Development and Characterization of Pepducins as G_s-biased Allosteric Agonists**

Richard Carr III†, Yang Du†, Julie Quoyer†, Reynold A. Panettieri, Jr.†, Jay M. Janz**1, Michel Bouvier‡, Brian K. Kobilka§, and Jeffrey L. Benovic‡

From the †Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, the ‡Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, the §Department of Biochemistry and Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, the ¶Department of Medicine, Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and **Anchor Therapeutics, Cambridge, Massachusetts 02139

Background: A G_s-biased agonist for the β_2-adrenergic receptor (β_2AR) has yet to be reported.

Results: A screen of β_2AR pepducins identified receptor-dependent and receptor-independent pepducins that selectively activate G_s.

Conclusion: Receptor-dependent pepducins promote a G_s-biased conformation of the β_2AR, whereas receptor-independent pepducins directly activate G_s.

Significance: G_s-biased pepducins provide a valuable tool for the continued study of β_2AR function and may prove useful as next-generation asthma therapeutics.

The β_2-adrenergic receptor (β_2AR) is a prototypical G protein-coupled receptor that mediates many hormonal responses, including cardiovascular and pulmonary function. β-Agonists used to combat hypercontractility in airway smooth muscle stimulate β_2AR-dependent cAMP production that ultimately promotes airway relaxation. Chronic stimulation of the β_2AR by long acting β-agonists used in the treatment of asthma can promote attenuated responsiveness to agonists and an increased frequency of fatal asthmatic attacks. βAR desensitization to β-agonists is primarily mediated by G protein-coupled receptor kinases and β-arrestins that attenuate receptor-G_s coupling and promote β_2AR internalization and degradation. A biased agonist that can selectively stimulate G_s signaling without promoting receptor interaction with G protein-coupled receptor kinases and β-arrestins should serve as an advantageous asthma therapeutic. To identify such molecules, we screened ~50 lipitated peptides derived from the intracellular loops of the β_2AR, known as pepducins. This screen revealed two classes of G_s-biased pepducins, receptor-independent and receptor-dependent, as well as several β-arrestin-biased pepducins. The receptor-independent G_s-biased pepducins operate by directly stimulating G protein activation. In contrast, receptor-dependent G_s-biased pepducins appear to stabilize a G_s-biased conformation of the β_2AR that couples to G_s but does not undergo G protein-coupled receptor kinase-mediated phosphorylation or β-arrestin-mediated internalization. Function studies in primary human airway smooth muscle cells demonstrate that G_s-biased pepducins are not subject to conventional desensitization and thus may be good candidates for the development of next-generation asthma therapeutics. Our study reports the first G_s-biased activator of the β_2AR and provides valuable tools for the study of β_2AR function.

The β_2-adrenergic receptor (β_2AR)3 is a G protein-coupled receptor (GPCR) responsible for hormonal signal transduction in functions such as cardiac muscle contraction, airway smooth muscle relaxation, and blood vessel dilation. The β_2AR has served as a prototypical model for understanding GPCR signaling and regulation (1). Crystallographic and biophysical characterization has provided insight into the structure of the basal state of the receptor as well as the conformational changes associated with agonist-stimulated receptor activation and G protein binding (2–8). A diverse set of ligands for the β_2AR have also been developed that are now mainstays in the clinic (9–13). β-Antagonists have been used extensively in the treatment of hypertension, and some inverse agonists such as carvedilol have been used in the treatment of congestive heart failure (11, 13). β_2AR agonists, including salbutamol and formoterol, are com-

* This work was supported, in whole or in part, by National Institutes of Health Grants R37 GM047417 and R01 GM044944 (to J. L. B.), P01 HL11447 (to J. L. B. and R. A. P.), P30 ES013508 (to R. A. P.), and T32 GM100836 (to R. C.). This work was also supported by Canadian Institute for Health Research Grants R37 GM047417 and R01 GM044944 (to J. L. B.), P01 HL11447 (to J. L. B. and R. A. P.), P30 ES013508 (to R. A. P.), and T32 GM100836 (to R. C.). This work was also supported by Canadian Institute for Health Research Grant CIHR-1113 (to M. B.).

† This article was selected as a Paper of the Week.

‡ Present address: Pfizer Rare Disease Research Unit, Cambridge, MA 02140.

§ To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th St., 926 BLSB, Philadelphia, PA 19107. Tel.: 215-503-4607; E-mail: jeffrey.benovic@jefferson.edu.

3 The abbreviations used are: β_2AR, β_2-adrenergic receptor; GPCR, G protein-coupled receptor; GRK, G protein-coupled receptor kinase; G_s, G-protein coupled; ASM, airway smooth muscle; CXCR, CXC chemokine receptor; ICL, intracellular loop; IBMX, 3-isobutyl-1-methyloxanthine; BRET, bioluminescence resonance energy transfer; RLucII, Renilla reniformis luciferase II; β_2AR, β_2-adrenergic receptor; EP, β-adrenergic receptor; E2 receptor; DDM, N-decyl-β-maltoside; DOPC, dimyristoyl phosphatidylcholine; CHAPS, 3-(3-cholamidopropyl)dimethylammonio)-2-hydroxy-1-propanesulfonate; CHS, cholesterol hemisuccinate; GTP·S, guanosine 5’-O-[(1-thiotri)phosphate; mbB, monobromobimane; TM, transmembrane domain; DPBS, Dulbecco’s phosphate-buffered saline; HBSS, Hanks’ buffered saline solution.
monly prescribed drugs for the treatment of asthma and chronic obstructive pulmonary disease (9, 12).

Asthma is a chronic condition by which airway inflammation and bronchoconstriction promote peak airflow restriction. Bronchotone, determined by the contractile state of airway smooth muscle (ASM), is the product of differential signaling through a number of GPCRs. These include the β2-AR, which is a critical regulator of airway smooth muscle relaxation. β-Agonists stimulate Gs activation leading to an increase in intracellular cAMP and ASM relaxation (9). Iterative cAMP production, whereas a receptors-stimulated Gs activation leading to an increase in intracellular cAMP without the recruitment of G13, GRKs and β2-AR desensitization (17).

Traditional β-agonists operate through the extracellular ligand-binding pocket to propagate intracellular signaling (1). One strategy to potentially modulate β-AR interaction with G proteins, GRKs, and β-arr2 is to target the intracellular surface of the receptor using pepducins. Pepducins are cell-penetrating palmitoylated peptides derived from the intracellular loops of a GPCR (18). Pepducins have been generated from many GPCRs, including PAR1, PAR2, PAR4, sphingosine 1-phosphate receptor-3, formyl peptide receptor 2, melanocortin-4 receptor, Sphingosine, CXCX1, CXCX2, and CXCX4, and have been shown to function as allosteric agonists or antagonists of their cognate receptor (19–25). A recent study also found that pepducins might function in a biased manner as the CXCX4 pepducin ATI-2341 selectively promoted interaction with the G1 over G13, GRKs and β-arr2 that are typically associated with CXCX4 stimulation (26). Although the mechanism of action is unclear, pepducins are proposed to directly interact with a receptor and allosterically modulate receptor signaling (18).

In this study, we focused on determining whether pepducins derived from the β2-AR could function as biased modulators. We identified multiple Gαs-biased pepducins that stimulated cAMP production without the recruitment of β-arrs to the β2-AR as well as several β-arrs-biased pepducins. The Gαs-biased pepducins did not promote β2-AR desensitization, GRK-mediated phosphorylation, or β-arrs-mediated internalization over an extended time course. These pepducins fell into two classes with receptor-independent pepducins promoting cAMP production by direct activation of Gαs, whereas receptor-dependent pepducins induced a β2-AR conformation that selectively activated Gαs. These pepducins are the first reported Gαs-biased molecules operating through the β2-AR and show promise in the development of next generation asthma therapeutics.

EXPERIMENTAL PROCEDURES

Pepducin Synthesis—A pepducin library was generated from sequences derived from intracellular loops 1–3 (ICL1–3) of the human β2-AR. Pepducin synthesis was performed by a standard Fmoc (N-(9-fluorenyl)methoxycarbonyl) solid-phase protocol with an N-terminal palmitoylation and C-terminal amidation on each peptide. >98% purity was accomplished by C18 reverse-phase chromatography (JPT Peptide Technologies, Peptide 2.0).

cAMP Measurement—HEK 293 cells were grown to confluency in 24-well plates at 37 °C in Dulbecco’s modified Eagle’s medium (DMEM, Cellgro) supplemented with 10% fetal bovine serum (FBS). Cells were stimulated with 1 μM isoproterenol, 5 μM salbutamol, or 10 μM pepducin for various times at 37 °C in the presence of 0.5 mM 3-isobutyl-1-methylxanthine (IBMX). For the initial screen of all ICL1 and ICL3-1 to ICL3-11 pepducins, cells were lysed by adding 270 μl of 0.1 M HCl followed by 20 min at room temperature on an orbital shaker. Lysates were cleared by centrifugation at 10,000 × g for 10 min. cAMP levels were measured using the cyclic AMP EIA kit following the manufacturer’s instructions (Cayman Chemical). In all other cAMP measurements, stimulation was stopped on ice by aspirating the media, adding 500 μl of ice-cold ethanol, and incubating for 2 h at room temperature on an orbital shaker. Samples were lyophilized until dry and resuspended in 300 μl of assay buffer (50 mM sodium acetate, pH 6.2). cAMP was measured by radioimmunoassay using an anti-cAMP antibody (a generous gift from Dr. Mario Ascoli, University of Iowa) and 125I-labeled cAMP tracer (Biomedical Technologies, Inc., and PerkinElmer Life Sciences) as described (27).

**Analysis of β-Arrestin2 Binding to the β2-AR Using Bioluminescence Resonance Energy Transfer (BRET)—β-Arrestin2 recruitment was monitored following the protocol of Hamdan et al. (28). HEK 293 cells were grown in 6-well plates to 80% confluence in DMEM with 10% FBS. Cells were co-transfected with pcDNA3-β-arrestin2-GFP10 (energy acceptor) and pcDNA3-β2-AR-RLucII (energy donor) using Lipofectamine 2000 (Invitrogen) for 4 h in serum-free OptiMEM (Invitrogen). Cells were allowed to recover overnight in growth media and then replated in poly-L-ornithine (Sigma)-coated opaque 96-well plates (Optiplate, PerkinElmer Life Sciences) at a density of 100,000 cells per well. After overnight incubation at 37 °C in DMEM with high glucose (Invitrogen), cells were washed three times with PBS plus glucose (Invitrogen) and incubated with PBS plus glucose. Coelenterazine 400a was added to 2.5 μM final concentration and incubated at 37 °C for 2 min. BRET was measured at 510 nm following addition of β-agonist or pepducin using a Tecan Infinite F500 microplate reader. BRET ratios were calculated as the light emitted by the GFP10 acceptor (510 nm) divided by the total light emitted by the donor RLucII (400 nm). ΔBRET was calculated by subtracting the BRET ratio of the unstimulated trials from the stimulated trials.

Detection of β2-AR Phosphorylation Using Phosphospecific Antibodies—HEK 293 cells stably overexpressing FLAG-β2-AR (a generous gift from Dr. Mark von Zastrow, University of Cal-
Development of G_{s}-biased Pepducins

ifornia, San Francisco) were grown to confluency in 10-cm dishes at 37 °C in DMEM supplemented with 10% FBS and 500 μg/ml G418 sulfate (Cellgro). Cells were stimulated with 1 μM isoproterenol, 5 μM salbutamol, or 10 μM pepducin for given time points at 37 °C. Media were removed, and cells were washed on ice three times with PBS (Cellgro). Cells were lyed on ice by the addition of 500 μl of lysis buffer (20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 2 mM EDTA, 1% Triton X-100, 1 Complete mini protease inhibitor tablet, and 1 PhosSTOP phosphatase inhibitor tablet (Roche Applied Science)). Cells were scraped, briefly sonicated, and cleared by centrifugation at 1000 × g for 10 min. Equal protein concentrations were immunoprecipitated using rabbit polyclonal anti-FLAG (Sigma) and protein A-agarose beads (Roche Applied Science) for the detection of PKA phosphorylation. For detection of GRK phosphorylation, cell lysates were immunoprecipitated using mouse monoclonal M2 anti-FLAG (Sigma) and protein A-agarose PLUS beads (Santa Cruz Biotechnology). Samples were incubated overnight at 4 °C and briefly centrifuged to pellet beads from immunodepleted lysate. Pelleted beads were washed with lysis buffer three times, and the washed pellets were resuspended in 60 μl of 2× Laemmli buffer. Immunoprecipitated proteins were separated by SDS-PAGE on a 10% polyacrylamide gel and receptor phosphorylation was analyzed by Western blotting. GRK phosphorylation was detected using a phosphospecific antibody (1:500) against β$_2$AR phosphoserines 355 and 356 (Ser(P)$_{355/6}$) (Santa Cruz Biotechnology). Equal receptor loading was confirmed by blotting using mouse monoclonal M2 anti-FLAG (Sigma) and protein A-agarose beads (Santa Cruz Biotechnology). Samples were incubated with rabbit polyclonal anti-FLAG (Sigma) for 1 h at 1:1000 dilution (29). Equal receptor loading was confirmed by blotting using mouse monoclonal M2 anti-FLAG (Sigma) at 1:1000. Chemiluminescence was measured using Pico chemiluminescent substrate (Thermo Scientific).

Receptor Internalization—HEK 293 cells stably overexpressing FLAG-β$_2$AR were seeded into 24-well plates precoated with poly-l-lysine (Sigma) at a density of 150,000 cells per well and grown at 37 °C in DMEM supplemented with 10% FBS and 500 μg/ml G418 sulfate (Cellgro). At confluence, cells were washed once with warm DMEM and then treated with 1 μM isoproterenol, 5 μM salbutamol, or 10 μM pepducin in complete media for given time points at 37 °C. The media were removed, and cells were fixed on ice with 3.7% paraformaldehyde in Tris-buffered saline (TBS) for 10 min. Cells were washed twice with TBS and blocked for 45 min with blocking buffer (TBS, 1% BSA, and 1 mM CaCl$_2$) at room temperature. Cell surface FLAG-β$_2$AR was detected by ELISA as described previously (30). Briefly, cells were incubated with rabbit polyclonal anti-FLAG (Sigma) for 1 h at room temperature, anti-rabbit HRP secondary antibody (Vector Laboratories) for 1 h at room temperature, and then washed twice with cold blocking buffer, developed by adding a one-step 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) substrate (Thermo Scientific), and incubated at room temperature for 25 min. 100 μl of the developed solution was transferred to a 96-well plate, and the absorbance was measured on a plate reader (Bio-Rad) at 405 nm.

Functional Desensitization—Primary human airway smooth muscle cells were isolated from donors with no chronic illness or medication use. ASM cell cultivation and characterization were described previously (31, 32). Passages 4–7 ASM cells were maintained in Ham’s F-12 medium supplemented with 10% FBS. Use of human ASM cells does not constitute research of human subjects because all donor tissue was harvested anonymously and de-identified. For assays measuring total cAMP, primary human ASM cells were seeded into 24-well plates precoated with poly-l-lysine in DMEM and 10% FBS and grown to confluence at 37 °C. Media were removed, and wells were washed twice with Dulbecco’s phosphate-buffered saline (DPBS, Cellgro), and 500 μl of DPBS with calcium and magnesium was added to each well. Cells were then treated with 1 μM isoproterenol, 5 μM salbutamol, or 10 μM pepducin for given time points. Stimulation was stopped on ice by adding 750 μl of ice-cold ethanol and incubating for 2 h at room temperature on an orbital shaker. cAMP was measured using the 125I-labeled cAMP radioimmunoassay protocol described above. For assays measuring intracellular cAMP levels, the same procedure was performed as above except the DPBS was removed before the addition of ice-cold ethanol.

Pepducin Specificity—CHO-K1 cells were seeded into 6-well plates and grown to 60% confluence at 37 °C in Ham’s F-12 media supplemented with 10% FBS. CHO-K1 cells were transfected with pcDNA3-FLAG-β$_2$AR (a generous gift from Dr. Robert Lefkowitz, Duke University), pcDNA3-FLAG-β$_2$AR and pcDNA3-FLAG-EP$_2$R (a generous gift from Dr. Raymond Penn, Thomas Jefferson University), or pcDNA3 for 4 h with Lipofectamine 2000 (Invitrogen). The cells were allowed to recover for 48 h and then treated with 1 μM isoproterenol, 10 μM PGE$_2$, or 10 μM pepducin for 10 min in the presence of IBMX. Stimulation was stopped on ice by aspirating the media, adding 500 μl of ice-cold ethanol, and incubating for 2 h at room temperature on an orbital shaker. cAMP was measured by the radioimmunoassay described above.

Expression and Purification of G_s Heterotrimer—Bovine Go$_s$ short, His$_{6}$-rat Gβ$_{1}$, and bovine Gγ$_2$ were expressed in High Five insect cells (Expression Systems Inc.) grown in ESF921 media (Expression Systems Inc.). Cultures were grown to a density of 3 million cells/ml and then infected with two separate viruses containing the Go$_s$ and Gβγ cDNAs at a 1:1 multiplicity of infection. After 48 h of incubation, the infected cells were harvested by centrifugation and resuspended in 200 ml of lysis buffer (20 mM HEPES, pH 7.5, 100 μM MgCl$_2$, 5 mM β-mercaptoethanol, 10 μM GDP, 2.5 μg/ml leupeptin, and 160 μg/ml benzamidine) per liter of cell culture for 30 min. lysates were centrifuged for 10 min at 18,000 × g and then resuspended in 100 ml of solubilization buffer (20 mM HEPES, pH 7.5, 100 mM NaCl, 1% sodium cholate, 0.05% dodecylmaltoside (DDM), 5 mM MgCl$_2$, 5 μl of calf intestinal alkaline phosphatase (Sigma), 5 mM β-mercaptoethanol, 10 μM GDP, 5 mM imidazole, 2.5 μg/ml leupeptin, and 160 μg/ml benzamidine). Samples were Dounce-homogenized for 20 strokes and stirred for 1 h at 4 °C followed by centrifugation at 18,000 × g for 30 min. 2 ml of
Development of G_s-biased Pepducins

We also evaluated G_s activation in lipid bicelles. Purified G_s (18 μm) in 3% 3:1 dimyristoyl phosphatidylincholine (DOPC)/CHAPSO bicelles with 1.13 mM CHS, 20 mM HEPES, pH 7.5, and 100 mM NaCl was incubated in the presence or absence of β_2AR (1.26 μm) for 2 h on ice to allow protein incorporation into the lipid bicelles. 2 μl of reconstituted β_2AR-G_s or reconstituted G_s alone was diluted 200-fold in 20 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM MgCl$_2$, and 38.5 nm [35S]GTPγS (Perkin Elmer Life Sciences). 20-μl reactions were initiated by the addition of 1 μm isoproterenol or 10 μm pepducin and incubated for the indicated times at room temperature. Non-pepducin trials included 0.05% DMSO. Bound [35S]GTPγS was collected by rapid filtration on GF/B filters (Whatman), washed four times with 4 ml of cold GTPγS wash buffer, and analyzed by liquid scintillation counting.

Analysis of G_α_s Engagement to the β_2AR Using BRET—G_α_s interaction with the β_2AR was assayed by BRET using a β_2AR construct tagged with GFP10 at the C terminus of the receptor and G_α_s constructs tagged with RLucII either at the N terminus (RLucII-G_α_s) or at residue 67 of G_α_s (G_α_s-67-RLucII). For the G_α_s-67-RLucII studies, HEK 293T cells were cultured in DMEM supplemented with 10% FBS, 0.2 units/ml penicillin, 100 μg/ml streptomycin (Wisent Inc.) and were seeded in 6-well plates at 600,000 cells/well 24 h before transfection. Transient transfections with β_2AR-GFP10 and G_α_s-67-RLucII in the presence of untagged G_β_1 and G_γ_2 were performed using linear polyethyleneimine, 25-kDa (Polysciences, Inc.), as transfecting agent at a 3:1 ratio of polyethyleneimine/DNA. Two h after transfection, culture medium was replaced with fresh media, and the cells were then maintained in culture for 48 h before BRET experiments. The expression level of the acceptor was determined as total fluorescence, using a FlexStationII fluorometer (Molecular Devices) with 400-nm excitation and 510-nm emission filters. The expression level of the donor was measured as total luminescence, using a Mithras LB940 Multimode Microplate Reader (Berthold Technologies), following the addition of 2.5 μm coelenterazine 400a. Cells were washed once with Hanks’ balanced salt solution (Invitrogen) containing 20 mM HEPES (HBSS) and detached in HBSS supplemented with 0.1% BSA (HBSS/BSA) (Sigma) at room temperature. 100,000 cells/well were then distributed in a white 96-well microplate (Greiner). Cells were then treated with or without different concentrations of ligand, and BRET values were collected using the Mithras LB940 Reader equipped with BRET400-GFP10 filter set (acceptor, 515 ± 20-nm, and donor, 400 ± 70-nm filters), following the addition of coelenterazine 400a. BRET signals were determined as the ratio of the light emitted by the acceptor over the donor. The specific BRET signal (net BRET) was determined by subtracting the background signal detected in cells transfected with the luciferase donor alone from the BRET obtained in cells expressing both energy donor and acceptor. The ligand-promoted BRET signal (ΔBRET) was calculated by subtracting the BRET values obtained in the vehicle condition from the one measured in the presence of ligand.

For the RLucII-G_α_s studies, HEK 293 cells were grown in 6-well plates to 80% confluence in DMEM with 10% FBS. Cells
Development of G_s-biased Pepducins

were co-transfected with pcDNA3.1-RLucII-α_s (donor) and pGFP-β_2AR-GFP10 (acceptor) using Lipofectamine 2000 (Invitrogen) for 4 h in serum-free OptiMEM (Invitrogen). Cells were allowed to recover overnight in growth media and then replated in poly-L-ornithine (Sigma)-coated opaque 96-well plates (Optiplate, PerkinElmer Life Sciences) at a density of 100,000 cells per well. After overnight incubation at 37 °C in DMEM with high glucose (Invitrogen), cells were washed three times with PBS plus glucose (Invitrogen) and incubated with PBS plus glucose. Coelenterazine 400a was added to 2.5 μM final concentration and incubated at 37 °C for 2 min. BRET was measured at 510 nm following addition of 1 μM isoproterenol or 10 μM pepducin using a Tecan Infinite F500 microplate reader. BRET ratios were calculated as the light emitted by the GFP10 acceptor (510 nm) divided by the total light emitted by the RLucII donor (400 nm). ΔBRET was calculated by subtracting the BRET ratio of the unstimulated trials from the stimulated trials.

$[^{125}I]$Iodocyanopindolol Binding—HEK 293 cells stably expressing FLAG-β_2AR were isolated and washed three times with assay buffer (HBSS with calcium and magnesium, 0.1% BSA, pH 7.4), diluted to 50,000 cells/ml, and incubated with 1 nM $[^{125}I]$Iodocyanopindolol in the presence or absence of pepducin or propranolol for 1 h at 25 °C. Incubations were terminated by the addition of 4 ml of cold assay buffer and rapid filtration on GF/B filters. Filters were washed four times with 4 ml of cold assay buffer, and $[^{125}I]$Iodocyanopindolol binding was quantitated by gamma emission counting.

Mono bromobimane Labeling of β_2AR—Purified FLAG-β_2AR and 20 μM monobromobimane (Invitrogen) were incubated for 1 h on ice for labeling. The monobromobimane-labeled receptor was then purified by affinity chromatography using alprenolol-Sepharose as described previously to select functional receptors (4). 300 μM alprenolol was used to elute the receptor to a tandemly linked M1 FLAG column. The column was washed with HMS-CHS buffer for removal of alprenolol to prepare unliganded receptor. The receptor was then eluted from M1 resin with HMS-CHS buffer supplemented with 5 mM EDTA, 200 μg/ml free FLAG peptide. Size-exclusion chromatography on a Superdex-200 column (GE Healthcare) equilibrated in HMS-CHS buffer was used to increase the purity. The receptor was concentrated to 125 μM with purity greater than 95% as assessed by SDS-PAGE.

Analysis of Mono bromobimane-β_2AR Fluorescence—Mono bromobimane-labeled β_2AR (mBB-β_2AR) was incorporated into 2% DOPC/CHAPSO (3:1) with 1.13 mM CHS lipid bicelles by incubating for 30 min on ice. Lipid bicelles containing 50 mM mBB-β_2AR were incubated for 15 min at 25 °C in 20 mM HEPES, pH 7.5, 100 mM NaCl with isoproterenol or pepducin. Isoproterenol samples also contained 0.1 or 0.5% DMSO to account for the pepducin solvent. In experiments using Gs, 200 nM Gs was incubated for 20 min at 25 °C alone or post-agonist addition depending on the experimental setup. mBB-β_2AR fluorescence was measured by excitation at 370 nm and recording emission from 430 to 490 nm at 1-nm increments with 1 nm s⁻¹ integration on a Spex FluoroMax-3 spectrofluorometer (Jobin Yvon Inc.) in photon counting mode set at a 4-nm emission bandwidth pass. Background fluorescence contributed by the assay buffer and ligand was subtracted from the experimental spectra.

RESULTS

Characterization of a Library of β_2AR Pepducins—Recent studies have shown that a pepducin from the first intracellular loop (ICL) of CXCR4 can effectively activate G_s without promoting appreciable coupling to G_{13}, GRKs, or β-arr2s (26). In an effort to identify G_s-biased pepducins, we synthesized a library of 51 pepducins corresponding to sequences derived from ICL1, ICL2, and ICL3 of the human β_2AR, a GPCR that primarily couples to G_s (Fig. 1). These pepducins were then screened for their ability to promote cAMP production in HEK 293 cells. This screen yielded multiple pepducins that promote cAMP production with four demonstrating efficacy comparable with the partial agonist salbutamol (Fig. 2A). The majority of these pepducins were from the proximal portion of ICL3 (ICL3-2, ICL3-7, and ICL3-8), and others were from the central region of ICL3 (ICL3-9) or from ICL1 (ICL1-15).

To gain a more complete understanding of the diverse signaling profiles from the β_2AR pepducin library, all pepducins were also analyzed for their ability to promote β-arrestin recruitment to the β_2AR using BRET. This assay involved treating HEK 293 cells co-expressing a β_2AR-Renilla reniformis luciferase II fusion (β_2AR-RLucII) and GFP10-tagged β-arrestin2 with the various pepducins (Fig. 2B) (28). Several ICL1-derived pepducins effectively promoted β-arrestin2 interaction with the β_2AR, whereas ICL2 and ICL3 pepducins had no effect (Fig. 2C and data not shown). Thus, multiple pepducins derived from ICL3 activate cAMP accumulation without promoting β-arrestin binding to the β_2AR and therefore appear to function as G_s-biased allosteric agonists, whereas several pepducins from ICL1 (ICL1-4, ICL1-11, and ICL120) appear to be β-arrestin-biased allosteric agonists as they effectively stimulate β-arrestin2 engagement with the β_2AR without promoting any cAMP production (Fig. 2D).

Because the primary goal of this study was to develop G_s-biased agonists, further characterization was limited to two of the candidate G_s-biased pepducins, ICL3-8 and ICL3-9. ICL3-8 is representative of a family of sequence-related pepducins from the proximal portion of ICL3, whereas ICL3-9 is primarily from the central portion of ICL3 (Fig. 1). Both pepducins promoted ~40% cAMP production compared with the full agonist isoproterenol with ICL3-8 having an EC_{50} of 577 ± 14 nM and ICL3-9 an EC_{50} of 4.7 ± 0.1 μM (Fig. 2E).

G_s-biased Pepducins Do Not Induce Receptor Desensitization—Agonist-specific desensitization of the β_2AR is primarily mediated by GRK phosphorylation of the receptor, which promotes high affinity binding of β-arr2s and attenuates G protein coupling (1). Phosphorylation of Ser355 and Ser356 (Ser355/6) on the C-terminal tail of the β_2AR has been attributed to GRK5/6 and is partially responsible for β-arr2 recruitment and receptor internalization (Fig. 3A) (29, 33, 34). Ligand-promoted phosphorylation of the β_2AR was monitored using phosphospecific antibodies targeting Ser355/6. Stimulation with either isoproterenol or salbutamol induced rapid and robust phosphorylation at Ser355/6, whereas treatment with
either ICL3-8 or ICL3-9 did not induce appreciable receptor phosphorylation at this site (Fig. 3B).

Distinct phosphorylation sites for the cAMP-dependent protein kinase (PKA) have been identified at Ser261 and Ser262 in ICL3 of the β2AR (Fig. 3A) as well as in the C-terminal tail (Ser342 and Ser346). To monitor ligand-promoted phosphorylation by PKA, we used a phosphospecific antibody against Ser262 (29). Isoproterenol and salbutamol promoted an increase in phosphorylation that was observed at 5–10 min after stimulation (Fig. 3C). ICL3-8 and ICL3-9 also promoted effective phosphorylation of Ser262 with kinetics and efficacy similar to that observed with isoproterenol (Fig. 3C). This result correlates well with the ability of ICL3-8 and ICL3-9 to promote cAMP production and thereby activate PKA.

β-Arrestin recruitment couples the β2AR to the internalization machinery leading to a loss of cell surface receptors and further propagating receptor desensitization (35). Agonist-promoted β2AR internalization was analyzed post-stimulation with isoproterenol, salbutamol, ICL3-8, and ICL3-9 in HEK 293 cells stably overexpressing FLAG-β2AR by cell surface ELISA. Although both isoproterenol and salbutamol induced rapid internalization of the receptor, the pepducins did not induce any internalization over a 1-h period (Fig. 4A).

The long term use of β-agonists in the treatment of asthma has been implicated in chronic airway desensitization (15, 16, 36–39). To evaluate whether the Gs-biased pepducins induce functional desensitization of the β2AR, we studied cAMP production in primary human airway smooth muscle cells. Receptor desensitization was observed post-β-agonist stimulation as noted by the decreasing rate of total cAMP production over a 2-h time course (Fig. 4B). In contrast, the pepducins promoted a steady rate of total cAMP production, suggesting that signaling through the pepducins is not subject to the conventional desensitization mechanisms (Fig. 4B). The root of the linearity was further characterized by monitoring intracellular cAMP production over time. Isoproterenol and salbutamol stimulated a rapid peak in cAMP levels that decreased over time as desensitized receptors were likely unable to maintain Gs activation (Fig. 4C). In contrast, the pepducins slowly achieved a steady state level of cAMP production (Fig. 4C). Taken together, these results reveal that the ICL3-8 and ICL3-9 induce less desensitization compared with isoproterenol and salbutamol.

Mechanism of Pepducin-mediated Activation of Gs—Stimulation of the β2AR by β-agonists promotes rapid engagement of Gs to the receptor which, in turn, promotes GDP dissociation, GTP binding, and G protein activation. To assess whether the pepducins promote Gs binding to the β2AR, we used BRET to measure association of Gα,67-RLucII and β2AR-GFP10 (Fig. 5A) (40). Upon isoproterenol treatment, Gs was rapidly engaged by the β2AR as indicated by the change in BRET ratio (Fig. 5B). ICL3-9 also promoted Gs interaction with the β2AR, although this occurred on a slower time scale (Fig. 5B). The EC50 value for ICL3-9-promoted β2AR-Gs interaction was 3.3 ± 0.4 μM (Fig. 5C), which is comparable with the EC50 value observed for cAMP production (Fig. 2E). In contrast, ICL3-8 was unable to stimulate β2AR-Gs coupling and therefore may be activating Gs in a manner independent of receptor-mediated nucleotide exchange (Fig. 5B).

From the two-dimensional screen, it is possible for pepducins to produce a Gs-biased profile in either a receptor-dependent or a receptor-independent manner. A receptor-dependent pepducin would stimulate G protein activation by promoting receptor-G protein coupling, whereas a receptor-independent pepducin might directly activate the G protein (Fig. 5D). Receptor dependence was initially assessed in lipid bilayers by monitoring activation of purified Gs by GTPγS exchange in the presence or absence of purified β2AR. Both isoproterenol and ICL3-9 were able to promote G protein acti-
FIGURE 2. Analysis of β2AR pepducins for cAMP production and β-arrestin binding.

A, cAMP assay was performed in HEK 293 cells. Cells were stimulated with 10 μM pepducin or 5 μM salbutamol in DMEM with 10% FBS in the presence of 500 μM IBMX. cAMP was measured at 10 min by ELISA. Data are represented by the mean of three independent experiments ± S.D. B, schematic of β-arrestin recruitment analysis by BRET. Upon β-agonist stimulation, GFP10-β-arrestin2 is recruited to β2AR-RLucII. Upon β-arrestin2 binding to the β2AR, GFP10 will be within the BRET radius of RLucII allowing GFP10 emission readout to be indicative of β-arrestin recruitment. C, HEK 293 cells co-transfected with GFP10-β-arrestin2 and β2AR-RLucII were preincubated with coelenterazine 400a for 2 min and stimulated with 10 μM pepducin, 1 μM isoproterenol, or 5 μM salbutamol for the indicated times. BRET was monitored at the indicated times post-addition. Data are expressed as ΔBRET as the background BRET has been subtracted. The data are represented by the means of four independent experiments ± S.D. D, cAMP output (10 min) as a function of β-arrestin recruitment reveals multiple Gs-biased and β-arrestin-biased pepducins. Balanced agonists, such as isoproterenol, can effectively promote both cAMP production and β-arrestin recruitment with similar efficacies. An agonist that promotes cAMP production more effectively than β-arrestin recruitment is a Gs-biased agonist (i.e. ICL3-8 and ICL3-9), whereas agonists that couple β-arrestins more effectively than stimulating cAMP production are considered β-arrestin-biased. E, HEK 293 cells were stimulated with various concentrations of isoproterenol, ICL3-8, or ICL3-9 for 10 min in the presence of 500 μM IBMX. ICL3-8 has an EC50 of 577 ± 14 nM, whereas ICL3-9 has an EC50 of 4.7 ± 0.1 μM. cAMP production is represented as percentage normalized to maximal isoproterenol stimulation. The data are represented by the mean of three independent experiments ± S.D.
viation only when the β_2AR was included in the assay (Fig. 5E). In contrast, ICL3-8 promoted effective GTPγS binding to Gs, independent of whether the β_2AR was present (Fig. 5E). To confirm ICL3-8 as a bona fide direct activator of Gs, we also evaluated GTPγS exchange on purified detergent-solubilized Gs. ICL3-8 was found to rapidly and robustly stimulate GTPγS binding, whereas ICL3-9 had no effect (Fig. 5F). Higher concentrations of pepducin (100 μM) were necessary to observe maximal efficacy as the N-terminal lipidation of the pepducin was unable to contribute to its potency in the detergent-solubilized assay. Overall, these studies demonstrate that ICL3-8 directly activates Gs whereas ICL3-9 activates Gs in a β_2AR-dependent manner.

Receptor Specificity of ICL3-9—The ability of an agonist to promote receptor-dependent activation of downstream signaling is critical in drug targeting and predicting off-target effects. As multiple GPCRs can couple to Gs, it is important to define the receptor specificity of ICL3-9. To evaluate this, we transfected CHO-K1 cells with the Gs-coupled β_1AR, β_2AR, or prostaglandin E2 receptor (EP$_2$R). Control-transfected CHO-K1 cells lack endogenous expression of these receptors as an agonist-induced increase in cAMP was only observed in the cells transfected with the specific receptor (Fig. 6). As expected, ICL3-8 activated cAMP production similarly in all of the cell lines further corroborating its receptor-independent activity. In contrast, ICL3-9 effectively stimulated cAMP production in cells expressing either the β_1AR or β_2AR but had no effect in EP$_2$R- or control-transfected cells (Fig. 6). Thus, ICL3-9 is able to utilize both the β_1AR and β_2AR to activate cAMP production suggesting that it can function on closely related family members. ICL1, ICL2, and the proximal and distal portions of ICL3 are highly conserved in β_1AR and β_2AR, although the central portion of the βAR ICL3 contains a proline-rich insert that interrupts the partially conserved ICL3-9 sequence. The significant homology between the β_1AR and β_2AR along with the same G protein coupling profile may help to explain the dual-specificity of ICL3-9.

Mutagenesis of ICL3-9—To understand the residues critical for ICL3-9 function, truncation and triple-alanine substitution variants were synthesized and assessed for their ability to stimulate cAMP production (Fig. 7A). As expected, the peptide palmitoylation and amidation were essential for ICL3-9 activity as removing these modifications markedly reduced functionality (Fig. 7B). This is likely due to the inability of the peptides to access the inner leaflet of the cell membrane. Similarly, both the N and C termini also seem critical in ICL3-9 activity as any truncation at these locations fully abrogated its ability to stimulate cAMP accumulation (Fig. 7B).

Triple-alanine substitutions through the central portion of ICL3-9 appeared to have different effects on ICL3-9 functionality. Substitutions in the N-terminal half of ICL3-9, as represented by ICL3-9A1 and ICL3-9A2, reduced the efficacy by ~70% (Fig. 7C). Interestingly, the ICL3-9A2 substitution displayed an ~25-fold increase in potency despite the reduced efficacy (Fig. 7D). Alanine substitutions in the C-terminal half of ICL3-9 yielded activity-null variants. The loss in efficacy could be attributed to the exchange of critical residues necessary for the pepducin functionality or residues that are participating in the interaction with the β_2AR. Pepducins that lack residues critical for activity might still have the ability to interact with the receptor and act as an antagonist in competition with ICL3-9, whereas binding-defective mutants would lack the ability to compete with ICL3-9. ICL3-9A3, ICL3-9A4, and ICL3-9A5 were unable to modulate ICL3-9-promoted GTPγS
Development of G_s-biased Pepducins

![Graph A](image)

- No Agonist
- 1 μM Isoproterenol
- 5 μM Salbutamol
- 10 μM ICL3-8
- 10 μM ICL3-9

![Graph B](image)

- Total cAMP
- Isoproterenol
- ICL3-8
- Salbutamol

![Graph C](image)

- Intracellular cAMP
- Isoproterenol
- ICL3-8
- Salbutamol
binding in a β2-AR-Gs binding assay, although ICL3-9A1 and ICL3-9A2 partially reduced G protein activation (Fig. 7E). It is unknown whether our results are assessing the necessity of the substituted residues or whether modulating the secondary structure of the pepducin contributes to the change in efficacy and potency.

Mechanism of Receptor-dependent Gs Bias of ICL3-9—The traditional definition of an orthosteric receptor agonist is a ligand that binds within the ligand-binding pocket of the receptor and elicits a biological response that is subject to inhibition by a receptor antagonist (41, 42). To assess whether ICL3-8 or ICL3-9 interact with the ligand-binding pocket of the β2-AR, we tested their ability to compete for binding of the β2-AR agonist [125I]iodocyanopindolol. Although [125I]iodocyanopindolol binding to the β2-AR was effectively inhibited by propranolol, there was no effect of ICL3-8 or ICL3-9 (Fig. 8A). Thus, ICL3-9 does not appear to interact with the orthosteric ligand-binding pocket of the β2-AR.

Inverse agonists have the ability to occupy the ligand-binding pocket and, unlike receptor antagonists, attenuate spontaneous signal activation from a receptor (42, 43). For the β2-AR, inverse agonists are proposed to constrict the receptor conformational plasticity needed for spontaneous receptor signaling (44). The Gs-biased pepducins were evaluated for sensitivity to two different β2-AR inverse agonists. The weak inverse agonist propranolol effectively blocked isoproterenol-promoted cAMP production in HEK 293 cells but had no effect on ICL3-8- or ICL3-9-stimulated cAMP production (Fig. 8B). In contrast, the potent inverse agonist ICI118,551 effectively suppressed both isoproterenol- and ICL3-9-promoted cAMP production with an IC50 of ~10 nM, whereas the responsiveness to ICL3-8 was unaffected (Fig. 8C). As ICL3-9 is not sensitive to a weak inverse agonist and is not operating through the ligand-binding pocket, its sensitivity to ICI118,551 likely stems from a competition between an ICL3-9-promoted Gs-biased conformation and an ICI118,551-promoted inactive conformation of the β2-AR.
FIGURE 6. ICL3-9 demonstrates distinct receptor specificity. CHO-K1 cells were transfected with pcDNA3.1, FLAG-β2AR, FLAG-β1AR, or FLAG-EP2R and stimulated with 1 μM isoproterenol, 10 μM PGE2, or 10 μM pepducin in the presence of 500 μM IBMX for 10 min in Ham’s F-12 with 10% FBS. 0.05% DMSO was included in non-pepducin-stimulated cells. The data are represented by the mean of three independent experiments ± S.D.

FIGURE 7. ICL3-9 truncations and mutations modulate pepducin efficacy and potency. A, sequences of ICL3-9 truncation and substitution variants. B, HEK 293 cells were stimulated with 10 μM ICL3-9 truncation variants in DMEM with 10% FBS in the presence of 500 μM IBMX. 0.05% DMSO was added to cells not stimulated by pepducin. cAMP was measured at 10 min by radioimmunoassay. Data are represented by the mean of three independent experiments ± S.D. C, HEK 293 cells were stimulated with 10 μM ICL3-9 mutations in DMEM with 10% FBS in the presence of 500 μM IBMX. 0.05% DMSO was added to cells not stimulated by pepducin. cAMP was measured at 10 min by radioimmunoassay. Data are represented by the mean of three independent experiments ± S.D. D, cAMP was measured in HEK 293 cells stimulated with ICL3-9 substitution variants for 10 min in the presence of 500 μM IBMX. 0.05% DMSO was added to cells not stimulated by pepducin. cAMP production is normalized to isoproterenol stimulation. The EC50 of ICL3-9A1 is ~1.5 ± 0.8 μM and the EC50 of ICL3-9A2 is ~0.18 ± 0.24 μM. E, lipid bicelles containing reconstituted 12.6 nM β2AR/180 nM Gs or 180 nM Gs alone were preincubated with 5 μM of the ICL3-9 substitution variants for 10 min at room temperature and stimulated with 5 μM ICL3-9 in the presence of 38.5 nM [35S]GTPγS in assay buffer (20 mM HEPES, 7.5, 150 mM NaCl, 1 mM MgCl2). Samples were isolated by rapid filtration on BA85 filters. The data are represented by the mean of three independent experiments ± S.D.
ICL3-9 Antagonizes β-Agonist-promoted β2AR Internalization—As both isoproterenol and ICL3-9 stimulate Gs through the β2AR, it is not possible to detect a functional difference between the ICL3-9- and isoproterenol-induced active states through monitoring cAMP production. Because isoproterenol promotes β-arrestin binding to the receptor, although ICL3-9 does not, if ICL3-9 stabilizes a conformation distinct from that promoted by isoproterenol, it might be able to modulate the efficacy of isoproterenol to promote receptor internalization. Consistent with this notion, ICL3-9 was able to inhibit isoproterenol-promoted β2AR internalization in a dose-dependent manner (Fig. 9A). The ability of ICL3-9 to inhibit isoproterenol-stimulated internalization can be attributed to reduced β-arrestin binding as increasing concentrations of ICL3-9 also attenuate β-arrestin2 recruitment to the β2AR as monitored by BRET (Fig. 9B). These results suggest that the β2AR conformation induced by ICL3-9 appears to be different from that promoted by the β-agonist isoproterenol. Alternatively, it is possible that ICL3-9 binding to the β2AR might sterically hinder receptor interaction with GRKs and β-arrestin.

ICL3-9 Promotes a Unique Conformational Change in the β2AR—The structure of the β2AR-Gs complex suggests a large outward movement of TM6 that is unique to the proposed active state of the receptor (6). Site-specific monobromobimane labeling of Cys265 in TM6 of the β2AR allows detection of TM6 movement because Cys265 moves from a hydrophobic environment to a solvent-exposed position upon receptor activation (5, 45, 46). Monobromobimane is an environment-sensitive fluorophore that exhibits decreased fluorescence intensity and a red shift of peak emission in polar environments (45). Consequently, a decrease in fluorescence and an increase in λmax is indicative of a receptor conformational change at the proximal portion of TM6 (Fig. 10A). The addition of isoproterenol to purified Cys265 monobromobimane-labeled β2AR led to a dose-dependent decrease in fluorescence intensity demonstrating the effect of an orthosteric agonist on TM6 movement. In contrast, the addition of ICL3-9 did not promote any change in monobromobimane fluorescence suggesting that ICL3-9 does not promote significant movement of the proximal portion of TM6 (Fig. 10B). Similar results were observed for ICL3-8 (data not shown).

FIGURE 9. ICL3-9 antagonizes β-agonist promoted β2AR desensitization processes. A, 100 nM isoproterenol-induced β2AR internalization was monitored by cell surface ELISA in HEK 293 cells stably overexpressing a FLAG-β2AR antagonist but ICL3-9 is sensitive to the inverse agonist pepducin. B, HEK 293 cells were preincubated with coelenterazine 400 μM and various concentrations of pepducin in the presence of 500 μM IBMX for 10 min in DMEM with 10% FBS. 0.05% DMSO was included in non-pepducin-stimulated cells. The data are represented by the mean of three independent experiments ± S.D.

FIGURE 8. Gs-biased pepducins do not interact with the orthosteric binding site of the β2AR antagonist but ICL3-9 is sensitive to the inverse agonist pepducin. A, HEK 293 cells stably expressing FLAG-β2AR were incubated with 1 nM [125I]cyanopindolol for 1 h at room temperature in HBSS with calcium and magnesium and 0.1% BSA in the presence or absence of 3–30 μM pepducin or 100 μM propranolol. 0.05% DMSO was included in non-pepducin-stimulated cells. The data are represented by the mean of three independent experiments ± S.D. B, HEK 293 cells were stimulated with 1 μM isoproterenol or 5 μM pepducin in the presence of 500 μM IBMX for 10 min at 37 °C with or without a 10-min preincubation with 100 μM propranolol. 0.05% DMSO was included in non-pepducin-stimulated cells. The data are represented by the mean of three independent experiments ± S.D. C, HEK 293 cells were preincubated with ICI118,551 for 10 min and stimulated with 100 nM isoproterenol or 5 μM pepducin in the presence of 500 μM IBMX for 10 min in DMEM with 10% FBS. 0.05% DMSO was included in non-pepducin-stimulated cells. The data are represented by the mean of three independent experiments ± S.D.
Although G_α binding to the $\beta_2\mathrm{AR}$ is enhanced by $\beta_2\mathrm{AR}$-agonists, G_α can also couple to unliganded $\beta_2\mathrm{AR}$ and promote TM6 movement similar to agonist-induced changes (46). Indeed, a 4-fold molar excess of G_α led to an 10% decrease in fluorescence intensity and an increase in λ_{max}. Upon receptor activation, a large outward movement of TM6 repositions Cys265 to be solvent-exposed resulting in decreased fluorescence and an increase in λ_{max}. Lipid bicelles containing 50 nM monobromobimane-labeled $\beta_2\mathrm{AR}$ were incubated for 10 min at 25 °C with isoproterenol (300 nM or 1 μm) or ICL3-9 (20 or 100 μm) in 20 mM HEPES, pH 7.5, 100 mM NaCl. Fluorescence spectra were gathered by excitation at 370 nm and scanning 430 - 490 nm at 1.0 nm/s. 0.5% DMSO was included in non-pepducin-stimulated samples. C, lipid bicelles containing 50 nM monobromobimane-labeled $\beta_2\mathrm{AR}$ were incubated for 10 min at 25 °C with 20 μm ICL3-9A3. 200 nM G_α was then incubated for 20 min at 25 °C in co-treatment studies. 0.1% DMSO was included in non-pepducin-stimulated samples.

FIGURE 10. ICL3-9 promotes unique conformational changes in the $\beta_2\mathrm{AR}$ that promote G_α coupling. A, monobromobimane is an environmentally sensitive fluorophore that when chemically conjugated to $\beta_2\mathrm{AR}$-Cys265 can indicate local conformational changes. When the $\beta_2\mathrm{AR}$ is in an inactive state, Cys265-monobromobimane is occupying a hydrophobic pocket and fluorescence is high. Upon receptor activation, a large outward movement of TM6 repositions Cys265 to be solvent-exposed resulting in decreased fluorescence and an increase in λ_{max}. B, lipid bicelles containing 50 nM monobromobimane-labeled $\beta_2\mathrm{AR}$ were incubated for 10 min at 25 °C with 20 μm ICL3-9. 200 nM G_α was then incubated for 20 min at 25 °C in co-treatment studies. 0.1% DMSO was included in non-pepducin-stimulated samples.
understood that GPCR ligands cannot be simply classified as agonists or antagonists. Functional studies of a diverse set of ligands for the β2AR have demonstrated the complex spectrum of signaling profiles whereby the β2AR can couple to downstream pathways with unbalanced efficacies. This concept of “pluridimensional efficacy” or “ligand-biased signaling” was first observed for the β2AR when compounds that were previously characterized as receptor antagonists were reported to have the ability to stimulate β-arrestin-dependent MAPK signaling (48). Subsequent studies pioneered the re-classification of β2AR ligands. Drake et al. (49) monitored the correlation between indicators of receptor desensitization with G protein activation for their ability to stimulate cAMP, Ca2+ mobilization, ERK1/2 mobilization, and β-arrestin-dependent pathways over G protein activation. This β-arrestin-biased profile was attributed to an agonist-promoted increased rate of GRK phosphorylation of the receptor (49). van der Westhuizen et al. (50) continued the “taxonomy” of β2AR ligands by screening a number of full and partial β-agonists, neutral antagonists, and inverse agonists for their ability to modulate cAMP, Ca2+ mobilization, ERK1/2 phosphorylation, and β2AR internalization. Their findings revealed surprising diversity in the signaling profiles of closely related receptor ligands and further support the functional basis of ligand-biased signaling. Ligand biased signaling is believed to depend on an agonist’s ability to induce a receptor conformation that either favors or disfavors interaction with downstream effector proteins. The net result of the interaction (or lack thereof) with these signaling molecules leads to the observed diverse signaling profiles. For the β2AR, structural studies further corroborated this notion as distinct ligand-dependent receptor conformations have been observed (5, 7, 8, 45, 51).

Pepducin discovery efforts have yielded a variety of allosteric agonists and antagonists for a diverse set ofGPCRs over the past decade (18–25). Most recently, the CXCR4 pepducin ATI-2341 demonstrated receptor-dependent functional selectivity toward Gs over G13, GRK, and β-arrestin (26). To test the concept that pepducins might have a general ability to bias GPCR signaling, we screened 51 pepducins derived from the intracellular regions of the human β2AR for their ability to stimulate cAMP production and β-arrestin binding to the β2AR. This screen identified four distinct classes of pepducins that had agonist-like properties as follows: 1) one that functioned like a partial agonist to activate Gs and promote β-arrestin binding (ICL1-15); 2) a group that was β-arrestin-biased (ICL1-4, ICL1-11, and ICL1-20); 3) one that demonstrated a receptor-dependent Gs bias (ICL3-9); and 4) a group that was Gs-biased and receptor-independent (e.g. ICL3-8). We further characterized the pepducins that promoted Gs-biased signaling and found that ICL3-8 directly activated Gs, whereas ICL3-9 induced conformational changes in the β2AR that promoted Gs activation.

ICL3-8 is derived from a region of the third intracellular loop that has been proposed to be a critical site of β2AR interaction with Gs. The crystal structure of the β2AR-Gs complex suggests extensive interaction between the proximal portion of the β2AR ICL3 (QKIDKSEGF) and the α5β4 loop on Goα (6). Interestingly, all of the pepducins from the proximal portion of ICL3 that activated cAMP production, including ICL3-8, contain this contact region between the receptor and G protein. Thus, this region likely plays a significant role in the guanine nucleotide exchange factor function of an activated receptor. However, it is also worth noting that this sequence alone was not sufficient to activate Goα because ICL3-1 through ICL3-8 all contain the QKIDKSEGF motif but vary in their efficacy from no activation of cAMP production (ICL3-5) to high activation (ICL3-2, -7 and -8) (Fig. 2A). This suggests that the surrounding sequence also contributes to regulating Gs interaction and/or activation. More specifically, the adjacent HV residues following the contact motif (missing in the β2AR-Gs structure) seem to play a role in the activity as pepducins that lack these residues (ICL3-4 and ICL3-5) show a loss of efficacy. In addition, it is possible that the sequence proximal to the QKIDKSEGF motif also contributes to Gs activation. Indeed, previous studies demonstrated that peptides from the proximal portion of the hamster β2AR ICL3 are direct activators of nucleotide exchange on Goα (52). The most effective peptide from these studies was VYS-RVFQVKQLQK, which is proximal to the QKIDKSEGF motif. It is interesting that this particular sequence is fully contained within the ICL3-2 pepducin, which was the most effective activator of cAMP production (Fig. 2A). In the β2AR-Gs complex structure, this sequence makes extensive contact with the C-terminal tail of the Goα subunit. The observed increased efficacy of ICL3-2 may be a product of the substantial contact surface between the pepducin and the Goα subunit and the
Development of G_s-biased Pepducins

ability of multiple regions within the pepducin to activate G_s. Although previous studies used unmodified peptides that have a limited ability to cross the cell membrane (52), the N-terminal palmitoylation and C-terminal amidation of a pepducin enable membrane incorporation and effective delivery to the intracellular surface of the cell membrane (18). For ICL3-8, this provides a means of targeting it to the site of action as G_s is localized to the intracellular surface of the plasma membrane.

ICL3-9 targets the β_2AR and stimulates interaction with G_s but no apparent interaction with GRKs or β-arrestins. Thus, ICL3-9 functions as a G_s-biased allosteric agonist for the β_2AR. Multiple avenues of biophysical analysis have provided insight into the conformational changes that occur upon activation of the β_2AR. Crystallographic studies of the activated β_2AR-G_s complex demonstrate conformational changes in the β_2AR proposed to be indicative of receptor activation. The most notable of these is a 14 Å outward movement of the proximal portion of TM6 and a helical extension of the distal portion of TM5 into the intracellular space (6). NMR analysis of the β_2AR confirms mobility in both of these regions (8), whereas monobromobimane labeling of Cys265 of the β_2AR confirms movement of the cytoplasmic end of TM6 upon β-agonist treatment (5, 45, 46). In our studies, ICL3-9 did not affect the movement of TM6, and thus its mechanism of receptor-G_s coupling may be different from that induced by conventional β-agonists. As ICL3-9 clearly promotes G protein engagement with the β_2AR (BRET biosensors) and receptor-mediated activation of G_s (GTPγS loading in β_2AR-containing bicelles) without detectable influence on TM6, conformational changes in TM6 of the β_2AR may not be a critical step in adopting the ICL3-9 promoted G_s-biased receptor state. A helical extension of TM5 into the intracellular surface is also associated with agonist-induced β_2AR activation (6). This helical extension contains many of the residues in direct contact with G_s in the β_2AR-G_s structure and also shares similarity to the peptides that can directly activate G_s. Plausibly, ICL3-9 may have the ability to modulate movement of TM5 and promote a unique active conformation utilizing the helical extension of TM5 to unconventionally activate G_s. It should also be noted that molecular dynamics simulations of the β_2AR show a weak relationship between conformational changes in the ligand-binding pocket and TM5/6 movement (8, 53). Thus, the ability of the pepducin to promote conformational changes in this region does not depend on operation through an orthosteric mechanism.

Corroborating the notion that ICL3-9 induces a distinct active state of the β_2AR, ICL3-9 appears to promote G_s coupling to the receptor in a different manner than the β-agonist. Although G_s can interact with unliganded mBB-β_2AR and promote detectable TM6 movement (46), ICL3-9 possesses the ability to attenuate conventional G_s-promoted TM6 movement, suggesting that ICL3-9 induces a unique coupling of the β_2AR and G_s (Fig. 10C). Additionally, BRET analysis monitoring RLucII-G_{α_s} engagement to β_2AR-GFP10 demonstrated that the N-terminal region of G_{α_s} may be oriented differently when associated with the ICL3-9 activated receptor as opposed to a β-agonist occupied receptor (Fig. 11). Although not much is known about the conformational changes of the G_s N terminus during G protein activation (54), the observed differences in the BRET signal orientation between RLucII-G_{α_s} and β_2AR-GFP10 upon activation with ICL3-9 (increase) versus isoproterenol (decrease) suggest that the position of the N terminus of G_{α_s} differs between the isoproterenol- and ICL3-9-activated receptor states. The loss in BRET upon isoproterenol stimulation reflects a conformational rearrangement of the pre-coupled β_2AR-G_s complex (40) that results in an increase in the distance between the GFP at the C terminus of the β_2AR and the RLucII at the N terminus of G_{α_s}. In contrast, the ICL3-9-stimulated functional engagement of G_s promotes an increase in BRET and thus reflects a reduction in the distance between the N terminus of G_{α_s} and the C terminus of the β_2AR. When a different viewpoint of the complex is monitored using BRET between β_2AR-GFP10 and RLucII inserted in the linker 1 region of G_{α_s} between the helical and GTPase domains, comparable BRET changes in direction and efficiency between isoproterenol and ICL3-9 are observed. This suggests that this region of G_{α_s} may be oriented similarly in both the pepducin- and β-agonist-stimulated states.

Although ICL3-9 appears to be the first reported G_s-biased activator of the β_2AR, Staus et al. (55) previously reported stimulation of biased signaling from the β_2AR using intracellularly expressed nanobodies (intrabodies). In this report, intrabodies against agonist-activated or inactive β_2AR were selective for inhibiting G protein activation or GRK and β-arrestin engagement. The expression of intrabodies that block GRK phosphorylation shift the activation profile of a β-agonist from activating G proteins and β-arrestin to one that selectively stimulates G protein signaling. Essentially, these intrabodies transform a balanced agonist to a G_s-biased β_2AR modulator, although they do not have the ability to activate signaling on their own. Moreover, it is unknown whether the intrabodies stabilize an agonist-bound conformation that favors G_s activation or sterically hinders GRK interaction with the β_2AR, while not affecting G_s activation. Although ICL3-9 can directly promote β_2AR-dependent G_s-biased signaling, we also do not know whether this is due to the ICL3-9-induced conformation being unable to mediate GRK/β-arrestin binding or whether ICL3-9 directly inhibits GRK/β-arrestin binding to the β_2AR. Identification of the ICL3-9-binding site on the β_2AR will be critical in answering these questions.

Because pepducins have been historically thought to be specific for their cognate receptor, another interesting aspect of ICL3-9 was its ability to utilize both the β_2AR and β_2AR to mediate cAMP production. The β_2AR and β_2AR are closely related family members and share ~54% amino acid identity with the transmembrane domains and intracellular loops being the most conserved. For example, ICL1 of the β_2AR (Ile55–Leu75) is ~71% identical with ICL1 of the β_1AR (Leu78–Ala101), whereas ICL2 is 77% identical between the β_2AR (Val129–Leu155) and β_1AR (Leu154–Leu178). The ICL3 of the β_2AR (Phe217–Ile288) and the β_1AR (Phe411–Ile529) exhibit lower homology with ~38% identity, although this is partly due to a proline-rich insert between Leu266 and Ala302 in the β_1AR. Interestingly, the ICL3 of β_2AR lacks multiple residues in the ICL3-9 sequence. The commonality of sequence features on the intracellular surface of both the β_2AR and β_2AR may be the reason that ICL3-9 can activate G_s through both receptors as
highly homologous regions may be indistinguishable to the binding and/or function of ICL3-9. Conversely, uncommon regions between the two receptors (i.e. sequence divergence in ICL3) are unlikely to play a critical role in ICL3-9 operation. For example, the C-terminal tail of the β1AR and β2AR does not exhibit significant homology and thus is unlikely to contribute to the interaction or activity of ICL3-9.

Previous studies on the β2AR also identified a few inverse agonists such as carvedilol and nebivolol that appear to function as β-arrestin-biased agonists by selectively promoting β-arrestin recruitment and signaling over G protein activation (56, 57). It is worth noting that carvedilol is used in the treatment of heart failure, and its ability to function in a β-arrestin-biased manner appears to be cardioprotective (57–59). Although we were not specifically searching for β-arrestin-biased pepducins, we identified a few pepducins from ICL1 that had a clear β-arrestin bias with one being ~75% as effective as isoproterenol in promoting β-arrestin binding (Fig. 2, C and D).

Characterizing the ability of the β2AR to selectively activate β-arrestin-associated pathways (e.g. receptor internalization and β-arrestin-dependent signaling) using our β-arrestin-biased pepducins could be an interesting avenue of future investigation. Moreover, our results suggest that pepducins may prove particularly useful in dissecting the mechanisms involved in biased signaling and the potential links between β-arrestin activation and the treatment of heart failure.

Gα-biased pepducins demonstrated an independence from classical receptor desensitization mechanisms as the induction of functional desensitization of the β2AR was not observed in primary human airway smooth muscle cells. These data serve as an initial "proof-of-concept" that Gα-biased agonists could serve as a potentially advantageous asthma therapeutic. Certainly, ICL3-9 is a potentially attractive lead drug candidate as its receptor dependence leads to a degree of drug targeting and specificity, although its potency must be improved. Direct activators of Gα, such as ICL3-2 and ICL3-8 might also prove advantageous in promoting airway smooth muscle relaxation, while targeting these molecules to the proper cell type will be critical. Beyond their application in the treatment of asthma, the pepducins provide additional tools to study β2AR activation and the benefits of Gα-biased signaling.

Acknowledgments—We thank Drs. Christopher So and Ken Carlson for valuable discussions.

REFERENCES
