{ii}|} \), \(SI(X; Y) = \frac{1}{2} \log \frac{|\Sigma(E)_{ij}|}{|\Sigma(E)|} \), where \(\Sigma(E)_{ij} \) \((j = 1, 2)\) is the covariance of the conditional probability distribution \(p(y_{t+1} | x_t) \).

Hierarchical Structure

We can construct a hierarchical structure of the disconnected models and then use it to systematically quantify all possible combinations of causal influences (28). For example, in a system consisting of two elements, there are four across-time influences, \(x_1 \to y_1, x_1 \to y_2, x_2 \to y_1, \) and \(x_2 \to y_2 \), which are denoted by \(T_{11}, T_{12}, T_{21}, \) and \(T_{22} \), respectively. Although we consider only the cross-influences, \(T_{12} \) and \(T_{21} \), for transfer entropy and integrated information, we can also quantify self-influences \(T_{11} \) and \(T_{22} \) by imposing the corresponding constraints, such as \(q(y_1 | x_1, x_1) = q(y_1 | x_2) \) and \(q(y_2 | x_1, x_2) = q(y_2 | x_2) \), respectively. A set of all possible disconnected models forms a partially ordered set with respect to KL divergence between the full and the disconnected models (Fig. 5). If a given disconnected model is related to another one with a removal or an inclusion of an influence, the two models are connected by a line in Fig. 5. From Bottom to Top in Fig. 5, information loss increases as more influences are disconnected. Note that there is no ordering relationship between the disconnected models at the same level of the hierarchy. In Fig. 5, Top, all four influences are disconnected, and thus information loss is maximized, which corresponds to the mutual information \(I(X; Y) \). The hierarchical structure generalizes related measures mentioned in this article and provides a clear perspective on the relationship among different measures.

Discussion

In this paper, we proposed a unified framework based on information geometry, which enables us to quantify multiple influences without overestimation and confounds of noncausal influences. With the framework, we uniquely derived the measure of integrated information, \(\Phi_G \). Moreover, our framework enables the complete description of causal relationships within a system by quantifying any combination of causal influences in a
hierarchical manner as shown in Fig. 5. We expect that our framework can be used in diverse research fields, including neuroscience (29, 30), where network connectivity analysis has been an active research topic (31), and in particular consciousness researchers (32–34) because information integration is considered to be a key prerequisite of conscious information processing in the brain (10, 11).

To apply the measure of integrated information in real data, we need to resolve several practical difficulties. First, the computational costs increase exponentially with the system size. Thus, some way of approximating data is necessary. As we showed in this paper, the Gaussian approximation enables us to analytically compute integrated information, allowing us to compute integrated information in a large system (Eqs. 20–23). However, in real world systems, including brains, nonlinearity can be often significant and the Gaussian approximation may poorly fit to data. In such cases, transforming time series data into a sequence of discrete symbols can result in more accurate approximations (34, 35). Our measure of integrated information can be computed in such discrete distributions as shown in Supporting Information. Second, we need to find an appropriate partition of a system, which is an important problem in IIT (16). The computational costs for finding the optimal partition also exponentially increase. To overcome this difficulty, some effective optimization method needs to be used, possibly methods from discrete mathematics.

From a theoretical perspective, we could consider replacing Postulates 2 and 3 with different ones as interesting future research. As for Postulate 2, which defines the operation of disconnecting causal influences, we can use the intervention formalism (23, 36), which quantifies causal influences based on mechanisms of a system rather than observation of the system. As for Postulate 3, which defines the difference between the full model and a disconnected model, we can replace the KL divergence with other measures (24), such as the optimal transport distance, a.k.a. earth mover’s distance, which is considered to be important in IIT (17) and also has been shown to be useful in statistical machine learning (37). Our framework based on information geometry can be generally used for deriving different measures of causal influences from such different postulates and for analyzing the different geometric structures induced by them.

ACKNOWLEDGMENTS. We thank Charles Yokoyama, Matthew Davidson, and Dori Cohen for helpful comments on the manuscript. M.T. was supported by a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (26870860). N.T. was supported by the Future Fellowship (FT12006191) and the Discovery Project (DP130101994) from the Australian Research Council. M.O. and N.T. were supported by CREST, Japan Science and Technology Agency.