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ABSTRACT Voice Assistants (VAs) are increasingly popular for human-computer interaction (HCI)
smartphones. To help users automatically conduct various tasks, these tools usually come with high privileges
and are able to access sensitive system resources. A comprised VA is a stepping stone for attackers to
hack into users’ phones. Prior work has experimentally demonstrated that VAs can be a promising attack
point for HCI tools. However, the state-of-the-art approaches require ad-hoc mechanisms to activate VAs
that are non-trivial to trigger in practice and are usually limited to specific mobile platforms. To mitigate
the limitations faced by the state-of-the-art, we propose a novel attack approach, namely Vaspy, which
crafts the users’ ““activation voice” by silently listening to users’ phone calls. Once the activation voice is
formed, Vaspy can select a suitable occasion to launch an attack. Vaspy embodies a machine learning model
that learns suitable attacking times to prevent the attack from being noticed by the user. We implement
a proof-of-concept spyware and test it on a range of popular Android phones. The experimental results
demonstrate that this approach can silently craft the activation voice of the users and launch attacks. In the
wrong hands, a technique like Vaspy can enable automated attacks to HCI tools. By raising awareness,
we urge the community and manufacturers to revisit the risks of VAs and subsequently revise the activation

logic to be resilient to the style of attacks proposed in this work.

INDEX TERMS Voice assistant, smartphone, android, software security, systems security.

I. INTRODUCTION

Voice assistants (VAs) have been widely used in smartphones,
typically as human-computer interaction (HCI) mechanisms
for device control and identity authentication. Popular exam-
ples from the market include Amazon Alexa [1], Samsung
Bixby [2], Google Assistant [3], and Apple Siri [4]. Because
human-beings are able to speak about 150 words per minute,
which is much faster than typing, e.g., roughly 40 words
per minute on average, VAs are very useful to transform
human speech into machine-actionable commands. This cre-
ates an easy-to-use design of smartphones, especially for
those that need lots of inputs or for scenarios where ‘hands-
free’ is mandatory (e.g., making phone calls when driv-
ing). In order to support broad functionalities via voice,
e.g., sending text messages, making phone calls, browsing the
Internet, playing music/videos, efc., VAs are usually granted
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high-level privileges including dangerous permissions [5]
(e.g., ACCESS_COARSE_LOCATION, READ_CONTACTS).

Unfortunately, the VA technique is a double-edged sword.
They not only bring great convenience to smartphone users,
but also offer a backdoor for hackers to gain entrance into
the mobile systems [6]. Hackers can take advantage of VAs’
required high privilege in accessing various applications and
system services to steal users’ private information like loca-
tions and device IDs [3], control smart home devices [7],
forge emails, or even transfer money [8], efc. For example,
after activating the Google Assistant with the keywords “OK
Google”, a hacker can further manipulate an episode of
attacking voice that cheats the smartphone to send the user’s
location to a specific number via SMS with commands such
as “send my location to 12345678” [3]. Given a
list of VA-enabled functions [9], we can identify many poten-
tial attacks against users’ smartphones [10].

Prior work has already demonstrated the feasibility of
attacking smartphones via VAs [1], [3], [11], [12]. The key
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to the successes of the approaches is to activate VAs
in a stealthy manner. For example, W. Diao et al. [3] and
Alepis and Patsakis [1] utilise the Android inter-component
communication (ICC) to wake up the VA. To be stealthy,
they propose to launch attacks when smartphones are
unattended or in the early morning (e.g., 3 am). How-
ever, this approach requires to call a specific API
(‘ACTION_VOICE_SEARCH_HANDS_FREE’), which is
only available in Google Assistant. This excludes the use
of the approach in some brands like Huawei and Xiaomi,
which provide custom VAs other than Google Assistant.
Zhang et al. [12] propose using inaudible ultrasound to acti-
vate VAs. The attacking commands are undetectable by users
but can be recognised by VAs on smartphones. However,
this approach needs a special ultrasound generator on-site,
which is not practical in the real world. There is another work
under the same umbrella. Carlini et al. [11] apply adversarial
machine learning technique to manipulate attacking sounds
against voice recognition systems. This approach requires the
hackers to have physical access to the targeting smartphones
and run sound crafting processes iteratively. This premise is
also impractical in most real-world scenarios.

In this paper, we propose a novel and practical stealthy
attacking approach against voice assistants in Android
phones, named Vaspy. It learns from the user’s normal
dialogue to craft the activation voice to the VA and leverages
the built-in speaker to play and activate the VA. To be stealthy,
the attack is triggered only at moments when the smartphone
user is most likely to overlook the occurrence of activation
voice. The idea of Vaspy comes from two practical facts:
1) the built-in speaker can be used to activate the VA of
a phone [1]; and 2) the ringtone of a phone can be easily
neglected by a user in a noisy environment.

We develop a proof-of-concept spyware based on Vaspy.
The spyware disguises itself as a popular microphone con-
trolled game to increase the chance of successful delivery
to targeting Android phones.! The spyware records in/out-
bound calls and synthesises the activation keywords (e.g., ‘OK
Google’) using speech recognition and voice cloning [14]
techniques. This operation is necessary as state-of-the-art
VAs are resilient to unauthenticated voiceprints. The proof-
of-concept spyware sheds light on two advantages of Vaspy:
1) since the attacking process only makes use of a common
component in an Android phone (e.g., the built-in speaker),
Vaspy can be applied to most off-the-shelf Android phones
that have built-in VAs; this breaks the limitations in prior
work, which either requires a special equipment [11], [12] or
can only be applied to Google Assistant [1], [3]; 2) Vaspy can
employ machine learning techniques to analyse data collected
from various on-board sensors; this helps Vaspy identify the
optimal attacking time, making it stealthier compared to prior
work [1], [3].

IThis is only an example for delivery. There are many other social engi-
neering methods to be used in the real world, e.g., [13].
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Vaspy can be very dangerous to smartphone users, not
only due to its stealthiness, but also because of its resilience
to state-of-art anti-virus tools. We test the proof-of-concept
spyware on VirusTotal [15], a widely adopted industrial
anti-virus platform. We also test the spyware on three state-
of-the-art learning-based Android malware detectors, namely
Drebin [16], DroidAPIMiner [17], and MaMaDroid [18].
Results indicate that the spyware based on Vaspy can evade
their detection. In fact, Vaspy seldom invokes sensitive APIs
and uses the VA as a puppet to carry out malicious activities,
making it resilient to those anti-virus tools.

We summarise the contributions of this paper as follows.

« We propose a novel attacking approach called Vaspy,
which can stealthily hack into Android phones via
built-in VAs without users’ awareness.

o We designed a context-aware module in Vaspy, making
it stealthier compared to prior work. This module pro-
vides intelligent environment detection to identify the
optimal time to launch attack, based on the data collected
from various on-board sensors.

« We develop a proof-of-concept spyware based on Vaspy
to evaluate the attack in a real-world empirical study. The
empirical results show that users cannot detect the spy-
ware and the spyware does not affect the performance
of Android phones significantly. We also find that the
spyware is resilient to typical anti-virus tools from both
industry and academia.

The rest of this paper is organised as follows. Section II
presents related works. Section III provides the details of
the attacking model in Vaspy. Section IV-A demonstrates the
feasibility of Vaspy through a proof-of-concept spyware. The
evaluation is presented in Section V, followed by a discussion
of some open issues in Section VI. Section VII concludes this

paper.

Il. RELATED WORK

A. ATTACKS TO SMARTPHONE VA

There are a few existing work designed to attack VAs. For
example, Alepis and Patsakis [1] Diao et al. [3] proposed an
attacking method that made use of Android inter-component
communication mechanism and built-in speaker. To be
stealthy, Diao et al. [3] designed the attack to be triggered
at 3 am, a time when smartphones were expected to be
unattended (e.g., users sleeping). A similar model to make
the attack stealthy was adopted in E. Alepis et al.’s work [1].
However, these attacks require a specific API (Intent:
‘ACTION_VOICE_SEARCH_HANDS_FREE’), which was
only available in Google Assistant. This limits the use of
their proposed attacking methods, e.g., considering devices
like Huawei’s Xiao Yi and Xiaomi’s Xiao Ai, which provide
custom VAs for users. In addition, the stealthiness of the
above methods is not complete. For example, the volume of
activation voice (e.g., 5543 dB claimed in Table 4 of [3])
may be loud enough to wake the user, considering the quiet
environment in the early morning [19].
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There are some other attacking methods that focused on
crafting special audio that could be recognised by smartphone
VAs but not heard by human-beings [11], [12]. For example,
the idea of Carlini et al. [11] was to obfuscate raw attack audio
and make it sound like a noise. Based on adversarial machine
learning techniques [20], [21], the deliberately crafted audio
could be recognised by smartphone VAs but was neglected
by smartphone users as incomprehensible noise. In another
example, Zhang et al. proposed using ultrasound [12], as its
frequency is higher than the upper audible limit of human
hearing. However, the approach of Carlini ez al. [11] requires
access to the targeting voice recognition model as either a
black-box or a white-box, in order to run audio crafting
processes iteratively. Moreover, the approach of Zhang et al.
requires a special instrument (e. g., ultrasound generator) [12].
Both premises are impractical in most real-world scenarios.

There are also some works that specifically studied the
attacks against speech recognition systems (note: a key part
in VA) [22]-[24]. For example, Yuan et al. [24] embed-
ded voice commands into a song that can be recognised
as a complete sentence by the speech recognition sys-
tem. Schonherr et al. [23] manipulated adversarial examples
against speech recognition systems by crafting special
audio signals based on psycho-acoustic hiding technique.
Kumar et al. [22] explored interpretation errors made by
Amazon Alexa and found that Amazon Alexa could make
some permanent systematic errors. All these works focus
on audio processing for attacks. However, in the proposed
Vaspy, we mainly focus on the stealthier attacking behaviours
such as identifying suitable attack time and making it imper-
ceptible to users. The ideas of the above works can also be
borrowed and integrated into our Vaspy to expand the attack
range.

B. CONTEXT-AWARENESS BASED

ON SMARTPHONE SENSORS

The success of Vaspy relies on activating VAs in a stealthy
manner. This in turn relies on context-awareness that identi-
fies the optimal attacking time according to the data collected
from the smartphone’s on-board sensors (e.g., accelerometer,
gyroscope, and ambient light sensor). In this subsection,
we analyse similar works that also adopted context-awareness
based on on-board sensors.

D. Silva et al. adopted a series of sensors in a smart home to
predict human activities [25]. J. Wiese et al. collected sensor
data to analyse where people keep their smartphones [26].
They achieved an 85% successful rate in determining if a
smart phone was in a bag, in a pocket, out, or in hand.
Liu et al. [27] proposed recognising PINs when users input
them by keyboard to smart watches. They used the accelerom-
eter to capture user’s hand movement, and achieved high
accuracy in keystroke inference. In another work, user’s
typing pattern was learned via accelerometer readings [28].
These patterns were then used to infer user’s typing on the
screen. Moreover, J. Ho et al. proposed a context-awareness
algorithm that determined when and what information to
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FIGURE 1. The workflow of an example spyware based on Vaspy. Ambient
sound (e.g. Incoming/outgoing calls) is monitored and recorded, and the
activation voice is then synthesised. User’s environment is monitored by
built-in sensors to determine a suitable attacking occasion. When
launching the attack, text commands can be retrieved from Firebase [33]
and generated attack audio by a built-in Text-to-Speech (TTS) module in
the smartphone.

present would not make flawless decisions on mobile devices
with heavy communication traffic [29]. We can find many
similar applications of context-awareness based on smart-
phone sensors, e.g., [30]-[32].

Similar to prior work, Vaspy also uses context-awareness
based on smartphone sensors. In this area, we reckon that
there is no superiority among different context-awareness
methods. Vaspy just integrates those that can increase the
chance of successful attacking. The particular approach may
be different when Vaspy is implemented in various proof-of-
concept scenarios.

Ill. ATTACKING MODEL: VASPY
The workflow of Vaspy is shown in Figure 1. Vaspy’s attack-
ing approach includes two modules: 1) Activation Voice
Manipulation and 2) Attacking Environment Sensing. The
first module synthesises the commands (e.g., ‘OK Google’)
that are required to activate the VA. Because most popular
VAs can differentiate the voice of genuine smartphone owners
based on artificial intelligence technologies [34], the activa-
tion voice in Vaspy will be manipulated based on the targeted
users’ own voice. This will ensure the success in activating
smartphone VAs.

There are mainly two approaches available for synthesising
activation voice: 1) using users’ voice recording to clone an

VOLUME 7, 2019



R. Zhang et al.: Using Al to Attack VA: Stealthy Spyware Against Voice Assistances in Smart Phones

IEEE Access

activation voice [14]; and 2) extracting an activation voice
form users’ voice recordings. For the first approach, we can
adopt voice cloning method [14] based on multi-speaker
generative modelling [35] to generate the activation voice
by a few users’ own voice recordings. The method pro-
vides a trained multi-speaker model (fine-tuning) that takes
a few audio-text pairs as input to simulate new speaker. This
approach requires a text input to encode the cloned voice.
Alternatively, the second approach adopts speech recog-
nition techniques/tools such as Recurrent Neural Network
(RNN) [36] to retrieve/synthesise the vocal pieces of those
special words from users’ own voice. This approach has
been widely used in some commercial systems such as IBM
Watson [37]. In Section IV-A, we implement an RNN-based
method to synthesise users’ voice in our proof-of-concept
spyware, but alternative techniques/tools can also be inte-
grated to Vaspy. In our implementation, the vocal corpus of
special words can help craft the activation voice, e.g., ‘OK’
plus ‘Google’ producing ‘OK Google’ as a whole activation
voice piece for Google Assistant. However, it can be very
challenging when the targeted user seldom speaks these spe-
cial words. In this case, Vaspy will synthesise the vocal pieces
of the special words from syllables captured from users’
voice [38], e.g., the first syllable of ‘good’ and the second syl-
lable of ‘single’ can be concatenated to pronounce ‘google’.

Once the activation commands are crafted, the second
module will collect environment data such as light levels,
noise levels, and motion states, via on-board sensors. Vaspy
introduces machine learning techniques to decide an optimal
time to launch the attack in a stealthy manner. The correctness
of Vaspy’s decisions is determined by the volume and quality
of the contextual data collected to access the attacking envi-
ronment. After the second module identifies a suitable attack-
ing time, the synthesised activation voice is played, followed
by prepared attacking commands (e.g., “send my location
to 123456°"), causing harm to the targeted smartphone user.
After the activation, successive attacking commands can be
easily delivered to the VAs to control the compromised phone.

IV. PROOF-OF-CONCEPT: A SPYWARE

A. ACTIVATION VOICE MANIPULATION

We implement a proof-of-concept spyware in Android to
evaluate Vaspy in a series of real-world scenarios. The spy-
ware disguises itself as a microphone-controlled game. When
a user starts playing the game, Vaspy will be activated in
the background and stay active even if the game app is
terminated.

Once launched, Vaspy registers itself as a foreground
service’ that monitors phone call status. When there is an
incoming or outgoing call, Vaspy starts recording the audio
from microphone. An audio clip is saved every 30 seconds.
It will be processed by the Activation Voice Manipulation

2 Android 9 disables background services from accessing user input and
sensor data. Therefore, we use foreground service and hide the notification
icon by making it transparent. [39]
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(B)

FIGURE 2. RNN training data pre-processing. (A) raw audio signal as
input, which contains the activation keywords; (B) spectrum’s converted
from raw audio signal; (C) a matrix that contains labeled starting and
ending frames of the activation keywords.

module and then be deleted immediately to release the stor-
age. The recording process stops when either the phone call
ends or the activation keyword is successfully synthesised.

We implement a RNN-based voice synthesis model® in
our proof-of-concept spyware. The RNN model is trained
with audio clips containing both positive words (i.e., acti-
vation keywords) and negative words (i.e., non-activation
words). The training clips are synthesised by human voices
and background noises. Human voices are collected from 10
participants (5 males and 5 females). Fifty audio clips with
positive words and fifty with negative words are collected,
and then synthesised with different background noises. Even-
tually, 5, 000 training audio clips (13.9 hours in length) are
generated. Figure 2 illustrates the process of preparing the
training samples. Audio signals are converted into spectro-
grams which represent the spectrum of frequencies of the
signals. Starting and ending frames of each activation key-
word are labeled in the audio clips. The RNN is trained to
extract activation words from audio clips. We implement the
Gate Recurrent Unit as the core unit of our RNN [40]. There
are 4, 500 and 500 audio clips used in training and testing,
respectively. The accuracy on the testing set is 93.4%.

Note that in our prototype implementation, recorded audio
clips must contain the activation keywords. However, this
limitation can be removed by implementing voice cloning
technique [14], which requires only a few voice recordings
of arbitrary contents from the targeting user.

B. ATTACKING ENVIRONMENT SENSING

The Attacking Environment Sensing (AES) module deter-
mines the optimal attacking time based on the environment

3The trained models are perform on server to occupy local resources as
less as possible.
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data collected by the sensors. In particular, we extract the
movement intensity features from accelerometer readings and
the features of environment variables from microphone and
light sensors readings. Since smartphones do not have built-in
noise sensors, noise levels in decibel are calculated from
the amplitude of the ambient sound that we gathered from

microphone, according to Lgg = 101g (2—(1))2 wherein A
is the amplitude of the recorded sound, and Ay is a standard
amplitude that is usually set to one. The movement intensity
features and environment variables features will be handled
by the AES module to determine the attacking success rate.
We treat this environment sensing problem as a classification
problem, but there are only two results: attacking is successful
or failed. The goal of AES module is to determine how likely
an attacking will be successful instead of recognise a specific
scenario.

Movement intensity features describe an overall perspec-
tive of human behaviour state. We divide human behaviours
into a series of states, including 1) the definite motion
state, 2) the definite stationary state, and the relative
motion-stationary state. The definite motion state indicates
significant fluctuation on sensor readings. The definite sta-
tionary state shows consistent sensor readings. The sharp
difference of readings between the definite motion state and
the definite stationary state allows the classification model
to recognise these behaviours with high accuracy. However,
the activities that do not show an apparent fluctuation may
confuse the classification model. Therefore, to increase the
classification accuracy, we define an intermediate, i.e., a rel-
ative motion-stationary state, by which most of the confusing
activities can be classified accurately. In this prototype,
we use Random Forest as our classification model because
RF does not directly output class labels but instead computes
probabilities. We assign labels to the instances according to
whether the probabilities of RF exceed a certain threshold.
We label the motion state with the probability of over 60%
and less than 40% as a definite motion state and a defi-
nite stationary state, respectively. We also label the motion
state with the probability between 40% to 60% as a rela-
tive motion-stationary state. As the movement intensity fea-
tures are categorical data, machine learning based algorithms
cannot work with them directly. Therefore, we convert all
the movement intensity features to numerical values using
one-hot encoding. The definite motion state has been encoded
to [0, 1], the definite stationary state has been encoded
to [1, 0] and the relative motion-stationary state has been
encoded to [1, 1]. The collected data is then fed into machine
learning algorithm to train the AES model.

C. POST ATTACKS AND SPYWARE DELIVERY

Once the AES module determines to launch the attack,
the synthesised activation voice is played via the speaker
on the victim’s phone. Meanwhile, the attacking commands,
which are in text format, are dynamically fetched from Fire-
base [1] and played via the smart phone’s speaker using
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Rocket raising

when blowing

FIGURE 3. The snapshot of the proof-of-concept spyware. After player
clicking start button, the rocket will raise when player blows or scream to
the microphone. The rising speed depends on the volume of sound that
the microphone receives.

Android built-in Text-to-speech (TTS) service. Attackers can
then manipulate the voice assistant to further conduct mali-
cious activities such as leaking private information, sending
malicious SMS/email, etc.

Vaspy is able to utilise VA as an attacking tool which can
bypass many permissions (e.g., SEND_SMS). Nevertheless,
three fundamental permissions are required in Vaspy, which
are RECORD_AUDIO (to record the activation voice of the
user), INTERNET (to dynamically fetch attacking commands
from the Firebase server and interact with trained online
model), and READ_PHONE_STATE (to monitor incom-
ing/outgoing call status). Vaspy is disguised as a popu-
lar microphone-controlled game, so that it can legitimately
request the RECORD_AUD IO permission without being sus-
pected by the user. When a victim user plays the game,
the player is required to blow or scream to the microphone to
raise a rocket. The higher volume the microphone receives,
the faster the rocket flies. (The snapshot of the game can be
found in Figure 3). The game is very deceivable to teenagers
or kids. In fact, the spyware can be delivered in other forms
such as a malicious audio recorder. READ_PHONE_STATE
and INTERNET permissions are very commonly requested
by various Android games. There are 46 of the top 100 games
on Google Play that requests the READ_PHONE_STATE per-
mission, while all of the top 10 games request the INTERNET
permission.

V. EVALUATION

In this section, we evaluate the performance of our proto-
type spyware in terms of the attack success rate. The attack
capabilities on the VAs from various vendors are also inves-
tigated. We evaluate the proposed attack on three VAs on
four Android smartphones, including Google Assistant on
Google Pixel 2 and Samsung Galaxy S9, Xiao Yi on Huawei
Mate 8, and Xiao Ai on Xiaomi Mi 8. In addition, to examine
its stealthiness, we evaluate the system overhead, and teste
Vaspy against anti-virus tools/platforms.
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FIGURE 4. Overview of the real-world scenarios.

A. EVALUATION OF THE ACTIVATION VOICE
MANIPULATION MODULE

To evaluate the effectiveness of the AVM module in the
spyware, we built a simple corpus, which includes 60 pos-
itive sentences (i.e., sentences containing the required acti-
vation words) and 40 negative sentences (i.e., sentences
containing no required activation words). The location of
the required activation words in the positive sentences
varies. For instance, the activation words can appear at
the beginning, in the middle or at the end. We recruited
10 participants (5 male, 5 female) to read these sentences.
We provided Google Pixel 2 and Samsung Galaxy 9 to
record the audio. In addition, we asked these 10 partici-
pants to speech each sentence in various speed to improve
diversity.

The recorded audio clips are then input to the AVM module
one by one. If the module correctly detects and extract the
activation word from a positive sentence, it will be marked as
a success; otherwise, will be marked as a failure. The model
should ignore all negative sentences, therefore, any activation
word extracted from a negative sentence will be counted as
a failure. Eventually, we achieve 95% (57/60) accuracy in
positive sentences and 100% (40/40) accuracy in negative
sentences

B. EVALUATION OF THE ATTACKING

ENVIRONMENT SENSING MODULE

Smartphones are taken to various real-world scenarios for
data collection. These scenarios include moving or stationary
states, noisy or quiet environment. The data are collected in
different time period of a day. The example scenarios are
shown in Figure 4. In each of the scenarios, we collected the
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data when the phone was held on hands as well as put in the
pocket.

Each smartphone is carried by a participant for data collec-
tion. An audio piece of synthesised activation voice is stored
in each smartphone. These activation voices are tested in
advance to make sure that they can successfully activate the
voices assistant on the smartphones. In every two minutes,
the activation voice followed by one random attacking voice
command (e.g., “Send ‘subscribe’ to 1234567"’) is played
via smartphone’s built-in speaker. If the participant does not
notice the voice command, and the command is successfully
executed, we label this attack as success. The data we col-
lected for training includes the readings from smartphone
on-board sensors (i.e., microphone, accelerometer, and ambi-
ent light sensor) and attack results (as label set). We collect
30 group data in each scenario, 10 of them are under the
condition of holding the phone on hands, the rest are under
conditions of putting the phone in a pocket. Table 1 shows all
the attack result of training data over eight example scenarios.
It reveals that attacks are almost failed when participants hold
the phone on hands. The highest success rate is achieved when
participants are in a noisy environment with the phone in their
pockets.

We process the collected data to further train the AES
module. Accelerometer data is collected every 20 ms, while
noise and light data are collected every 200 ms, as they are
more stable in a short period of time. Noise and light data
are re-sampled to the frequency of 50 Hz by following the
Nearest Neighbour Interpolation principle [41], and merged
with one-hot encoded movement intensity features to built the
training matrices. The features of environment variables are
used for the purpose of providing more specific details on the
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TABLE 1. Attacking success rate of training data in each scenario.

Scenarios Success Rate
(a) Quiet road fr)lnp}(l)?:rlﬁi %// 21 (())
OBy e 200
(¢) Market & Uni %“p}if]lii 111/ /12 (())
@Tam ot | 1720
(e) Car On hands 0/10
In pocket 0720
(f) Restaurant glnp}(l)écl:rlii 30/ /12(())
() Quiet road (night) g}np}i‘l’(‘g %// 21(())
(h) Highway (night) glnp}(l)irllii %// 218

TABLE 2. Average accuracy performance.

Invasion Precision | Recall | fl-score
Unsuccessful 0.96 0.95 0.95
Successful 0.97 0.98 0.98
Avg 0.97 0.97 0.97

uncertain environmental factors, such as noise level and light
intensity, which can also affect the decision on whether to
launch a stealthy attack.

The collected raw signals usually contain noise generated
by different sources, such as sensor miscalibration, sensor
errors, noisy environments, etc. These noisy signals adversely
affect the signal segmentation and feature extraction, and
further significantly hamper the activity prediction. In our
study, we use a fourth-order Butterworth low-pass filter [42]
for noise removal. Except gathering the data from on-board
sensors, we also collect smartphone usage status, such as
the lock screen on/off status and the Bluetooth/headphone
connection status by invoking corresponding APIs. These
status indicate whether the smartphone is in use. Environment
sensing will be triggered only when the smartphone is not in
use.

We train a Random Forest with collected data, and eval-
uated the model based on Precision, Recall, and F1 Score.
The results of 20-fold cross validation is presented in Table.2.
It shows the proposed model is well-trained.

C. EVALUATION OF REAL WORLD ATTACK

We further evaluate the effectiveness of the attack in
real-world scenarios in different times of a day. Ten partic-
ipants are recruited to carry one of the aforementioned smart-
phones to various real-world scenarios. Smartphone sensors
collect environment data and feed it to the online trained
machine learning model every two minutes. Then, a probabil-
ity of whether to launch an attack is obtained. An attack will
be triggered if the probability exceeds a threshold (e.g., 80%
in our experiment setting). We set up a restriction that in
every two minutes, there will be at most one attack triggered.
Figure 5 reports the sensors’ readings and the output attacking
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probabilities in some typical scenarios, where “True” in
the attack results indicates that the attack is triggered but
not heard by the participant, while ‘“False’ represents that
the attack is triggered and heard by the participants. “N/A”
means that no attack is triggered in the time slot, so that it
is excluded when calculating the success rate. We can see
from Figure 5 that the spyware achieves 100% success rate
in real world attacks. For example, in5 (a), the participant is
having lunch in a food court and the environment is noisy and
crowded. AES module launched 11 attacks in 30 minutes, and
all attacks are successful. In Figure 5 (b), participants sit in
an office. The sensors’ data are stable and the environment
is quiet. Under these conditions, there is no attack launched.
Figure 5 (c) and Figure 5 (d) are in similar environments,
the only difference is weather the participant holds the phone
or not. The result shows no attack launched when the par-
ticipant holds the phone on hand, and 4 successful attacks
launched when the phone is put in a pocket.

D. CAPABILITY OF ATTACK

After activating the VAs, the attackers may further acquire
victim’s private information [43], or conduct malicious activ-
ities on the infected smartphones, through remotely executing
specific attacking commands.

In Table. 3, we list and compare the potential attacks that
can be launched on different VAs in victim smartphones,
namely Google Assistant on Pixel 2, Xiao Yi on Huawei
Mate 8, and Xiao Ai on Xiaomi Mi 8. We also listed
the permissions required if the corresponding information
are queried in an app. However, none of these permissions
are required in the proposed attack, since VAs are naturally
gained privilege to access such information.

While private information such as location, calendar,
IP address efc., can be queried locally, most of them cannot
be sent out as text, with one exception that Google Assistant
can send user’s current location via SMS to arbitrary number.
However, this does not necessarily mean that attackers cannot
access these information remotely. Actually, an attacker can
manipulate VA to start a phone call to him, and then query the
private information during the phone call. The audio response
from the VA can then be heard by the attacker.

The malicious activities such as making phone calls to pre-
mium numbers, sending SMS, browsing malicious websites
and so on, can be performed on all the VAs that we tested
without requesting for any permissions.

Many new features (e.g., smart-home devices) are con-
trolled by VAs now. Once user set up smart devices on VAs,
a command such as ‘“‘unlock the front door” can control
the smart lock on a door remotely. Such malicious activities
may bring higher risk compare to privacy leak on smart-
phones [44]. Theoretically, any IoT devices controlled by VAs
can be hacked by Vaspy [45], [46]. Users always talk about
how convenient a VA can be, but still did not realise that VA is
becoming a powerful hacking tool as well.

Attacking commands are stored either locally in the spy-
ware, or remotely in Firebase as text scripts. Commands
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(b) Attack result when participants are sitting in an office
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FIGURE 5. Evaluation Result of the Attacking Environment Sensing. The average value and the standard deviation of sensor’s data in every two-minute
time period is showed in the figure. The attacking results are listed below, where “True” indicates a successful attack without users’ awareness,”N/A”
means no attack was triggered.

stored

online will be downloaded to the local smartphone

once it determines to launch an attack. The text commands
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are converted to speech using Android built-in Text-to-speech

API,

and played to control the VA via the built-in speaker.
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TABLE 3. Post attack commands against VAs.

Category Attack type Permission(s) bypassed Google Attack n}_s[l::;vavg?m“ VAs Xiaomi
Query location | ACCESS_COARSE_LOCATION v v NV
Share location READ_CONTACTS, SEND_SMS, WRITE_SMS, v % %
ACCESS_COARSE_LOCATION,
Query calendar | READ_CALENDAR VA VA IV
Privacy leak Share calendar READ_CALENDAR,READ_CONTACTS, « % %
SEND_SMS,WRITE_SMS
Query ip address| ACCESS_COARSE_LOCATION, INTERNET v V4 V4
Share ip address ACCESS_COARSE_LOCATION, INTERNET, % % %
READ_CONTACTS, SEND_SMS, WRITE_SMS
Phone Call READ_CONTACTS, CALL_PHONE VA V4 V4
Send SMS READ_CONTACTS, SEND_SMS, WRITE_SMS Vv VA VA
Send email READ_CONTACTS, INTERNET v v Y
Malicious Browse website | INTERNET V4 VA v
activity Bluetooth control] BLUETOOTH VA v v
Video call INTERNET,CAMERA v v Y
Play music INTERNET v VA VA
Control lighting | INTERNET v v/ V4
Control camera HARDWARE_CAMERA, ACCESS_FINE_LOCATION, v v v
WRITE_EXTERNAL_STORAGE
(a) Power Consumptions (b) Memory Consumptions
8 r 80
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FIGURE 6. Power and memory consumption of four phases: P1(Phone call state monitoring), P2(Recording and synthesising activation
command), P3(Environment monitoring), and P4(Attacking via the speaker).

Given the fact that VAs can be easily controlled by attack-
ers to perform malicious activities as well as acquiring private
information, we suggest that the vendors should rethink the
privilege assigned to VAs.

E. RUNTIME COST ANALYSIS

We evaluate and analyse the runtime cost of the spyware
because high runtime cost (e.g., CPU, Memory) will reduce
the stealthiness of the attack. We install the prototype spyware
on Google Pixel 2, Huawei mate 8, Xiaomi Mi 8 and Samsung
Galaxy S9. Since the spyware launches the attack in the four
distinctive phases below, we evaluate each phase individually:
P1(Phone call state monitoring), P2(Recording and synthesis-
ing activation command), P3(Environment monitoring), and
P4(Attacking via a speaker).

1) POWER CONSUMPTION ANALYSIS

Figure 6 (a) reports the power consumption per minute for
four attacking phases. We also compare the power consump-
tion with playing 1080P video and music. The results show
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that in P1, P2, and P4, the power consumption per minutes
on all Android phones are very low. P3 has the highest power
consumption, which is approximately 0.8 mAh per minute.
It is still negligible when compared with the scenarios such as
playing video or listening to music, which consumes 6.1 mAh
and 5.1 mAh per minute, respectively. We further reduce the
frequency of collecting data from sensors in P3 from 50 Hz to
10 Hz. The power consumption decreases to 0.5 mAh, without
affecting the success rate of the attack. The results suggest
that the spyware consumes too little power to be noticed by
the user.

2) MEMORY AND CPU ANALYSIS

Figure 6 (b) shows the average RAM usage in the four
processes. The average RAM usage in P1, P2, and P3 is
less than 5 MB. The P3 uses the highest memory (approx-
imately 10 MB) because of sensor utilisation. Compared to
the scenarios like playing video or listening to music, which
consumes approximately 60 MB to 70 MB, the memory cost
of our prototype spyware can hardly affect the performance

VOLUME 7, 2019



R. Zhang et al.: Using Al to Attack VA: Stealthy Spyware Against Voice Assistances in Smart Phones

IEEE Access

of the hosting smartphone systems. Therefore, it is hard to be
noticed by the user. We also evaluate the CPU cost. It is found
that only P3 requires CPU, which consumes around 7% of the
total capacity.

3) FILE SIZE

In P2 and P3, the recorded voice pieces and sensors’ data will
be stored until they are uploaded to the server. There is no
need to store file in P1 and P4. Therefore, during the whole
attacking process, only two categories of files are stored then
uploaded to server: an audio file (*.wav) to store the synthe-
sised activation voice, and three text files (*.txt) to record
the sensors data. The average size of voice, acceleration,
light, noise files are 180.9 KB, 91.7 KB, 4.4 KB, 5.4 KB
respectively.

F. RESISTANCE TO ANTI-VIRUS TOOLS

We test the spyware against industrial anti-malware tools as
well as academic malware detection solutions. Android mal-
ware detection approaches can be categorised into static tools
and dynamic platforms, according to whether the candidate
app needs to be executed or not [47]. Static approaches are
based on analysing static features of the application, such
as the component of the app, the permissions requested by
the application, and the code itself. Dynamic approaches
execute the application in a protected environment, provide
all the emulated resources it needs, and observe its malicious
activities.

For industrial anti-virus products, we test the spyware on
VirusTotal, as well as the top ten most popular anti-virus
tools on Google Play, such as Norton Security and Antivirus,
Kaspersky Mobile Antivirus, McAfee Mobile Security, and
so on. None of them reported our spyware as malicious
app. We also submit the spyware to Google Play store, where
submitted apps are tested against their dynamic test platform
Google Bouncer. The spyware successfully passes the detec-
tion of Google Bouncer. Note that we took down the spy-
ware from the Google Play immediately after it passed the
test.

We also test the spyware with three typical learning-based
detectors in academia, which rely on syntactic features
(e.g., requested permissions, presence of specific API calls,
etc.), as well as semantic features (e.g., sequence of API calls)
extracted from Android application packcage (APK), namely
Drebin [16], DroidAPIMiner [17], and MaMaDroid [18].
We trained all the detectors with 5,000 most recently
discovered malware samples and 5,000 benign apps that
we collected from Virusshare * and Google Play store
between August and October 2018, respectively. Our spy-
ware is labeled as a benign app by all three detectors.
The results show the resistance of the proposed attacking
method to both industrial and academic malware detection
tools.

4https://virusshare.com/
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VI. DISCUSSION

A. IMPORTANCE OF ENVIRONMENT SENSING

Once the attack is noticed by users, they may look into this
issue, and there would not be a second chance to launch the
attack. Existing work [1], [3] gathers some state values of the
Android phone from sensors on the device (e.g., light sensor
and accelerometer) and system attributes (e.g, current system
time and screen on or off status). They usually trigger the
attack only if those state values satisfy a given profile. For
example, in [3], attacks are only launched at night, when the
phone’s screen is off and the phone is placed on a horizontal
table in a dark room. As different users may have different
habits, relying on such pre-set conditions may result in an
attack that is never triggered or easily noticed.

B. SMARTER VASPY

The Vaspy proposed in Section IV-A intends to make the
attack stealthier. The proposed attack can be further improved
to be more energy efficient. Once the activation voice is
synthesised, the environment detector keeps collecting data
from sensors. As we discussed in Section V, though the power
consumption is very low, it still has a chance to be noticed
by the user if it keeps running for a long time. We observed
that in the situations where the Vaspy decides to launch the
attack, the noise levels are higher than a certain threshold in
most cases. As a result, the noise level can be a preliminary
indicator for the detection algorithm. On the standby mode,
only microphone is activated to collect noise data. Once the
noise level exceeds a certain threshold, the other two sensors
then start to collect data. With this approch, we have tested
that the power consumption can be further reduced from
0.8 mAh to 0.4 mAh, which makes our prototype spyware
even harder to be detected by the user.

C. ATTACKING VOLUME

The volume of the activation and attacking voice is also an
important factor that affects the success of the attack. The vol-
ume should be low enough to avoid being heard by the user,
and high enough to make sure the attacking voice command
is received by the Android phone. The optimal volume varies
depending on the noise level of the surroundings as well as
the real-world scenario that the phone is in. Based on this
finding, Vaspy is designed to launch the attack and use the
optimal sound volume according to the ambient environment
of the Android phone user.

D. ESSENTIAL FACTORS FOR THE SUCCESSFUL ATTACK
We demonstrate three core essential factors for the successful
attack: 1) success in delivery, 2) success in avoiding being
detected by anti-malware products, and 3) success in not
being noticed by users.

1) The prevalent abuse of high risk permissions in
Android applications makes users insensitive to grant-
ing these permissions. For example, with the rise of
popularity of location-based applications and Augmented
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Reality (AR) games, Android users are becoming less cau-
tious when granting the permission to access the location
and the camera, both of which are high risk permissions that
may leak users’ private information. In our proof-of-concept
attack, we disguise Vaspy as a microphone controlled game
to trick the user for granting the permission to access the
microphone.

2) Currently, commercial anti-malware tools are based on
known features of malware, such as signatures and sensitive
operations. In Vaspy, there is no relevant data in existing
signature library of anti-malware tools. All the sensitive oper-
ations in the attack, such as sending emails and making phone
calls, are executed through the VA. It has privilege to access
sensitive data but it is not monitored by the anti-malware
products.

3) In the proposed attack, we developed a stealthy attacking
module inside Vaspy, which monitors the environment and
looks for suitable time to launch the attack. It also adjusts
the volume of the voice commands, to ensure that the voice
commands can be captured and recognised by the Android
phone, but it cannot be heard by users.

E. DEFENCE APPROACHES FOR VASPY

In this section, we demonstrate three possible defence
approaches for Vaspy: 1) identifying the source of the voice
commands; 2) continuous authentication for VAs; 3) distin-
guishing human voice from machine-based voice.

1) Identifying the source of the voice commands. In the
proposed attack scenario, the voice commands are played
via a speaker on a smartphone. New techniques [48] are
able to locate the source of the sound, which can then deter-
mine whether the sound comes from the built-in speaker.
The VA vendors can disable our attack by setting the VA to
disregard any voice commands from the built-in speaker on
its hosting smartphone.

2) Continuous authentication for VAs. Feng et al. [49]
propose a scheme that collects the body-surface vibrations
of the user and matche with the speech signal received from
a microphone. The VA only executes the commands that
originate from the owner’s voice. While it may successfully
defend our attack, it also brings some inconvenience to the
user. For example, users cannot activate the VA when they do
not hold the smartphone. Actually, users tend to interact with
VA when they are not able to touch the screen, such as the
time when they are driving.

3) Distinguish human voice from machine-based voice.
Chen et al. [50] explored the difference between a human
voice and machine-based voice based on the magnetic field
emitted from loudspeakers. It is able to detect machine-based
voice impersonation attacks. However, there will be high
false positive rate when there are other devices around, which
generates magnetic signals.

F. LESSONS FROM THIS WORK
This can be recognised as a vulnerability in the cur-
rent VAs. Once the VAs are activated, they are able to change
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smartphone settings, and do malicious activities that require
high level permission, such as sending SMS/emails and mak-
ing phone calls. Due to the privilege it has to access system
resources and private information. VAs can then be a stepping
stone for the attackers to hack into the Android phones.
More secure mechanisms will be implemented to improve the
security of VAs, from either the research community or the
VA vendors.

VIl. CONCLUSION

In this paper, we propose a smart and stealthy attack Vaspy
targetting VAs on Android phones. With the new attack,
an attacker can forge voice commands to activate the VA and
launch a number of attacks, including leaking private infor-
mation, sending forged Message or emails, and calling arbi-
trary numbers. An Attacking Environment Sensing module
is built inside the Vaspy to choose an optimal attacking time
and voice volume making the attack unnoticed by the users.
We build a prototype spyware for Vaspy and evaluate the
spyware with participants across various VAs on different
Android phones. We demonstrate that Vaspy is able to launch
attacks without being noticed by users. Moreover, our spy-
ware cannot be detected by the state-of-art anti-malware tools
from both industry and academia. We also propose a few
potential solutions to detect our attack. This research work
may inspire the researchers for Android phones to strengthen
the security of VAs in general.
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