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A novel strategy for clustering 
major depression individuals using 
whole-genome sequencing variant 
data
Chenglong Yu1,2, Bernhard T. Baune3, Julio Licinio1,2 & Ma-Li Wong1,2

Major depressive disorder (MDD) is highly prevalent, resulting in an exceedingly high disease burden. 
The identification of generic risk factors could lead to advance prevention and therapeutics. Current 
approaches examine genotyping data to identify specific variations between cases and controls. 
Compared to genotyping, whole-genome sequencing (WGS) allows for the detection of private 
mutations. In this proof-of-concept study, we establish a conceptually novel computational approach 
that clusters subjects based on the entirety of their WGS. Those clusters predicted MDD diagnosis. 
This strategy yielded encouraging results, showing that depressed Mexican-American participants 
were grouped closer; in contrast ethnically-matched controls grouped away from MDD patients. This 
implies that within the same ancestry, the WGS data of an individual can be used to check whether this 
individual is within or closer to MDD subjects or to controls. We propose a novel strategy to apply WGS 
data to clinical medicine by facilitating diagnosis through genetic clustering. Further studies utilising 
our method should examine larger WGS datasets on other ethnical groups.

With the development of new and cheaper whole genome sequencing (WGS) technology, patient care may move 
towards precision medicine. Ever since the first human genome was fully sequenced, scientists have been search-
ing for approaches to provide personalized care1. WGS allows us to identify single nucleotide variants (SNVs), 
which are private genetic variants, and determine all the genetic variants within each person. Single nucleotide 
polymorphism (SNP) genotyping is currently the gold-standard technique for genome-wide association studies 
(GWAS), as WGS costs remain relatively high; however, as WGS costs are projected to drop further, researchers 
may have the opportunity to examine the significance of SNVs, which involve more individual characteristics.

Major depressive disorder (MDD) is a chronic condition with great medical, social, and economic impacts. 
MDD is a main contributor to global disease burden and produces significant morbidity and mortality2–6. Despite 
recent advances7–9, little is known about its underlying fundamental biology. The existing psychiatric genetic stud-
ies have not found common consistently replicated gene variants of large effect in the pathogenesis of MDD10–12, 
and thus much work still needs to be done to fully elucidate the genetic factors that confer susceptibility to this 
condition. For our current research, we tested whether the combined effect of all SNVs at the whole-genome 
sequence level could confer genetic liability to the MDD risk.

In this study, we focus on a sample of Los Angeles Mexican-American participants who had three or more 
grandparents born in Mexico. MDD participants were diagnosed using the Structured Clinical Interview (SCID) 
for Diagnostic and Statistical Manual of Mental Disorders (DSM), and the DSM-IV diagnostic criteria for cur-
rent, unipolar major depressive episode with a HAM-D21 (21-Item Hamilton Depression Rating Scale) score of 
18 or greater with item number 1 (depressed mood) rated 2 or greater; they participated in a pharmacogenetic 
study of antidepressant treatment. Controls were in general good health but were not screened for medical or 
psychiatric illnesses; they were age- and gender- matched Mexican-American individuals recruited from the 
same community in Los Angeles13–16. Here, we establish a new computational approach to cluster subjects based 
on all of their WGS variants. We believe that clustering of patients based on their SNV profiles may provide 
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valuable clues for prognostics, diagnostics, and therapeutics, as it takes into account all of their genetic data. The 
idea for this approach arose from distance-based phylogenetic analysis of DNA/protein sequences proposed by 
us earlier17–21. In our proposed methodology we used a well-defined metric in mathematics, the Jaccard distance, 
to measure the similarity/dissimilarity between subjects using all the SNV information from each individual and 
from that we construct cluster trees based on the Jaccard distance matrices. Clustering relationships in the trees 
showed that Mexican-American MDD patients grouped together, and were clustered far from ethnically matched 
healthy controls. This discovery may be translated to clinical practice since we may be able to predict the MDD 
status of a given Mexican-American subject based on his/her WGS data.

Materials and Methods
The Mexican-American Sample. In our recent work16, we have investigated the whole-exome genotyping 
data of a Los Angeles Mexican-American cohort aged 19–65 years of 203 MDD patients and 196 healthy con-
trols. Participants provided written informed consent, and detailed demographic, epidemiological, and clinical 
descriptions were previously described13–15. The study was registered in ClinicalTrials.gov (NCT00265291), and 
approved by the Institutional Review Boards of the University of California Los Angeles and University of Miami, 
USA, and by the Human Research Ethics Committees of the Australian National University and Bellbery Ltd, 
Australia13–15. In this study, we obtained complete WGS data for a group of 15 participants selected from the 
cohort, 10 MDD patients and 5 controls. In Table 1, we present the gender (all are female) and age information 
of the 15 Mexican-American subjects. We have confirmed that in the cohort there was no family or population 
structure among all those individuals16 and no any blood relationship among the 15 selected participants.

The European-Ancestry Sample. For comparison as an outgroup sample, we also include WGS data from 
a group of 10 Australians of European-Ancestry. Those 10 participants gave written informed consent and were 
recruited under the Cognitive function and mood disorders study (conducted by the Discipline of Psychiatry, 
University of Adelaide, South Australia, Australia). This sample was studied under approved Human Research 
Ethics Committees protocols at the University of Adelaide and Flinders University, South Australia, Australia. In 
Table 1, we present the gender and age information of these 10 subjects.

We confirm all methods and experiments in this study were performed in accordance with relevant guidelines 
and regulations.

Whole-Genome Sequencing (WGS) and Analysis. Samples from fifteen Mexican-American par-
ticipants (10 MDD patients and 5 controls) were whole-genome sequenced using Illumina HiSeq 2000 
(BGI-Shenzhen, Shenzhen, Guangdong, China) and samples from ten European-Ancestry Australian participants 

Subjects Gender Age Total SNVs Total INDELs dbSNP

MA-Depresson-1 Female 35 8,348,095 522,994 4,031,869

MA-Depresson-2 Female 30 7,921,961 513,462 3,993,392

MA-Depresson-3 Female 41 8,037,674 514,135 3,986,882

MA-Depresson-4 Female 32 8,021,058 511,756 3,903,495

MA-Depresson-5 Female 45 7,839,942 511,053 4,001,897

MA-Depresson-6 Female 38 7,834,986 516,002 4,021,724

MA-Depresson-7 Female 36 7,935,708 512,681 3,911,549

MA-Depresson-8 Female 59 7,694,178 514,095 3,949,370

MA-Depresson-9 Female 41 7,778,564 520,337 3,987,191

MA-Depresson-10 Female 31 8,073,958 526,792 4,045,542

MA-Control-1 Female 50 7,879,192 519,009 4,042,162

MA-Control-2 Female 45 6,974,138 517,756 4,021,858

MA-Control-3 Female 39 6,911,665 526,897 3,999,059

MA-Control-4 Female 29 7,197,066 518,675 4,011,644

MA-Control-5 Female 35 7,487,135 517,667 4,031,216

AU-Depresson-1 Male 44 3,883,255 555,785 3,888,831

AU-Depresson-2 Female 19 3,938,868 541,109 3,956,682

AU-Depresson-3 Female 19 3,925,906 560,127 3,928,997

AU-Depresson-4 Female 25 3,933,654 557,712 3,935,804

AU-Depresson-5 Female 18 3,905,386 555,542 3,920,378

AU-Control-1 Female 20 3,898,847 569,129 3,923,876

AU-Control-2 Male 18 3,920,681 558,496 3,903,217

AU-Control-3 Male 30 3,861,132 552,110 3,861,584

AU-Control-4 Female 18 3,922,531 568,501 3,911,346

AU-Control-5 Male 20 3,820,520 449,055 3,773,974

Table 1.  Whole-genome sequencing variation analysis of 25 human subjects. MA, Mexican-American; AU, 
Australian; SNVs, single nucleotide variants; INDELs, small insertions and deletions; dbSNP (the number of 
SNVs and INDELs that are found in the dbSNP database in NCBI).
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(5 MDD patients and 5 controls) were whole-genome sequenced using HiSeq X (Garvan Institute, Sydney, New 
South Wales, Australia). After obtaining paired-end sequencing reads of those 25 participants, we did the variant 
calling analysis using the following pipeline. The reads of each participant were aligned to the human reference 
genome (hg19, Genome Reference Consortium GRCh37) using Burrows-Wheeler Aligner (BWA)22 to get SAM 
(sequence alignment/map) format files. SAM files were converted to the BAM (binary version of a SAM file) 
format files using SAMtools23. BAM files were then merged into one BAM file, and the mpileup command in 
SAMtools was used to calculate the likelihood of data given each possible genotype, and store the likelihoods 
in a binary file. The output was supplied to SAMtools/BCFtools24 which created the SNV/INDEL (small inser-
tions and deletions) calling to generate VCF (variant call format) files. Then, ANNOVAR25 was used to anno-
tate SNV/INDEL information and their classifications. For WGS and analysis details, please see Supplementary 
Information. Only the SNV information was used in the following methodology.

Clustering Subjects on SNV Sets. To take in consideration all the SNV information of those subjects, 
it was important to define a distance between two subjects when running the cluster analysis. We clustered the 
subjects at the chromosome level; consequently, we defined a distance between two people based on SNV infor-
mation obtained from a given chromosome, e.g., chromosome 1. First, we considered the SNVs distribution on 
that chromosome. In Fig. 1, we give a hypothetical SNVs distribution on chromosome 1 for two individuals. In 
a real case scenario, in a given chromosome two individuals may have many same position SNVs, e.g., SNV6 in 
person A and SNV7 in person B in Fig. 1. Our hypothesis was that if two individuals shared more same position 
SNVs, then those two individuals would have more similar phenotypes, such as traits or diseases. Therefore, a 
proper distance (dis-similarity) between two SNV sets could be employed.

Let S1 and S2 be SNV sets in a given chromosome from subject 1 and subject 2. We use |S| to denote the car-
dinality of set S. The Jaccard metric26, a statistics tool for measuring the similarity and diversity of sample sets, is 
introduced here. The Jaccard metric between S1 and S2 is defined as
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In this proof-of-principle study we use the Jaccard metric to calculate the distance matrices of those 25 par-
ticipants in each chromosome. Then cluster trees based on each chromosome can be reconstructed. Clustering 
relationships shown in the trees may reveal significant medical information that may be translated into clinical 
practice.

Results
Whole-Genome Sequencing (WGS) Data Analysis. Table 1 provides the results of WGS variation in 
25 human subjects and shows that Mexican-American individuals have significantly more SNVs when com-
pared to Australian individuals of European-Ancestry. For total SNVs, Australian’s mean value is 3901078 
(n = 10), Mexican-American’s mean value is 7729021.3 (n =  15), the t test p-value for the two groups is 2.09e-
15. This is consistent with data from the Human Haplotype Matching Project (HapMap). We contributed the 
Mexican-American sample to HapMap, from the same community as subjects in this study. That study showed 
that Mexican-Americans have more polymorphic SNPs in Mexican-Americans than in northern Europeans28. 
Mexican-Americans from that Los Angeles community have median ancestry proportions that are 45% 
Indigenous American, 49% European and 5% African29. According to results from the International HapMap 
3 Consortium and the 1000 Genomes Project Consortium, it would be expected that individuals with African 

Figure 1. A hypothetical illustration of the distribution of SNVs on chromosome (chr) 1 of two 
individuals. SNV2, SNV4 and SNV6 in person A and SNV3, SNV4 and SNV7 in person B occupy the same 
respective positions in chr 1.
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ancestry, such as Mexican-Americans, have increased number of variants, and, moreover, the Spanish population 
have excess of rare variants28,30.

For the Mexican-American sample, both depression and control subjects have approximately 7,000,000 to 
8,000,000 SNVs; 5,100,000 to 5,200,000 INDELs, and 3,900,000 to 4,000,000 SNVs in dbSNP (the SNP database). 
We calculated the SNV distributions on each chromosome for the Mexican-American and Australian samples. 
In Fig. 2a, we used boxplot to show the descriptive statistical distributions of SNVs in each chromosome for 
the Mexican-American control group. Descriptive statistical distributions of SNVs of each chromosome for the 
Mexican-American depression group are provided in Fig. 2b. Since only female Mexican-American samples were 
used for this study, we include chromosome X in the results. We found that the depression and control groups 
have basically the same SNV distributions for all chromosomes. Table S1 provides detailed information of SNV 
distributions for all the chromosomes in the 25 subjects.

Clustering Subjects using Cluster Trees. Following the proposed method, we use the Jaccard metric 
and SNV sets to obtain the distance matrices between those 25 participants for each chromosome. Jaccard dis-
tance calculation was done using R programming language. We used the popular neighbor-joining method31 on 
the distance matrices to construct cluster trees, which were drawn using software MEGA 632. Figure 3a shows 
the cluster tree for 25 subjects in chromosome 1. We found that all the 10 Mexican-American MDD patients 
grouped together in a cluster, and 5 Mexican-American controls were separated from that group. The Australian 
individuals of European-Ancestry, as a different population, assembled as an obvious outgroup from the 
Mexican-American subjects. This fact is also consistent with the genetic distance between different populations33. 

Figure 2. Descriptive statistical distributions of SNVs on all the chromosomes. (a) The Mexican-American 
control group. (b) The Mexican-American MDD group.
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We constructed cluster trees for all chromosomes. Except for the mitochondrial genome, all cluster trees clus-
tered the Mexican-American MDD patients as group distinct from the controls. Although the Australian subjects 
stably stand as an outgroup, within that group the MDD and control individuals could not be well distinguished 
as in the Mexican-American group. Figure 3b and c show the cluster trees in chromosome 22 and chromosome 
X, respectively. In Figure S1, we provided the cluster trees for all the other 20 chromosomes and mitochondrial 
genome.

WGS data analysis and Jaccard distance calculations were performed using high-performance computers in 
eResearch South Australia (https://www.ersa.edu.au/).

Discussion
The results obtained by our new approach support the assumption that two individuals who share more of the 
same position SNVs would have more similar phenotypes, such as traits or diseases. Clustering relationships 
in the trees show that the Mexican-American MDD patients group together, and ethnically matched controls 
grouped away and separately. The fact that Australian subjects fail to be clustered into case and control groups 
may imply that this computational method may be restricted to specific populations, with a higher degree of 
genetic diversity, such as Mexican-Americans. It should be noted that the choice of Jaccard metric was not ran-
dom. When measuring similarity between two SNV sets, the intersection of two sets denotes the shared same 
position SNVs of two people, and the union of two sets is used to normalize the similarity to a value between 0 
and 1. All the SNV information for two sets is fully utilized in this metric. Furthermore, the Jaccard metric is a 
rigorous mathematical distance. Our results showed that it is appropriate to cluster Mexican-American MDD 
subjects in this study. Among distance-based tree construction methods, the neighbor-joining technique does not 
assume a constant rate of evolution, as opposed to the molecular clock hypothesis. Due to its low computational 
complexity it can be performed quickly and is widely used to generate cluster trees of individuals34,35.

We have confirmed that there were no blood relatives between those Mexican-American subjects, thus the 
clustering relationships in the trees were not due to genetic relatedness. For the Mexican-American sample, all the 
subjects were female, and the MDD case group had an average age of 38.8 years with standard deviation 8.15 and 
the control group had an average age of 39.6 years with standard deviation 7.36. The two groups have basically 
the same age distribution. Thus the clustering results were not associated with gender and age. For our approach, 
confounding phenotypes with complex genetic architecture may be reflected in the measured distance and this 
could alter the observed clustering. Therefore, before performing our method, it is necessary to control confound-
ing factors such as ethnicity, MDD diagnostic and control selection criteria, genetic relatedness, gender and age.

Our aim in this paper was not to confirm or refute previous genetic research of depression such as candi-
date gene studies or GWAS36 but rather to bring a novel direction using comparative genomic analysis at the 
whole-genome sequence level. In our methodology, the combined effect of all SNVs in the complete genome, 
including all genomic regions such as coding and non-coding, was considered as a genetic factor to the depression 
risk. Our computational approach allowed us to perform a global comparison of whole-genome information in 
the subjects, which no other existing method can achieve. Once a Jaccard distance matrix has been constructed, 
the results in the clustering tree can be displayed and viewed graphically; this is user-friendly and allows even 
non-expert to understand the relationships among the subjects. Furthermore, most existing genome-wide analy-
sis methods involve many statistical models. The different choices of these models can lead to inconsistent results. 
Our method does not involve any statistical model and it depends only on the genetic distance between two indi-
viduals by considering their whole-genome SNV information. Therefore, our approach is stable and produces a 
unique analysis result.

Figure 3. Cluster tree of 25 subjects for different chromosomes. (a) On chromosome 1. (b) On chromosome 
22. (c) On chromosome X.

https://www.ersa.edu.au/
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High quality full genome sequencing costs are currently still a concern that limits obtaining larger datasets; 
another limitation is the high level of computational resources needed for sequencing data analysis. Future studies 
utilising our method should examine additional replication data on other ethnical groups.

We have developed a novel methodology to cluster subjects based on their WGS data. To the best of our 
knowledge, this is the first time that SNV and cluster analysis are used to study major depressive disorder. Our 
approach could be a useful predictive/diagnostic tool; i.e., one could test whether WGS data from a new subject 
could contribute to determine whether that subject would be within or close to an existing MDD or control 
cluster. Advances in this line of research have the potential to be rapidly translated to clinical practice and could 
include the ability to diagnose patients based on WGS data.
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