An investigation into the Omp85 protein BamK in hypervirulent Klebsiella pneumoniae, and its role in outer membrane biogenesis

Von Vergel L. Torres,1 Eva Heinz,1,2 Christopher J. Stubenrauch,1 Jonathan J. Wilksch,1,3 Hanwei Cao,3 Ji Yang,3 Abigail Clements,1,4 Rhys A. Dunstan,1,2 Felicity Alcock,1,5 Chaille T. Webb1, Gordon Dougan,2 Richard A. Strugnell,3 Iain D. Hay1 and Trevor Lithgow1*

1Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
2Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
3Department of Microbiology & Immunology, University of Melbourne, Parkville 3052, Australia
4MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
5Department of Biochemistry, Oxford University, Oxford, UK

Summary

Members of the Omp85 protein superfamily have important roles in Gram-negative bacteria, with the archetypal protein BamA being ubiquitous given its essential function in the assembly of outer membrane proteins. In some bacterial lineages, additional members of the family exist and, in most of these cases, the function of the protein is unknown. We detected one of these Omp85 proteins in the pathogen Klebsiella pneumoniae B5055, and refer to the protein as BamK. Here, we show that bamK is a conserved element in the core genome of Klebsiella, and its expression rescues a loss-of-function bamA mutant. We developed an E. coli model system to measure and compare the specific activity of BamA and BamK in the assembly reaction for the critical substrate LptD, and find that BamK is as efficient as BamA in assembling the native LptDE complex. Comparative structural analysis revealed that the major distinction between BamK and BamA is in the external facing surface of the protein, and we discuss how such changes may contribute to a mechanism for resistance against infection by bacteriophage.

Introduction

The genus Klebsiella are Gram-negative bacteria, widely distributed in the environment, most commonly in association with soil and plants (Bagley, 2015). In just a few decades, the species Klebsiella pneumoniae has evolved from this lifestyle in the environment to become a common and deadly cause of infection in humans (Paczosa & Mecsas, 2016). While initially only seen associated with chronically unwell people e.g. liver abscesses in chronic alcoholics (Carpenter, 1990), Klebsiella are adept at lateral gene transfer and this, and other genetic means such as plasmid-mediated gene acquisition, has seen the evolution of K. pneumoniae strains that thrive in hospital settings (Ramirez et al., 2014, Wyres & Holt, 2016, Navon-Venezia et al., 2017). Klebsiella establishes itself in environments, including sinks and other wet areas in hospitals as well as human tissues, through the expression of surface factors that include a mucoid capsule and an assortment of adherent fimbriae (Paczosa & Mecsas, 2016). These factors assist the bacteria to grow and survive within organized communities known as biofilms, with biofilms of K. pneumoniae being central to many chronic infections, particularly those associated with indwelling medical devices (Hall-Stoodley et al., 2004, Stickler, 2008).

Antimicrobial resistance is a major concern with K. pneumoniae, with invasive and blood-borne infections resistant to many antibiotics (Wyres & Holt, 2016, Lee et al., 2016, Campos et al., 2016, Bi et al., 2017, Calfee, 2017, Ejaz et al., 2017). Among the notifications to the Centers for Disease Control and Prevention for clinically diagnosed carbapenem-resistant Enterobacteriaceae, an increasing proportion is found to be K. pneumoniae that are resistant to all available antimicrobial drugs (Chen et al., 2017). In addition to drug-resistance, hypervirulent variants of K. pneumoniae have been emerging over the past years (Lee et al., 2017). This hypervirulence is provided in part by
a hypermucoviscous phenotype, caused by extensive secretion of polysaccharides that remain attached to the bacterial cell surface as an extracellular capsule. For example, infection of mice with 10^6 cfu of the K. pneumoniae strain B5055 kills all mice within 5 days, leading to its designation as hypervirulent (Kumar & Chhibber, 2011). Whereas B5055 thrives in murine serum, an isogenic mutant lacking the capsule secretion apparatus is totally inactivated by serum within an hour (Clements et al., 2008). The Wza capsule secretion pore appears to self-assemble in the outer membrane (Dunstan et al., 2015), whereas most other outer membrane proteins are assembled by a highly sophisticated β-barrel assembly machinery (BAM) composed of the core BAM complex (BAM ABCDE) and the translocation and assembly module (the TAM) (Webb et al., 2012, Plummer & Fleming, 2016, Albenne & Ieva, 2017, Noinaj et al., 2017). Each of these protein complexes is constituted around a membrane protein of the Omp85 protein family (BamA and TamA), and both are involved in the assembly of complex structures such as the adhesive fimbrae (Stubenauch et al., 2016, Stubenauch et al., 2017) required by K. pneumoniae for biofilm formation (Klemm & Schembri, 2000, Wilksch et al., 2011, Khater et al., 2015, Tan et al., 2015).

A recent survey of the Omp85 family showed 10 sub-families that have the diagnostic β-barrel domain linked to either POTRA domains of distinct number and sequence characteristics, or to other domains that range from predicted proteases through to no N-terminal domains in the noNterm sub-family (Heinz & Lithgow, 2014). BamA has five N-terminal POTRA domains which facilitate interactions with the other Bam subunits, while TamA has three N-terminal POTRA domains that assist its interaction with a distinct TamB partner protein (Selkirk et al., 2015, Shen et al., 2014). Analysis of the genome of the K. pneumoniae strain B5055 revealed Omp85 family members additional to the genes encoding BamA and TamA, including a form without POTRA domains (noNterm, BN49_0007), and a previously undescribed Omp85 protein that we refer to as BamK. We demonstrate that the gene encoding BamK (BN49_4981) is present in the core genome of Klebsiella. Like BamA, BamK has five POTRA domains attached to a β-barrel domain with distinguishing sequence characteristics that include alterations to three of the inter-strand loops, changes that would alter the domed surface exposed to the extracellular environment. Biochemical assays show that BamK is equally effective as BamA in its ability to catalyze the assembly of β-barrel proteins into the outer membrane. Under standard laboratory conditions, the gene encoding BamK is silenced, and we discuss the possible regulatory impact of a second form of the BAM complex in Klebsiella biology.

Results

BamK can functionally replace BamA in K. pneumoniae

Analysis of the B5055 genome revealed that it encodes two proteins belonging to the BamA sub-family of Omp85 proteins (Heinz & Lithgow, 2014). BN49_4147 (annotated in the B5055 genome as yaeT) is designated here as bamA, given its genomic context is identical to that of the E. coli bamA locus (Fig. 1A). The second gene, BN49_4981, we designate as bamK (Klebsiella). Disruption of the bamK gene had no effect on growth in rich (LB) or minimal (M9) media, or in DMEM media which is often used as a proxy for ‘in host’ growth conditions (Fig. S1A). A direct assessment of the virulence phenotype of B5055 in a mouse model of infection showed that replication of K. pneumoniae, with or without BamK, was equivalent in C57BL6 mice (Fig. S1B).

To examine relative expression levels of the bamA and bamK genes, qPCR assays were established. The expression level of bamA does not vary across the temperature range 30°C to 42°C, and bamK was not expressed to any measurable level under these conditions (Fig. 1B), or in DMEM (Fig. S1C). The promoter region upstream of bamK (Fig. S2A) is unusual in that the -10 element for RNA polymerase binding is (i) located at some distance relative to the predicted bamK start site (Fig. 1C), and (ii) is predicted to form a stem-loop structure. To address whether this region is a simple switch repressing expression of the gene, GFP reporter constructs were used (Fig. S2B). Deletion of the stem-loop region did not activate transcription from the bamK promoter region under the conditions of these experiments. While this putative element did not function as a simple switch, the palindromic sequence and surrounding features in the putative promoter is conserved upstream of the bamK locus in other Klebsiella-type strains: MGH78578, NTUH-K2044 and 342 (Shu et al., 2009; Ramos et al., 2014). The protein sequences of BamK too are conserved in these diverse-type strains (Fig. S3), inconsistent with an alternative scenario where the bamK sequence represents a pseudogene. We have been unable to determine what factor(s) would signal for expression of this cryptic gene.

To determine whether BamK can function in place of BamA, the B5055 strain ΔbamA::bamK was engineered to have the coding region for BamK replace the coding region for BamA, at the bamA locus of B5055 (Fig. S2C). Sequencing through the locus of the ΔbamA::bamK strain confirmed the absence of the coding region in the bamA gene, the integration of the bamK open-reading frame, and the removal of the kanamycin resistance cassette. To selectively detect BamK, the monoclonal antibody MAbK was raised to a unique sequence in the juncture of the POTRA3 and POTRA4 domains (Fig. S4). The
ΔbamA::bamK replacement strain is viable and grows at the same rate as the parental B5055 strain (Fig. S5A). Outer membranes were prepared from B5055 and the ΔbamA::bamK strain, analyzed by SDS-PAGE and staining with Coomassie blue. The outer membrane protein profile for the ΔbamA::bamK strain was indistinguishable from that of the corresponding wild-type (Fig. 1D).

Using blue-native polyacrylamide gel electrophoresis (BN-PAGE) and immunoblotting for analysis of the membranes, BamK co-migrates with the other subunits of the BAM complex: BamB, BamC, BamD and BamE (Fig. 1E, Fig. S5B). According to nomenclature adopted elsewhere (Bakelar et al., 2016), this would correspond to the BAMKBCDE complex.
KpBamA and KpBamK gene replacement strains of E. coli

To evaluate the specific activity of BamK with respect to BamA, we established a cellular model system to measure the rate of outer membrane protein assembly. The essential bamA gene in E. coli BL21 Star™ (DE3) was replaced by either BN49_4147 (strain ΔbamA::KpbamA) or BN49_4981 (strain ΔbamA::KpbamK). Both E. coli gene replacement strains were viable, grew at similar rates to the parental strain (Fig. S5C), and their outer membrane protein profiles were indistinguishable from each other (Fig. 2A). In these profiles, the most abundant species are the porins, trimeric β-barrel proteins that account for the semi-permeable nature of the outer membrane (Koebnik et al. 2000). BN-PAGE of the two strains showed that the proteins KpBamA and KpBamK are each able to form a BAM complex with the BamB, BamC, BamD and BamE subunits of E. coli (Fig. 2B). This is consistent with the high degree of sequence similarity between BamK and BamA in the periplasmic turns and POTRA domains (Fig. S3), the structural elements that make the critical contacts with the other Bam subunits (Bakelar et al., 2016; Gu et al., 2016; Han et al., 2016). Deletion of either bamB or bamC shifted the mobility of BamK on the native gels, confirming that it is a component of a BAMABCDE complex (Fig. S5E).

The assembly of trimeric porins can be measured with a pulse-chase assay based on semi-native PAGE to separate the assembled trimers from the monomeric forms of unassembled protein (Heinz et al., 2016, Stubenrauch et al., 2016). To monitor the rate of assembly of the trimeric porin, translation of [35S]-labeled PhoE precursor was induced in each strain and the assembly of the porin trimer was determined by semi-native PAGE and densitometry. In the semi-native gel electrophoresis the monomeric PhoE species is better focused than the oligomeric species (Fig. S3), the structural elements that make the critical contacts with the other Bam subunits (Bakelar et al., 2016; Gu et al., 2016; Han et al., 2016). Deletion of either bamB or bamC shifted the mobility of BamK on the native gels, confirming that it is a component of a BAMABCDE complex (Fig. S5E).

To evaluate the specific activity of BamK with respect to BamA, we established a cellular model system to measure the rate of outer membrane protein assembly. The essential bamA gene in E. coli BL21 Star™ (DE3) was replaced by either BN49_4147 (strain ΔbamA::KpbamA) or BN49_4981 (strain ΔbamA::KpbamK). Both E. coli gene replacement strains were viable, grew at similar rates to the parental strain (Fig. S5C), and their outer membrane protein profiles were indistinguishable from each other (Fig. 2A). In these profiles, the most abundant species are the porins, trimeric β-barrel proteins that account for the semi-permeable nature of the outer membrane (Koebnik et al. 2000). BN-PAGE of the two strains showed that the proteins KpBamA and KpBamK are each able to form a BAM complex with the BamB, BamC, BamD and BamE subunits of E. coli (Fig. 2B). This is consistent with the high degree of sequence similarity between BamK and BamA in the periplasmic turns and POTRA domains (Fig. S3), the structural elements that make the critical contacts with the other Bam subunits (Bakelar et al., 2016; Gu et al., 2016; Han et al., 2016). Deletion of either bamB or bamC shifted the mobility of BamK on the native gels, confirming that it is a component of a BAMABCDE complex (Fig. S5E).

The assembly of trimeric porins can be measured with a pulse-chase assay based on semi-native PAGE to separate the assembled trimers from the monomeric forms of unassembled protein (Heinz et al., 2016, Stubenrauch et al., 2016). To monitor the rate of assembly of the trimeric porin, translation of [35S]-labeled PhoE precursor was induced in each strain and the assembly of the porin trimer was determined by semi-native PAGE and densitometry. In the semi-native gel electrophoresis the monomeric PhoE species is better focused than the oligomeric species, so the exponential decay of the monomer (as it assembles into an oligomer) was calculated (Stubenrauch et al., 2016) for the time-course of PhoE assembly in E. coli ΔbamA::KpbamA (Fig. 2C) and ΔbamA::KpbamK (Fig. 2D). While we cannot rule out subtle differences in the earliest time-point measurements, there was no significant difference in the observed rate constants for the PhoE assembly reaction (Fig. 2E), confirming that BamK can efficiently catalyze outer membrane protein assembly in the absence of BamA.

The assembly of the LptDE complex (Fig. 3A) has been shown to be highly dependent on the function of the BAM complex (Lee et al., 2016), and an assay was established to measure the co-assembly of LptD and LptE (Fig. S6). Expression and translation of [35S]-labeled LptD and [35S]-labeled LptE was induced, and the assembly of the LptDE complex was determined by semi-native PAGE (Fig. 3B, Fig. 3C). Under these electrophoresis conditions, the LptDE dimer displays heat modifiability, whereby it migrates faster than would be expected based on size alone. This stability (heat modifiability) could be a result of the extensive interactions LptE makes within the LptD lumen (Ruiz et al., 2010, Botos et al., 2016). Confirming its identity as the LptDE complex, formation of this species depends on the presence of both LptD and LptE (Fig. S6). There was no significant difference in the rate of LptDE formation, or the observed rate constants for the LptDE assembly reaction, mediated by the BAMABCDE complex or the BAMABCDE complex (Fig. 3D, Fig. 3E).

BamK is encoded in the core genome of K. pneumoniae

We used a global dataset of diverse isolates of Klebsiella spp. (Holt et al., 2015) and our comparative sequence analysis demonstrated that both bamA and bamK are conserved in the K. pneumoniae species complex (comprised of K. pneumoniae, K. quasipneumoniae and K. variicola; Fig. 4). BamK was also found in several close relatives of Klebsiella, including species that are annotated as Raoultella spp. and Enterobacter spp. (Fig. S7, Table S1). Given the current revisions of Klebsiella taxonomy (Brisse et al., 2014, Holt et al., 2015, Li et al., 2016), these species may be closely related to Klebsiella spp. or indeed become revised to be Klebsiella spp. Either way, these observations denote that BamK is encoded in the core genome of K. pneumoniae.

We also note the presence of a second group of BamA-paralogues (Fig. S7, orange branches); like BamK, these are present in addition to BamA in the respective organisms. However, these sequences do not form a monophyletic group with BamK. Thus, organisms such as Haemophilus spp. that are distantly related to Klebsiella spp. also have BamA-paralogues. Given that most Enterobacteriaceae, such as Escherichia spp. and Salmonella spp. do not have second isoforms of BamA, the occurrence in Pasturellaceae must represent an independent evolution of a second BamA parologue. We conclude that BamK is a specific trait for several related groups of the Enterobacteriaceae, such as Raoultella spp. and Enterobacter spp. and is an element of the core genome in Klebsiella spp.

Extracellular loops of BamA and BamK

The crystal structure of BamA from E. coli has been determined (Fig. 5A; Bakelar et al., 2016, Gu et al., 2016, Han et al., 2016) and the sequence of BamA from K. pneumoniae maps readily onto these crystal coordinates. The extracellular loops of the β-barrel domain of BamA are important in contributing to the dome presented on the
major distinguishing feature between BamK and BamA concerns three of these loops: loop 4, loop 6 and loop 7. The sequences corresponding to these loops are highly conserved in BamK (Fig. S3): loops 4 and 7 are longer and loop 6 is substantially shorter in BamK, relative to BamA (Fig. 5B). This will impact on the surface features displayed on the outer face of the dome of BamK.

Differences in the lengths of these same three loops of BamA have been noted once before, in a previous study that described E. coli suppressors of bacteriophage infection (Smith et al., 2007). Under pressure from Shiga toxin-encoding (Stx) phage infection, mutations were recovered in \(\text{bamA} \), mutations that mimic the loop sequences in BamK (Fig. 5B, Fig. S3B). Structural modeling of this BamA(\(\Phi \)) suggests substantive changes in the dome of the \(\beta \)-barrel domains of the two forms of BamA (Fig. 5C). While mere speculation, it may be that the evolution of BamK has been selected in response to phage (or other factors) in the environment. Despite its hypermucoviscous phenotype, B5055 is subject to killing by bacteriophage, and such phage have been mooted as alternative therapies for treating burn wound infections by K. pneumoniae (Kumari et al., 2011).

Discussion

Members of the Omp85 family of proteins have evolved to mediate the assembly of \(\beta \)-barrel proteins into bacterial outer membranes. Previous structural and phylogenetic
analyses (Heinz & Lithgow, 2014) suggested a model for the evolution of TamA through a gene duplication of bamA followed by an evolutionary process of sub-functionalization. This process of gradual change in one copy of the gene provides the means to ultimately encode a protein (TamA) that performs its function in a significantly different way (Shen et al., 2014, Selkridge et al., 2015, Bamert et al., 2017), to facilitate the process of outer membrane protein assembly in collaboration with BamA (Albenne & Ieva, 2017). In principle, bamK might represent an early event on an equivalent trajectory toward a further sub-functionalization. At the present time however, several features of BamK suggest that it can be considered an isoform of BamA. Structurally, the β-strands and inter-strand turns remain highly conserved (Fig. 5B, Fig. S3), as do most elements in the POTRA domains. This in turn suggested that BamK would interact with the same set of partner proteins as BamA, a suggestion that was validated in biochemical assays here with the engineered strains of E. coli (ΔbamA::KpbamA and ΔbamA::KpbamK) and in the K. pneumoniae ΔbamA::bamK strain: BamK forms a BAM complex with the partner proteins BamB, BamC, BamD and BamE.

While BamA is a crucial feature for membrane biogenesis, it is also a liability under some circumstances, with three classes of agents known to bind selectively to the extracellular dome of BamA and impact negatively on bacterial survival. Firstly, infection of E. coli with Stx bacteriophage relies on an initial, species-specific recognition of BamA involving sites in extracellular loops 4, 6 and 7 (Smith et al., 2007). Secondly, the inhibitor of the CdiAB contact-inhibition system binds to BamA in a species-specific recognition that thereafter prevents cell growth and division (Aoki et al., 2008). Thirdly, a peptidomimetic compound designed to mimic natural defensin-like molecules binds BamA and inhibits growth of E. coli (Urfer et al., 2016).

These scenarios provoke speculation on a potential neo-functionalization process that might be active in Klebsiella and other bacterial lineages. The inter-strand loops in BamK have evolved and, for loops 4, 6, and 7 both sequence diversity and length differences impact to change the dome surface of BamA presented at the bacterial cell surface (Fig. 5C). Whether this ‘new function’ provides a means for a phage-resistant form of the BAM complex in Klebsiella, consistent with previous work on E. coli (Smith et al., 2007), or for some other reason, the observation that the dome facing the extracellular milieu has been the most specific site of evolution in BamK is striking. In the E. coli scenario, the surface loops of BamA are recognized by Stx phage as a receptor, in interactions mediated through the conserved tail spike protein of the bacteriophage. Under selection with Stx phage, phage-resistant mutants were recovered (Smith et al., 2007), with these E. coli mutants having surface loops showing similar sequence characteristics to the surface loops in BamK (Fig. S5B). Whether or not it relates to phage-resistance, according to the comparative sequence analyses presented herein, equivalent scenarios of sub-functionalization in bamA seems to have independently evolved in other bacterial lineages outside the Enterobacteriaceae. This speaks to a substantial selective pressure on diverse bacteria to evolve distinct isoforms of BamA. The processes of sub- and neo-functionalization of duplicate genes is recognized as a major driver of evolution (Andersson et al., 2015).

The mechanisms behind host-pathogen interactions mediated by K. pneumoniae are largely driven by the outer surface features of the bacterium: its LPS, fimbrial adhesins and capsule (Krachler, 2016). Directly or indirectly, the BAM complex impacts on the display of these virulence factors, and the discovery of bamK suggests a potential for adaptability of the BAM complex in Klebsiella. LPS display on the cell surface depends on the activity of the LptDE complex, which is assembled by the BAM complex. The type I and type III fimbrial adhesins are extended through usher proteins (Klemm & Schemi, 2000, Wilksch et al., 2011, Khater et al., 2015), which are themselves dependent on the BAM complex and the TAM for efficient assembly (Stubenrauch et al., 2016, Stubenrauch et al., 2017, Heinz et al., 2016). While the Wza secretion pore for capsular polysaccharide is not assembled by the BAM complex (Dunstan et al., 2015), the capsule has a key attachment factor Wzi that is a β-barrel protein (Bushell et al., 2013). The extent to which the BAM complex thereby controls virulence in Klebsiella spp. has been underscored from host-pathogen assessments of a ΔbamB mutant of K. pneumoniae (Krachler, 2016, Hsieh et al., 2016). A better understanding of how these aspects of biogenesis cooperate and are regulated is a first step toward targeting them to control bacterial replication in the course of blood stream and other infections by K. pneumoniae.

Experimental procedures

Bacterial strains and plasmids

The bacterial strains and plasmids used in this study are described in Table S3. The parental strain for K. pneumoniae is B5055 (K2:O1 serotype), and for E. coli is BL21 Star™ (DE3) (Invitrogen). Unless otherwise stated, bacteria were routinely grown in Luria-Bertani (LB) medium overnight at 37°C with orbital shaking. When appropriate, media were supplemented with antibiotics at the following concentrations: ampicillin, 100 μg/mL; kanamycin, 50 μg/mL; chloramphenicol 34 μg/mL.

In order to examine bacterial growth in vitro, bacterial strains were grown overnight in LB broth (M9 minimal media, or DMEM) with orbital shaking at 200 rpm, diluted...
to a starting optical density at 600 nm (OD_{600}) of 0.05 into fresh LB broth (M9 minimal media, or DMEM), placed into 96-well plates (Falcon-BD), and shaken at 200 rpm for 24 hr. Values for the OD_{600} of each sample were recorded at regular intervals using the Tecan Spark™ 10M, and all strains were assayed in three independent biological replicates in technical triplicates.

Prior to isolating membrane fractions, B5055 or BL21 Star™ (DE3) were grown to mid-log phase at 37°C with orbital shaking at 200 rpm. Cells were harvested by centrifugation (5000 × g for E. coli, 15000 × g for B5055 strains, 10 min, 4 °C) and membranes isolated as previously described (Clements et al., 2009). Total membranes were stored in aliquots at −80 °C until required.

Construction of deletion and knock-in strains

PCR amplifications were performed using Phusion High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA) or Taq DNA Polymerase (Roche, Switzerland). Restriction endonucleases and T4 DNA ligase were obtained from New England Biolabs. Synthetic oligonucleotides for PCR and sequencing (Table S4) were obtained from IDT (Singapore). Knock-out and knock-in mutants, in which target genes were deleted or replaced by allelic exchange with a kanamycin resistance-encoding gene, were constructed in K. pneumoniae B5055 using the ‘gene doctoring’ technique (Lee et al., 2009). All primers used are listed in Table S4. ‘Donor’ plasmids carrying the desired mutation were constructed as follows. The kanamycin gene was amplified from pKD4 using primers Fig. 3. KpBamA and KpBamK mediates the assembly of the LptD/E complex in E. coli.

A. Structure of LptD complex (pdb:4RHB). In the correctly assembled LptDE, the lipoprotein subunit LptE (red) sits as a core stabilizing the β-barrel protein LptD (blue) within the plane of the outer membrane.

B. The rate of assembly of [35S]-LptD and [35S]-LptE into the LptDE complex was assessed in the E. coli strain ΔbamA::KpbamA. Cells harboring pCJS44 (a pET-Duet plasmid encoding both LptD and LptE) were starved of methionine and cysteine, pulse-labeled with [35S]-methionine/[35S]-cysteine for 40 s, followed by a 60-minute chase with unlabeled methionine and cysteine. Aliquots were taken at 10 s, 2, 4, 8, 16 and 32 minutes. Samples were incubated at either 37°C (time-course) or 100°C (control sample at 32 min time-point) before analysis by semi-native SDS-PAGE, storage phosphor-imaging and densitometry. The position of the 20 kDa LptE monomer, 95 kDa LptD monomer and the dimeric LptDE complex are indicated. The formation of the LptDE complex is dependent on the co-expression of both LptD and LptE (Fig. 3).

C. The rate of assembly of [35S]-LptD and [35S]-LptE into the LptDE complex was assessed in the E. coli strain ΔbamA::KpbamK, as described above.

D. LptDE dimer assembly was calculated by plotting the normalized density of each dimeric band over time fitted to a curve following an exponential growth equation. The accumulation of the dimeric band over time was assumed to be in proportion to the oligomerization of LptD and LptE monomers into a functional dimer.

E. Histogram of the observed rate constants for appearance of the LptDE dimer. Error bars correspond to SEM of fit (n = 3). The statistical significance was determined by an unpaired two-tailed Student's t test (ns, not significant). [Colour figure can be viewed at wileyonlinelibrary.com]
kanF and kanR. The resulting product included flanking fragment length polymorphism (FLP) recombinase target (FRT) sites to permit subsequent kanamycin cassette excision through use of a helper plasmid. Using either K. pneumoniae B5055 genomic DNA as the template, or E. coli BL21 Star™ (DE3) genomic DNA as the template, approximately 0.5 kb regions flanking the upstream and downstream sequence of the target gene were PCR

![Diagram of tree scale: 1](wileyonlinelibrary.com)

Fig. 4. BamK is encoded in the core genome of Klebsiella pneumoniae. The tree is based on the core gene alignment of the global Klebsiella collection (Holt et al., 2015), the outer ring indicates the species and subspecies of Klebsiella. The same species-specific coloring is used for the branches of the tree. The ubiquitous presence of bamA genes is indicated in the red (inner) circle, and bamK genes are shown in blue (middle circle). BamA and BamK are found throughout the entire Klebsiella pneumoniae complex diversity; incomplete open reading frames interrupted through either frame shifts or contig breaks/gaps in the alignment are indicated as shown in the legend; however, no pattern of continuous loss can be observed, and the incomplete sequences would more likely be derived from assembly errors. [Colour figure can be viewed at wileyonlinelibrary.com]
amplified. The DNA fragments were joined using the Gibson assembly® Master Mix (New England Biolabs, Ipswich, MA), where the kanamycin cassette was flanked by the upstream and downstream target gene sequences (for knock ins, bamA or bamK open-reading frames followed by the kanamycin cassette) into a PCR amplified ISce-I-flanked pGEM-T Easy (Promega) backbone to yield donor plasmids, which were then sequenced.

Plasmid pACBSR carries genes encoding I-SceI endonuclease and lambda Red recombinase under inducible control by L-arabinose. Donor plasmids and pACBSR were transformed into electrocompetent B5055 cells (0.1 cm gap-width cuvette; 200 ohms, 25 μF, 1.8 kV) and selected on LB agar containing kanamycin and chloramphenicol. A single co-transformant was inoculated into 1 mL LB containing 0.2% L-arabinose (Sigma-Aldrich, St. Louis, MO) and chloramphenicol and grown in a shaking incubator at 37°C for 16 hr. Cell dilutions were grown on LB agar containing kanamycin, and resultant colonies were screened by colony PCR using primers flanking the targeted region and within the kanamycin resistance gene. The loss of pACBSR was induced by 0.2% L-arabinose without

Fig. 5. Extracellular loops distinguish BamA and BamK on the surface of K. pneumoniae.
A. Topology of the BAM complex, highlighting the structure of E. coli BamA (pdb: 5ekq) in the context of the partner lipoprotein subunits of the BAM complex and showing the disposition of the inter-strand loops 4, 6 and 7. OM – outer membrane, IM – inner (cytoplasmic) membrane.

B. Multiple sequence alignment with BamA from E. coli (EcBamA) highlights the similarities and differences in KpBamA and KpBamK, with comparison to the modification sites found in phage-resistant EcBamA(Φ) (Smith et al., 2007). A multiple sequence alignment detailing the full sequences of KpBamA and KpBamK from several type strains of K. pneumoniae is presented in Fig. S3.

C. Superposition of EcBamA (red) structure (pdb: 5ekq) and the model of EcBamA(Φ) generated by phyre2 (green), highlighting the differences in the loops contributing to the surface dome (boxed). Inset: an expanded view highlights how the increased length in loops 4 and 7 raise them to the surface of EcBamA(Φ), accommodated by the diminished size of loop 6 in EcBamA(Φ) relative to EcBamA. The extent of changes to the extracellular dome can be appreciated from the top-down view, shown as a space-filling representation to take into account side-chains on each of the loops. [Colour figure can be viewed at wileyonlinelibrary.com]
selection. When required, the kanamycin resistance gene was excised via the FRT sites using the FLP helper plasmid pCP20. All mutations were confirmed by PCR analysis, using primers flanking the targeted regions.

Gene expression analysis

To determine the effect of temperature on *bamA* or *bamK* expression, RNA was extracted from log phase *K. pneumoniae* B5055 wild-type cultures exposed to preheated LB media (30 °C, 37 °C or 42 °C) for 1 hr using the RNeasy minikit (Qiagen). Synthesis of cDNA used 70 ng of random hexamers (Invitrogen) and Superscript II Reverse Transcription kit (Invitrogen), all according to the manufacturer’s guidelines. qPCR was performed using SYBR Green Master (Roche) with primer pairs used at 0.125 μM each; Table S4. Cycling conditions using the LightCycler480 instrument (Roche) were as follows: 95°C for 10 min followed by 35 cycles of 95 °C for 30 s, 55 °C for 60 s and 72 °C for 15 s. For determining relative transcript levels for *bamA* and *bamK*, values were normalized to the expression of housekeeping gene *rpoD*. Primer specificity was determined by melting curve analysis using open source qPCR data analyzer LinReg (Ruijter et al., 2009). All qPCR sample reactions were performed in triplicate.

Construction of gfp reporter fusions and GFP fluorescence measurements

DNA fragments 500bp directly upstream of the translational start site of *bamA* or *bamK* were amplified from *K. pneumoniae* B5055 genomic DNA and were cloned into reporter plasmid pPROBE-gfp[tagless] digested with BamHI and EcoRI. The vector is a broad-host range frame encoding the green fluorescent protein (GFP; Miller reporter plasmid with a ‘promoterless’ open-reading frame, and cells were incubated for a further 5 min. Samples were ‘pulsed’ by addition of 22 μCi mL−1 [35S]-methionine and [35S]-cysteine (NEG072, Perkin Elmer) for 60 s without shaking, subjected to centrifugation (3000 × g, 5 min, 4°C), and then ‘chased’ by resuspension in M9+S media for up to 32 min (the chase temperature was 37°C (static) for both PhoE and LptDE assembly assays).

To track PhoE or LptDE assembly, aliquots were removed to semi-native (SN) sample buffer (Stubenrauch et al., 2016) at 10 s, 2, 4, 8, 16 and 32 min. Samples were incubated for 10 minutes at 37°C or at 100°C as a control to denature any assembled oligomers. Samples were analyzed by SN-PAGE (see Stubenrauch et al., 2016) using 4–16% gradient gels. Proteins were transferred to 0.45 μm nitrocellulose membranes using standard techniques, membranes were air-dried and

© 2018 John Wiley & Sons Ltd, Molecular Microbiology, 109, 584–599
radiation was captured using a storage phosphor screen (GE Health Sciences) and detected using Typhoon Trio (at 320 nm).

From at least three biological replicate gels (n = 3), PhoE monomeric or LptDE oligomeric band densities were measured using ImageQuant™ TL software version 7.0 (GE Health Sciences) with the local average background correction tool. To be able to compare biological replicates, ‘normalized density’ values were calculated by dividing the density measurements of the six timepoints by the greatest density measurement among those timepoints. To calculate the observed rate constant, the ‘normalized density’ values were subsequently determined using the one-phase decay nonlinear regression tool from GraphPad Prism software version 7.02 (GraphPad software, Inc.).

Animal infections

Mice (6-week-old, male BALB/c) were infected by intranasal delivery with 8–9 \(10^3 \) CFU of B5055 wild-type or the isogenic \(\Delta \)bamK mutant strain. After 4, 24, 72 and 96 hr post-infection, mice were euthanized and bacterial counts from lungs and liver determined. All animal experiments were approved by The University of Melbourne Animal Ethics Committee and were conducted in accordance with the Prevention of Cruelty to Animals Act (1986) and the Australian National Health and Medical Research Council Code of Practice for the Care and Use of Animals for Scientific Purposes (1997).

Sequence analysis

The dataset for \textit{Klebsiella pneumoniae} (Table S1) was assembled and annotated as described previously (Holt et al., 2015), and the pan- and core-genome clusters generated using the software package roary (Page et al., 2015) with a cutoff of id90, and the resulting core gene alignment was used for tree calculation (Fig. S7). All genes containing a PF01103 domain (the canonical domain for the Omp85 beta-barrel) according to the annotation with prokka (Seemann, 2014) were retrieved; and all genes in clusters (retrieved from the roary output) containing a PF01103 gene were considered putative Omp85-encoding genes. Representative sequences of the clusters were analyzed manually to exclude the other two \textit{Klebsiella} Omp85 genes (Heinz & Lithgow, 2014); only genes with domain architectures similar to BamA were used to calculate a tree to separate BamA from other copies (BamK). For the tree to distinguish BamA from BamK sequences (Fig. S8), the encoded amino acid sequences were aligned using muscle (version 3.8.31; Edgar, 2004), and information sites were chosen using gblocks (Castresana, 2000) as implemented in seaview (version 4; (Gouy et al., 2010)) allowing all more lenient settings. The tree was calculated using RAxML (version 7.8.6; (Stamatakis, 2006)) with 100 bootstraps and the LG matrix.

The core gene tree was constructed based on the roary output of the core gene alignment, by selecting only sites encoding single nucleotide polymorphisms (snps) with SNP-sites (https://mgen.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.000056), the tree was calculated using RaxML (version 7.8.6; (Stamatakis, 2006)) with 100 bootstraps and the GTR gamma model. The presence/absence of BamA/K as inferred from a BamA/K tree as described above (Fig. S8), as well as the phylogroups as described in (Holt et al., 2015), were plotted onto the tree (Fig. S7).

For the dataset describing the BamK distribution across other species (Table S2, Fig. 4), both BamA and BamK from \textit{K. pneumoniae} MGH78578 (UniProt ID A6T4X9 and A6TGX3, respectively) were used as input into blast with UniProt (UniProt, 2015) searching only microbial genomes. The first 100 hits for both these search runs were used, and the sequences and species joined as a dataset as follows: for each sequence, assigned to a taxonomically unique strain, in the BamK as well as the BamA dataset, where the respective strain was not also represented in the other dataset as well after the first blast search (i.e. a BamK sequence derived from an organism where the corresponding BamA was not in the dataset already, or vice versa), a manual search was performed, and the respective BamA or BamK (if present) was added to the dataset, to give a full set of BamA and BamK sequences for the organisms investigated (Table S2). In the case of highly fragmented sequences, both the BamA and the BamK sequence were removed from the dataset for the respective organism. The sequences were aligned using muscle (Edgar, 2004) as implemented in seaview (Gouy et al., 2010), and to extract the barrel region, the BamA sequence of \textit{K. pneumoniae} MGH78578 (UniProt ID A6T4X9) was used as input for the structure prediction server phyre2 (Kelley et al., 2015), and the barrel domain extracted according to the structure (Noi naz et al., 2013); informative sites were subsequently extracted using gblocks as described above. The tree (Fig. 4) based on the amino acid sequences was calculated with RaxML using the LG matrix and 100 bootstrap replicates. All alignment and tree files are available on figshare [https://figshare.com/s/a37171b4fa4a4d27bde; link will be set public upon acceptance].

Acknowledgements

We thank Dominika Elmlund for expert advice on the transcription activation studies. We acknowledge the staff of
the Monash Antibody Technology Facility for monoclonal antibodies. Research was supported by Program Grant 1092262 from the National Health and Medical Research Council of Australia (NHMRC). T.L. is an Australian Research Council Laureate Fellow (FL130100038).

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author contributions

VT, EH, RAD, CJS, FHA, AC, JJW, HC, CTW designed and carried out analysis. EH, CJS, JJW, CTW, JY, IDH, TL provided expertise to analyses. EH, IDH, TL supervised experimental work and evaluated data. VT, GD, RAS, IDH, TL wrote the manuscript.

Plain language summary

BamA is a protein in the outer membrane that controls the essential process for the assembly of other outer membrane proteins. We show that the important human pathogen *Klebsiella pneumoniae* has two types of BamA, an evolutionary insight into the natural pressure placed on this essential process in bacterial cell biology.

References

efficiency; linking baseline and bias in the analysis of quantitative PCR data. *Nucleic Acids Res* **37**: e45.

Supporting information

Additional supporting information may be found in the online version of this article at the publisher's web-site.

Supplementary Figure S1. BamK is not essential for viability or virulence in *Klebsiella pneumoniae*. (A) Growth curves are shown for B5055 (wild-type) and the isogenic ΔbamK mutant strain as monitored on rich (LB), minimal (M9) or ‘host-like’ (DMEM) medium. (B) Groups of five BALB/c mice were infected with 8–9 × 10^3 CFU *K. pneumoniae* B5055 wild-type, or the isogenic ΔbamK mutant strain, or the complemented mutant (ΔbamK C') by intranasal administration. After 4, 24, 72 and 96 hr post-infection, the number of bacteria in the lungs and liver were enumerated: the colonization of the liver has begun in a few individuals at ~24 hr, and is substantial in all individuals by 72 hr. The mean is shown for each group. (C) Transcript levels for bamA and bamK were determined through qPCR, using RNA samples extracted from log phase *K. pneumoniae* B5055 cultured in DMEM. Data is expressed relative to transcript levels from the constitutively expressed *rpoD*.

Supplementary Figure S2. The 5′-untranslated region of *bamK*. (A) Sequence (1000 bp) upstream of the *bamK* open-reading frame. The putative -35 and -10 element of the predicted −10 promoter is labeled in red, a palindromic sequence overlapping the -10 element is underlined. The predicted ribosome-binding site (RBS) is shown in blue and the ATG start codon is indicated in italics. The predicted stem-loop structure ('native sequence') would not form a stem-loop structure. Promoter activity analysis in *K. pneumoniae* B5055 carrying the transcriptional fusions pPROBE*-gfp[BamK] or pPROBE*-gfp[bamK non-palindrome]. Data are presented on a scatter plot (bar denotes mean of three biological replicates). (B) The predicted loop-structure ('native sequence') that would be possible from the palindromic sequence upstream of *bamK*, in comparison to the modified sequence ('non-palindrome') which would not form a stem-loop structure. Promoter activity analysis in *K. pneumoniae* B5055 carrying the transcriptional fusion pPROBE*-gfp[bamA], pPROBE*-gfp[pbamK] or pPROBE*-gfp[bamK non-palindrome]. Data are presented on a scatter plot (bar denotes mean of three biological replicates). (C) Schematic showing the replacement of the bamA coding sequence with the *bamK* coding sequence to produce gene replacement strain K. pneumoniae B5055 ΔbamA::bamK. A similar strategy was used to achieve gene replacement strains in *E. coli* BL21 Star™(DE3) (ΔbamA::KpbamA and ΔbamA::KpbamK).

Supplementary Figure S3. Conserved sequence upstream of BamK. (A) Multiple sequence alignment of a select
set of BamA and BamK proteins sequences. Residues are colored according to side-chain properties to guide assessment of conservative and non-conservative substitutions. The boundaries for the five POTRA domains are indicated, based on the crystal structure of BamA from *E. coli*. The positions of the transmembrane β-strands in the β-barrel domain of BamA from *E. coli* are indicated by arrows and are numbered (β1, β2 etc.). Red lines indicate the extracellular loop regions, blue dots indicate the sequences in the periplasmic turns. (B) Schematic of predicted domain structure of BamK.

Supplementary Figure S4. Monoclonal antibodies that selectively recognize BamK. (A) Schematic outlining the screening strategy for the production of monoclonal antibodies (MAB) to BamK and the subsequent cloning of the MABK clones 1-5 (MK1-MK5). At left, a structural overlay of the modeled structures for KpBamA (red) and KpBamK (blue). This and multiple sequence alignments suggested a peptide at the junction of POTRA3 and POTRA4 (IALNEGERYRVDRT271) as being diagnostic of BamK. (B) Total cell extracts (100 μg protein) were prepared from *K. pneumoniae* strains B5055 and B5055bamA::bamK and analyzed by SDS-PAGE and immunoblotting. Replicate blots were probed with the monoclonal antibodies MABK.1, MABK.2, MABK.3, MABK.4 or MABK.5 (MK1-MK5). The migration position of molecular weight standards is indicated. The boundaries for the five POTRA domains are indicated, based on the crystal structure of BamA from *E. coli*. (C) Growth curves for the indicated antiserum. The BAM complex containing BamK and analyzed by BN-PAGE and immunoblotting with the indicated antisera. The migration positions for the sub-complexes generated when BamB or BamC is absent (Webb et al., 2012) are indicated. For example, in the absence of BamC, most of the BAMAB module is released from the other components (Webb et al., 2012). Alternatively, in the absence of BamB, most of the BAM complex is recovered as a BAMACDE form. Irrespective of the precise identities of each species generated, the analysis shows a diagnostic change in the mobility of BamK on BN-PAGE.

Supplementary Figure S6. Formation of the LptD/E complex in *E. coli* depends on co-expression of both LptD and LptE. (A) The rate of assembly of [35S]-LptD was assessed in *E. coli* strains ΔbamA::KpbamA and ΔbamA::KpbamK. Cells harboring pCJS42 (encoding LptD) were starved of methionine and cysteine, pulse-labeled with [35S]-methionine/[35S]-cysteine for 40 s, followed by a 60-minute chase with unlabeled methionine and cysteine. Aliquots were taken at 10 s, 2, 4, 8, 16 and 32 minutes. Samples were incubated at either 37 °C or 95 °C before analysis by semi-native SDS-PAGE, phosphorimaging and densitometry. The position of the 95 kDa LptD monomer is indicated. (B) The rate of assembly of [35S]-LptE was assessed in *E. coli* strains ΔbamA::KpbamA and ΔbamA::KpbamK. Cells harboring pCJS43 (encoding LptE) were assayed as described above. The position of the 20 kDa LptE monomer is indicated. (C) The rate of assembly of [35S]-LptD and [35S]-LptE into the LptDE complex as assessed in *E. coli* strains ΔbamA::KpbamA and ΔbamA::KpbamK. Cells harboring pCJS44 (a pET-Duet plasmid encoding both LptD and LptE) were assayed as described above. The position of the 20 kDa LptE monomer, 95 kDa LptD monomer and the LptDE complex are indicated.

Supplementary Figure S7. The distribution of BamK across bacterial species. The tree was calculated using RaxML as described in the methods section. In the representation of the analysis, the Klebsiella-type BamK sequences (blue) are segregated from BamA (and other BamA-related) sequences (red). The taxonomic grouping of the further species for which BamA sequences were analyzed is indicated by colors in a legend (inset). Furthermore, the branch colors illustrate members of the Pasteurellaceae (orange) or Enterobacteriaceae (green), with this also highlighted alongside the sequence entries. Zooming in on the Figure reveals the Uniprot identifiers for each sequence. All sequence entries are further documented in Table S2.

Supplementary Figure S8. BamK is present, along with BamA, across species and subspecies of Klebsiella pneumoniae. Phylogenetic tree of the *K. pneumoniae* amino acid sequences (Table S1) to distinguish BamA and BamK.
As indicated in Fig. 4, the tree is based on the core gene alignment of the global *Klebsiella* collection (Holt et al., 2015), the outer stripe of color-coding indicates the species and subspecies of the *Klebsiella pneumoniae* complex. The ubiquitous presence of *bamA* genes is indicated in the red (inner) stripe, and *bamK* genes are indicated with blue. BamA and BamK are found throughout the entire *Klebsiella pneumoniae* complex diversity. Zooming in on the Figure reveals the Uniprot identifiers for each sequence.

Supplementary Table S1. *K. pneumoniae* strains and accession numbers, and their respective BamA and BamK sequence identifiers.

Supplementary Table S2. BamA and BamK accession numbers.

Supplementary Table S3. Strains and plasmids.

Supplementary Table S4. Oligonucleotide primer sequences.