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Abstract

Background

Dengue virus (DENV) is primarily vectored by the mosquito Aedes aegypti, and is estimated

to cause 390 million human infections annually. A novel method for DENV control involves

stable transinfection of Ae. aegypti with the common insect endosymbiont Wolbachia, which

mediates an antiviral effect. However, the mechanism by which Wolbachia reduces the sus-

ceptibility of Ae. aegypti to DENV is not fully understood. In this study we assessed the poten-

tial of resident microbiota, which can play important roles in insect physiology and immune

responses, to affect Wolbachia-mediated DENV blocking.

Methodology/Findings

The microbiome of Ae. aegypti stably infected with Wolbachia strain wMel was compared to

that of Ae. aegypti without Wolbachia, using 16s rDNA profiling. Our results indicate that

although Wolbachia affected the relative abundance of several genera, the microbiome of

both the Wolbachia-infected and uninfected mosquitoes was dominated by Elizabethkingia

and unclassified Enterobacteriaceae. To assess the potential of the resident microbiota to

affect the Wolbachia-mediated antiviral effect, we used antibiotic treatment before infection

with DENV by blood-meal. In spite of a significant shift in the microbiome composition in

response to the antibiotics, we detected no effect of antibiotic treatment on DENV infection

rates, or on the DENV load of infected mosquitoes.

Conclusions/Significance

Our findings indicate that stable infection with Wolbachia strain wMel produces few effects

on the microbiome of laboratory-reared Ae. aegypti. Moreover, our findings suggest that the

microbiome can be significantly altered without affecting the fundamental DENV blocking

phenotype in these mosquitoes. Since Ae. aegypti are likely to encounter diverse microbiota

in the field, this is a particularly important result in the context of using Wolbachia as a

method for DENV control.
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Author summary

Dengue virus is transmitted by the mosquito Aedes aegypti and can cause dengue fever

and dengue haemorrhagic fever in humans. The World Health Organization currently

considers it as the most important mosquito-borne virus globally. One method to control

dengue infection of Ae. aegypti is to infect the mosquito with a common bacterium, Wol-
bachia, which increases the mosquito’s resistance to dengue virus. The mechanism by

which resistance to dengue virus occurs is not well understood. Here, we considered

whether other bacteria that reside in the mosquito might affect the ability of Wolbachia to

limit dengue virus infection. First, we assessed whether Wolbachia had an impact on the

abundance of bacterial species present in Ae. aegypti, finding that it had minimal effects.

Second, we altered the composition of the bacterial species present by treating Ae. aegypti
with antibiotics, then examined whether this affected Wolbachia’s antiviral effect. We

found that there was no difference in the susceptibility of the mosquitoes to dengue virus,

regardless of antibiotic treatment. We therefore conclude that it is unlikely that there are

specific resident bacteria required for the principal mechanism(s) by which Wolbachia
reduces susceptibility of Ae. aegypti to dengue virus.

Introduction

Dengue virus (DENV) is an RNA arbovirus and the causative agent of dengue fever and the

more severe dengue haemorrhagic fever. There are four serotypes of DENV (DENV1-4),

which together are estimated to infect 390 million people per year [1]. Currently there are no

specific antiviral therapies approved to treat DENV infection, and new DENV vaccines do not

provide optimal protection (World Health Organization, 2016). The primary vector of DENV

is the mosquito Aedes aegypti whose global range is expanding in part due in to urbanisation

and climate change [2,3]. Strategies for DENV control via the vector have traditionally relied

on insecticide application, but recent approaches using genetic modification and a symbiotic

bacterium of insects called Wolbachia are being tested in field trials [4–7].

Wolbachia is an obligately intracellular bacterium transmitted from females to their off-

spring, and a common member of the resident microbiota in insects [8]. Although not naturally

found in Ae. aegypti, stably inherited infections of Wolbachia have been created by transinfec-

tion [9,10]. In naturally infected insects, Wolbachia has been shown to limit virus replication

[11,12]. In Ae. aegypti this effect extends to important human pathogens including DENV, Zika

virus, yellow fever virus and Chikungunya virus [10,13–15]. While the mechanism of Wolba-
chia’s antiviral effect is poorly understood, there is some evidence for the contribution of nutri-

tional competition, priming (pre-activation) of the mosquito immune response, and altered

host miRNA toward the phenotype [16–18]. In addition to the complex interactions between

mosquito host and Wolbachia there is also the potential that additional bacterial players in the

microbiome could mediate mosquito susceptibility to viruses [19,20].

One key mechanism by which residents of the microbiome can mediate viral susceptibility

is through changes in the expression of insect immunity. In Drosophila, for instance, the pres-

ence of specific gut bacterium is necessary to fully activate an antiviral response that viral infec-

tion alone does not trigger [21]. In Ae. aegypti, removal of the gut microflora by antibiotic

treatment reduced expression of key immune genes and reduced DENV titres in the midgut

[22]. A related study also found that re-introduction of the bacteria Proteus and Paenibacillus
to the Ae. aegypti midgut after antibiotic treatment caused significant reduction in DENV
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titre, with data indicating that the re-introduction of these bacterial genera upregulated

immune effector gene expression to cause an antiviral effect [23]. Together these studies sug-

gest that the presence or absence of specific bacterial taxa can alter the activation of insect

immune responses and consequently affect the capacity for viral infection.

The microbiome could also have indirect effects on mosquito susceptibility to viruses either

viaWolbachia or the host. For instance, bacteria such as Asaia and Spiroplasma have been

found to have negative effects on Wolbachia transmission and/or density [24–26]. Wolbachia
and Spiroplasma have been shown to interact in Drosophila in a manner by which Wolbachia
density is reduced by Spiroplasma co-infection, but Spiroplasma is unaffected by Wolbachia
[24]. In the mosquito, a reduction in Asaia abundance following antibiotic treatment improved

vertical transmission of Wolbachia by Anopheles gambiae and also reduced mortality induced

by blood-meal in Anopheles stephensi [25]. These studies suggest that Wolbachia may have spe-

cific interactions with the native microbiome that could affect vector competence. More

broadly, resident microbiota are known to play key roles in mosquito biological functions/fit-

ness. For example, bacteria-free mosquito larvae do not develop past the first instar, but coloni-

zation with one of several strains of bacteria can rescue development [27]. Changes in mosquito

fecundity have also been reported following antibiotic treatment [28,29]. Since the maintenance

and induction of immunity is costly for the host [30], it is possible that broad effects of the

microbiome on insect fitness or condition may shift the balance in the potential trade-off

between immunity and fitness, thereby indirectly impacting on susceptibility to viruses.

Given these findings, it is possible that members of the mosquito microbiota are playing

either direct or indirect roles in Wolbachia-mediated pathogen blocking. Assessing the

involvement of these ‘third-parties’ is critical as it may affect the efficacy of Wolbachia’s block-

ing effects across populations in the field. A recent study that profiled the microbiome of Ae.
aegypti demonstrated its composition varied heavily even over short geographic distances [31].

Here we have deliberately manipulated the microbiome of Ae. aegypti and assessed whether

there are Wolbachia-by-microbiome interactions that may affect Wolbachia-mediated block-

ing. The Wolbachia and mosquito strains examined hail from the original field release trial

populations in Australia and hence the findings may be relevant to other sites globally where

the same Wolbachia strain is currently being released for DENV control [7].

Methods

Ethics statement

The DENV strain ET300 used in this study was obtained from researchers associated with

both Queensland Health (Australia) and the University of Queensland. IRB approval was

obtained from the latter. Patient data were anonymised by the former. Human volunteer

blood-feeding of mosquitoes was approved by the Monash University Human Research Ethics

Committee (ethics number CF11/0766–2011000387), and the participant provided written

informed consent.

Mosquito rearing

The wildtype (wt) Ae. aegypti line was propagated from mosquitoes collected from Babinda,

Australia and used within 5 generations in the laboratory. Mosquito collection from private

land was performed with permission from the owners/residents. The Wolbachia-infected

wMel Ae. aegypti line has been described previously [10] and was generation F22; 10% wt males

were introduced into the wMel line at each generation to maintain a uniform genetic back-

ground and retain the Wolbachia infection status [32]. Adult mosquitoes were reared at 26˚C

and 65% humidity with a 12 h light/dark cycle. All larvae were maintained with fish food
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pellets (Tetramin, Tetra). Adult mosquitoes were fed with 10% sucrose solution, without or

with penicillin-streptomycin (10 U / ml, 10 μg / ml) and kanamycin (200 μg / ml) as in [25],

for 3 successive generations. Females were blood-fed by a single human volunteer for the first

two generations, before the third generation was used in DENV-infection experiments.

Virus strains and infection of mosquitoes

DENV strain ET300 was propagated in C6/36 mosquito cell line by infection at MOI of 0.01 in

RPMI medium supplemented with 2% Fetal Bovine Serum (FBS), L-glutamine and 1 M HEPES

buffer. Seven days post-infection (DPI) supernatant was harvested and clarified by centrifugation

at 12,000 ×g at 4˚C. Virus was used immediately for inoculation of defibrinated sheep blood at a

1:1 ratio, and DENV titre was determined retrospectively by plaque assay as a final concentration

of 1 x 106 plaque forming units (PFU) / ml. Mosquitoes were starved for 24 to 30 h before provi-

sion of the DENV-blood-meal for two to three hours through a piece of porcine intestine, using

artificial feeders heated to 37˚C. The following day mosquitoes were sorted based on feeding,

with unfed mosquitoes discarded.

Sample collection

Females were collected for processing at seven to eight days post-feed. Each mosquito was sur-

face sterilized using 10% bleach, followed by a wash in 80% ethanol and a rinse in sterile water.

To reduce bias in 16s rDNA profiling due to high levels of Wolbachia sequence in the wMel

line, ovaries (the major reservoir for Wolbachia [10]) were removed from bodies of all treatment

groups. Heads were also removed for intended use as a proxy to detect DENV dissemination

but DENV genome copy numbers in wt Ae. aegypti heads did not consistently have high enough

detectable titres. Thus, all analysis of DENV genome copies and 16s profiling were performed

on the Ae. aegypti bodies. Dissections were performed in sterile 1 × phosphate buffered saline

(PBS) using sterilized needle/forceps. Individual bodies were stored in sterile 0.1 ml 1 × PBS,

homogenised using sterile 3 mm glass beads in a mechanical homogenizer, and stored at– 80˚C

until processing for genomic DNA (gDNA) extraction and DENV detection.

Quantitative DENV RT-PCR analysis

For detection of DENV genome copies, one tenth of the volume of the homogenised sample was

removed and added to an extraction buffer solution (10 mM Tris pH 8.2, 1 mM EDTA, 50 mM

NaCl and proteinase K [33]) in a 1:1 ratio. Samples in extraction solution were incubated in a

thermal cycler at 56˚C for 5 min followed by 95˚C for 5min [33] and then cooled on ice until

use. DENV genome copies were determined by a 1-step quantitative reverse-transcriptase PCR

(qRT-PCR) using TaqMan Fast Virus 1-Step Master Mix (ThermoFisher Scientific). Reactions

contained 2.5 μl of sample, 4 × master mix, 250 μM forward primer, 250 μM reverse primer and

250 μM TaqMan FAM hydrolysis probe in a total 10 μl reaction volume. TaqMan primers and

probes complementary to the 3’ untranslated region of DENV and the creation of the DENV-2

standard curve are described elsewhere [17,34]. Thermocycling conditions were as recommended

by the manufacturer. Percentages of individuals infected with DENV were calculated; the lower

detection limit for DENV-positive individuals was determined by detection of standards and set

at 100 copies per qRT-PCR reaction.

Microbiome profiling

gDNA was extracted from individual mosquito bodies using ReliaPrep gDNA Tissue Miniprep

system (Promega) according to the manufacturer’s instructions. gDNA was extracted from
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each mosquito individually, with final concentrations of 10–35 ng / μl used for bacterial 16s

rDNA profiling by Illumina MiSeq (Australian Centre for Ecogenomics, University of Queens-

land). Samples were amplified (25 cycles) using Q5 HotStart 2X Master Mix (New England

BioLabs) with a primer pair for the V3 and V4 regions of bacterial small subunit (SSU) ribo-

somal gene (16s) (Australian Centre for Ecogenomics primer pair Bac_SSU_341F-806wR:

341F CCTACGGGNGGCWGCAG; 806R GACTACHVGGGTATCTAATCC). For each sam-

ple, 2.5 μl of gDNA was used in a total reaction volume of 25 μl. Cycling conditions were as

per manufacturer’s specifications with the exception of the initial denaturation that was per-

formed for 2 minutes; annealing temperature was 55˚C.

Bioinformatic and statistical analysis

Initial bioinformatic processing of 16s raw sequence data was performed by the Australian

Centre for Ecogenomics (University of Queensland). In brief, sequences were trimmed to

remove primers and poor quality sequence, and then hard trimmed to 250 bases (or excluded

where less than 250 bases). Two samples with less than 5,000 reads post-filtering were excluded

from further analysis. QIIME was used to process files using pick_open_reference_otus.py

workflow. Operational taxonomic units (OTU) were BLASTed against the Greengenes data-

base (v 2015/05). Relative abundance of OTU was calculated using BIOM.

Further bioinformatics processing was performed to remove OTU that represented less

than 0.1% of sequence reads within a sample; alternative analysis using a cut-off of 10 counts

in the raw sequence reads yielded similar results. Data were then grouped by genus and nor-

malised such that the OTU were expressed as a fraction of 1. Statistical analysis was performed

on relative abundance at the genus level using SPSS software (SPSS statistics version 22, SPSS

Inc, an IBM Company). The effects of Wolbachia and antibiotic treatment on genera were

assessed using a multivariate general linearized model, with p values of< 0.05 considered sig-

nificant. DENV copy numbers were log transformed and the effect of Wolbachia infection and

antibiotic treatment were tested using a one-way ANOVA.

Results

Treatment of Ae. aegypti with penicillin-streptomycin-kanamycin alters

the microbiome composition without affecting relative abundance of

Wolbachia

To examine the role of the native microbiome in wMel-mediated inhibition of DENV in Ae.
aegypti we experimentally manipulated the microbiome of wt (no Wolbachia infection) and

wMel (stably infected with Wolbachia strain wMel) Ae. aegypti lines before comparing their

susceptibility to DENV infection. To alter the microbiome composition, wt and wMel Ae.
aegypti lines were treated with a penicillin-streptomycin-kanamycin combination for three

generations before DENV-infection by blood-meal. Rearing, DENV infection and processing

were performed in parallel with untreated mosquitoes. The microbiome compositions were

compared at seven to eight days post-blood-meal for 19 or 20 individual mosquitoes per treat-

ment group using 16s rDNA profiling by Illumina sequencing.

There were five taxa that were above our lower limit threshold (OTU representing less than

0.1% of sequences per mosquito) and could be classified at the genus taxonomic level in the wt

line (Fig 1A, S1 Table), and eight taxa in the wMel line (Fig 1B, S1 Table). In both Ae. aegypti
lines there were also OTU that made up a substantial proportion of the profile that were unable

to be classified at genus level (represented as ‘unclassified’, Fig 1). All OTUs in the unclassified

category for wt mosquitoes belonged to the family Enterobacteriaceae, whereas for the wMel

Mosquito microbiome and Wolbachia-mediated dengue virus inhibition
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mosquitoes this comprised both Enterobacteriaceae and additional OTUs whose lowest taxo-

nomic classification was the order Chromatiales. Elizabethkingia (family Flavobacteriaceae)
and unclassified taxa were the dominant taxa in the wt line, accounting for on average 40%

and 58% of OTUs, respectively. In the wMel line the dominant taxon identified was Wolbachia
(average 44%, Fig 1B), but Elizabethkingia and unclassified taxa were also present at a high rel-

ative abundance, representing on average 29% and 24% of OTUs, respectively.

To assess the success of our antibiotic treatment regime in altering the microbiome profile

of both lines we performed statistical analysis by ANOVA, which indicated a significant shift in

antibiotic-treated wt (F = 56.168, p< 0.0005, df = 32) and wMel (F = 19.817, p< 0.0005, df = 30)

mosquitoes. In both wt (Fig 1A) and wMel (Fig 1B) lines, the taxa with the largest reduction in

relative abundance following antibiotic treatment were those unclassified at the genus level (wt:

F = 189.105, p< 0.0005, df = 1; wMel: F = 36.679, p< 0.0005, df = 1). Elizabethkingia largely

replaced those taxa that were reduced in relative abundance due to antibiotic treatment, increas-

ing in relative abundance to represent on average 97% of wt OTUs (F = 158.771, p< 0.0005,

Fig 1. Microbiome composition of wt and wMel Ae. aegypti mosquitoes. Relative abundance of microbiota present in wt (A)

or wMel (B) Ae. aegypti lines as determined by sequencing of 16s rDNA following a DENV-infectious blood-meal. Where indicated

(+ antibiotics) mosquitoes were treated with a combination of penicillin-streptomycin-kanamycin for 3 generations before profiling.

Each bar represents a single mosquito. OTU are grouped by genus; ‘unclassified’ indicates OTU that were not classified at the

genus level.

doi:10.1371/journal.pntd.0005426.g001
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df = 1) and 55% of wMel OTUs (F = 28.051, p< 0.0005, df = 1). Antibiotic treatment also caused

a rise in Chryseobacterium in both lines, but this was only statistically significant in the wt mos-

quitoes (wt: F = 7.755, p = 0.008, df = 1; wMel: F = 2.061, p = 0.16, df = 1). As expected [25,35],

our antibiotic treatment regime caused no changes in the abundance of Wolbachia relative to the

overall microbiome (F = 0.075, p = 0.785, df = 1), nor relative to a Ae. aegypti housekeeping gene

(S1 Fig). Thus, our antibiotic treatment regime successfully and measurably manipulated the

microbiome composition of both lines, without affecting Wolbachia abundance.

Effect of Wolbachia on the microbiome profile of non-treated and

antibiotic-treated Ae. aegypti

Due to its dominance in the community, the presence of Wolbachia clearly affected the relative

abundance of other genera in the microbiome profile. Thus, to assess the effect of Wolbachia
on the abundance of other genera relative to each other, we also calculated a “Wolbachia-cor-

rected” 16s profile by removing all reads assigned to Wolbachia and normalising the remaining

OTUs as a fraction of 1 (Fig 2 and S2 Table). When Wolbachia was excluded from the profile,

the dominant taxa in the wMel line were Elizabethkingia (mean Wolbachia-corrected relative

abundance 55%) and the unclassified taxa (mean Wolbachia-corrected relative abundance

42%), similarly to the wt line (compare Fig 1A and Fig 2).

Between-subjects effects analysis (Table 1) indicated the main effects of Wolbachia and anti-

biotic treatment were both significant in determining Elizabethkingia abundance. There was

also a significant interaction between the main effects, whereby the relative abundance of Eliza-
bethkingia was increased in the wMel line compared to the wt line, but this effect was negated

by addition of antibiotics (Table 1 and Fig 3A). Wolbachia and antibiotic treatment were also

both significant in determining the relative abundance of the unclassified taxa, with an interac-

tion between the main effects (Table 1). In contrast to Elizabethkingia, the unclassified taxa

were decreased in mean relative abundance in the wMel line, dropping from a mean Wolba-
chia-corrected relative abundance of 58% in the wt line to 42% in the wMel line (Fig 3B). This

effect was reversed in the antibiotic-treated wMel line, which had a higher relative abundance of

unclassified taxa on average than the antibiotic-treated wt line (Fig 3B). However, it is notable

that the increase in the mean relative abundance across the antibiotic-treated wMel group is

Fig 2. Relative abundance of bacterial genera corrected for Wolbachia. Relative abundance of genera from 19

(- antibiotics) or 20 (+ antibiotics) wMel mosquitoes after OTU assigned to Wolbachia were removed; ‘unclassified’

indicates OTU that were not classified at the genus level.

doi:10.1371/journal.pntd.0005426.g002
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due to a high percentage of unclassified taxa in a single mosquito out of the 19 mosquitoes sam-

pled (Fig 2).

Wolbachia and antibiotic treatment significantly affected the relative abundance of Serratia,

again with an interaction between the main effects (Table 1). The mean relative abundance

of Serratia was increased from 0.2% in wt mosquitoes to 1.4% in the wMel line. However, this

difference was negated by antibiotic treatment, with no Serratia detected above the lower

threshold in either of the antibiotic-treated mosquito lines (Fig 3C). The only taxon showing a

significant interaction with Wolbachia without an interaction between the main effects was

Chryseobacterium, which was decreased in mean relative abundance in the wMel line com-

pared to the wt line in both antibiotic-treated and untreated groups (Table 1 and Fig 3D).

Manipulating the microbiome of wMel-infected Ae. aegypti by antibiotic

treatment does not significantly impact blocking of DENV

To ascertain the effect of microbiome manipulation on DENV infection rates, we measured

DENV genome copies in individual mosquitoes by qRT-PCR. Infection rates were calculated

using the percentage of mosquitoes that returned a DENV-positive qRT-PCR result above our

lower detection limit. In the wt line, only one mosquito did not have detectable DENV, with

Table 1. The effect of Wolbachia infection and antibiotic treatment on the relative abundance (Wolbachia-corrected) of specific genera.

Genus Factors F value df p

Elizabethkingia Wolbachia 5.929 1 .017

Antibiotics 275.392 1 < .0005

Wolbachia*antibiotics 6.196 1 .015

Unclassified Wolbachia 5.577 1 .021

Antibiotics 261.887 1 < .0005

Wolbachia*antibiotics 10.585 1 .002

Serratia Wolbachia 50.439 1 < .0005

Antibiotics 85.278 1 < .0005

Wolbachia*antibiotics 50.439 1 < .0005

Chryseobacterium Wolbachia 4.285 1 042

Antibiotics 10.019 1 .002

Wolbachia*antibiotics 3.407 1 .069

Weeksella Wolbachia .949 1 .333

Antibiotics .949 1 .333

Wolbachia*antibiotics .949 1 .333

Pseudomonas Wolbachia .291 1 .591

Antibiotics 19.854 1 < .0005

Wolbachia*antibiotics .291 1 .591

Salinibacterium Wolbachia .949 1 .333

Antibiotics .949 1 .333

Wolbachia*antibiotics .949 1 .333

Staphylococcus Wolbachia 1.017 1 .317

Antibiotics .882 1 .351

Wolbachia*antibiotics .882 1 .351

Leucobacter Wolbachia 1.008 1 .319

Antibiotics 1.008 1 .319

Wolbachia*antibiotics 1.008 1 .319

doi:10.1371/journal.pntd.0005426.t001
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98% and 100% of non-treated and antibiotic treated mosquitoes, respectively, DENV-positive

(Fig 4A). Due to known low DENV infection rates in the wMel line [10,32], a substantially

higher number of wMel mosquitoes were blood-fed and tested for DENV-infection than the

wt line. While the infection rates of the wMel line were much lower in comparison to the wt

line, as expected, the antibiotic-treated wMel and untreated wMel groups had comparable

infection rates of 9.8% of 11.5%, respectively (Fig 4A).

To assess whether there was an impact of antibiotic treatment on DENV load in mosquitoes

with detectable infection, we compared the number of DENV genome copies in antibiotic-treated

and untreated wt and wMel (Fig 4B). There was no effect of antibiotic treatment (F = 0.012,

df = 1, p = 0.91) but there was an effect of Wolbachia infection (F = 115.9, df = 1, p<0.0001),

whereby wMel mosquitoes had significantly lower DENV copies than the wt, as expected [10,36].

Therefore, treatment of Ae. aegypti with a combination of penicillin-streptomycin-kanamycin did

not affect Wolbachia-mediated inhibition of DENV load.

Discussion

In summary, we profiled the microbiome of laboratory-reared Ae. aegypti to examine the effect

of stable infection by Wolbachia, and the potential role of the microbiome in Wolbachia-medi-

ated DENV blocking. We found that Wolbachia has few effects on the microbiome, and that

even significant changes to the microbiome caused by our artificial manipulation had no effect

on DENV susceptibility in these mosquitoes. This is of particular importance given that Wol-
bachia is likely to encounter diverse microbial environments in the field. Our findings suggest

that the microbiome will be largely robust to Wolbachia infection and that at least for the spe-

cies manipulated here, there is no evidence that ‘third parties’ are a critical factor in the expres-

sion of Wolbachia-mediated DENV blocking.

Fig 3. Effects of Wolbachia and antibiotic treatment on relative abundance of taxa. Mean relative abundance of Elizabethkingia

(A), unclassified taxa (B), Serratia (C) and Chryseobacterium (D) calculated from the Wolbachia-corrected microbiome profiles based

on 16s sequencing data (S2 Table) and expressed as a percentage of the total.

doi:10.1371/journal.pntd.0005426.g003
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The microbiome profiling performed in our study identified only a small number of genera

present in laboratory-reared Ae. aegypti, regardless of Wolbachia infection status. This low

level of microbial diversity is consistent with previous studies of laboratory-reared mosquitoes

profiled via both culture-dependent and culture-independent methods [23,27,37–39]. While

the microbiome composition of mosquitoes is known to differ across environments [31], our

detection of Flavobacteriaceae/Elizabethkingia and Enterobacteriaceae as a substantial compo-

nent of the microbiome is in keeping with several other studies of laboratory-reared Aedes and

Anopheles species [23,27,29,39,40]. Other genera detected in our study (Pseudomonas, Serratia,

Chryseobacterium, Leucobacter, Staphylococcus, Weeksella) have also been reported in previous

mosquito microbiome studies [23,38,41,42]. Thus, our 16S rDNA sequencing methods appear

robust in their profiling of the Ae. aegypti microbial community.

Our results indicate that Elizabethkingia and the unclassified taxa were the clearly dominant

taxonomic groups in both mosquito lines, suggesting that wMel does not require a drastic

change in the microbiome composition for stable infection of Ae. aegypti. This finding is in

agreement with a recent study of laboratory-reared An. stephensi, which also reported Eliza-
bethkingia and unclassified Enterobacteriaceae as the dominant taxa, and found that infection

with Wolbachia strain wAlbB had no effect [39]. However, it is notable that despite no large

shifts in the microbiome in Wolbachia-infected Ae. aegypti, we did detect significant

Fig 4. Infection rate and DENV genome copy number are unaffected by manipulation of the

microbiome using antibiotic treatment. (A) Percent of infected mosquitoes as determined by qRT-PCR;

total numbers of mosquitoes tested per group are listed below each chart. (B) Total number of DENV genome

copies per body for all mosquitoes identified as DENV-positive in (A). Statistical analysis was performed using

a one-way ANOVA, only the effect of Wolbachia was significant. Data shows median and interquartile range.

doi:10.1371/journal.pntd.0005426.g004
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interactions between Wolbachia and several taxa: Elizabethkingia, Serratia, Chryseobacterium
and the unclassified taxa. Nevertheless, with the exception of Chryseobacterium, we were able

to alter the nature and/or extent of these interactions by antibiotic treatment, without observ-

ing any effects on DENV susceptibility. Similar results were recently observed in Drosophila,

where Wolbachia had significant interactions with the microbiome, but altering the micro-

biome composition by antibiotic treatment did not change susceptibility to Drosophila C virus

[43]. These results suggest that Wolbachia’s interactions with the taxa identified in our study

are unlikely to contribute to the anti-DENV phenotype in Ae. aegypti.
To our knowledge, this is the first study to report the effect of antibiotic treatment on Wol-

bachia-mediated DENV blocking in mosquitoes. However, a prior study by Xi and colleagues

indicated that treatment of Wolbachia-uninfected Ae. aegypti with antibiotics led to increased

DENV titres in the midgut [22], thought to be caused by a down-regulation of immune gene

expression in the aseptic mosquitoes [22]. We did not see such a decrease in titres in our wt

Ae. aegypti line following antibiotic treatment, but several differences exist in experimental

conditions that may account for our contrasting results, including differing tissues, virus

detection/quantification methods, and antibiotic treatment regimes. Although we cannot

exclude the possibility that our antibiotic treatment regime may not have targeted taxa that

reduce DENV load, there were only three taxa remaining in the wt Ae. aegypti following antibi-

otic treatment: Elizabethkingia (detected in 19/19 mosquitoes), Chryseobacterium (detected in

11/19 mosquitoes), and Staphylococcus (detected in 2/19 mosquitoes). Since Elizabethkingia
and Chryseobacterium underwent a significant increase in relative abundance following antibi-

otic treatment without a corresponding effect on DENV load, it would appear unlikely that the

remaining taxa have a strong interaction with DENV. It is notable that there are also differ-

ences between our study and that by Xi and colleagues in the DENV genotype (New Guinea C

strain [22] versus ET300 strain in the current study) and the mosquito genotype (established

Ae. aegypti Rockefeller/UGAL strain [22] versus generation F5 in the laboratory collected from

Babinda, Australia in the current study), which may indicate a role of genotype-by-genotype

interactions/effects.

There are several potential limitations of our study. First, we used a qRT-PCR approach to

quantify virus. While plaque assays would be more informative with respect to quantifying live

virus, there is evidence that the two correlate directly by a factor of 100–1000 fold [44]. Second,

despite shifting the microbiome composition we cannot completely rule out the potential

interactions between blocking and any taxa that remain. Lastly, as with all laboratory micro-

biome studies it is not clear whether these effects will translate to the field. Field populations

may have different resident microbiome species or abundances given interactions in field rele-

vant environmental conditions [23,31]. For example, Elizabethkingia is commonly found to be

a dominant taxon in laboratory-reared mosquitoes (as found in the present study), but is pres-

ent at much lower relative abundance or absent in field-collected mosquitoes [37,39,45]. As

such, future studies should investigate the impact of the microbiome of diverse field mosqui-

toes on Wolbachia-mediated DENV blocking. Nonetheless, our data suggest that the funda-

mental basis for the anti-DENV phenotype in wMel-infected Ae. aegypti is unlikely to be

caused through specific effects on and/or requiring other microbiota.

In conclusion, we found that stable infection of laboratory-reared Ae. aegypti with Wolba-
chia strain wMel does not alter the strong dominance of Elizabethkingia and unclassified

Enterobacteriaceae in relation to other genera comprising the microbiome. Importantly, anti-

biotic treatment did not affect DENV blocking by wMel, despite a measurable alteration in the

microbiome composition. Thus, we conclude that Wolbachia-mediated DENV blocking does

not appear to rely on a specific microbiome composition. These findings fit with recent data

from a model system of Semliki Forest virus infection of Drosophila melanogaster cells, which

Mosquito microbiome and Wolbachia-mediated dengue virus inhibition
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indicate that Wolbachia inhibits very early stages of the viral replication cycle, and is thus likely

to involve an intrinsic mechanism that occurs on a cellular level [46]. Nonetheless, there may

be value to profiling the microbiome of wild caught mosquitoes in field populations pre and

post Wolbachia releases.
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