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Abstract. One of the challenges of deploying machine learning (ML)
systems is fairness. Datasets often include sensitive features, which ML
algorithms may unwittingly use to create models that exhibit unfairness.
Past work on fairness offers no formal guarantees in their results. This
paper proposes to exploit formal reasoning methods to tackle fairness.
Starting from an intuitive criterion for fairness of an ML model, the
paper formalises it, and shows how fairness can be represented as a deci-
sion problem, given some logic representation of an ML model. The same
criterion can also be applied to assessing bias in training data. Moreover,
we propose a reasonable set of axiomatic properties which no other def-
inition of dataset bias can satisfy. The paper also investigates the rela-
tionship between fairness and explainability, and shows that approaches
for computing explanations can serve to assess fairness of particular pre-
dictions. Finally, the paper proposes SAT-based approaches for learning
fair ML models, even when the training data exhibits bias, and reports
experimental trials.

1 Introduction

Given the forecast widespread use of ML-enabled systems, in settings that can
have a significant impact in the lives and safety of human beings, a range of con-
cerns need to be addressed. Robustness of ML models against adversarial exam-
ples is one such concern [22,37,43,44,50,55,60,61]. Explaining the predictions
of ML models represents another concern. A related concern is to learn (or syn-
thesize) interpretable ML models [5,9,30,35,36,41,51,56,65,66]. One additional
concern is to ensure that ML-enabled systems are fair [4,15,48]. The importance
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of addressing fairness cannot be overstated, as demonstrated by recent exist-
ing troublesome evidence [6,19] that already deployed ML-enabled systems can
exhibit very significant bias. Furthermore, recently recommended guidelines at
the EU level highlight the importance of fairness [23].

We find many definitions of fairness in the literature[7,54,64]. In [64], the
authors classify these definitions into three categories: statistical measures,
similarity-based measures, and causal reasoning. Statistical measures, such as
those presented in [7,14,16,20,33,46], can hardly be studied from a formal angle
due to their nature. Similarity-based measures [20,27,48], on the other hand, are
data independent definitions that are well suited for formal investigations. Last,
causal reasoning measures [45,48,53] are based on the so-called causal graphs
(i.e. graphs capturing relationships between the different features) and are essen-
tially used to synthesise ML models. We focus in this paper on similarity-based
measures because they offer an excellent framework for formal analysis compared
to the other two.

Addressing fairness can be performed at three different levels: data process-
ing, synthesis, and verification. Current work on the three levels is, to a large
extent, heuristic in nature [1,2,4,11,25,26,28,34,48,59,64], offering no formal
guarantees in their analyses. This paper proposes a first step towards endow-
ing the analysis (i.e. data processing and verification) and the synthesis of fair
ML models with a rigorous footing. We study one concrete criterion of fair-
ness, and propose a rigorous test to assess whether or not an ML model is fair
against that criterion. Moreover, the paper shows how the proposed test can be
adapted to devise a simple (polynomial-time) algorithm to assess existing bias
in datasets, even if datasets are inconsistent. More importantly, in the case of
biased datasets, the paper investigates how to adapt exact methods for learning
interpretable (logic-based) ML models to synthesize fair ML models.

The paper is organized as follows. Section 2 summarizes the definitions and
notation used throughout the paper. Section 3 focuses on a criterion of fairness,
and develops tests for assessing whether an ML model is fair, whether a dataset
exhibits bias, and whether a particular prediction is fair. Section 4 investigates
how fair logic-based models can be synthesized with possibly biased datasets.
Section 5 provides a theoretical justification for adopting the fairness criterion
used throughout the paper. Finally, Sect. 6 presents preliminary experimental
results and Sect. 7 concludes the paper.

2 Preliminaries

SAT/SMT-Related Topics. The paper uses definitions standard in Boolean
Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) [10]. These
include conjunctive and disjunctive normal forms (resp. CNF and DNF), prime
implicants and implicates.

Classification Problems. This section adapts the definitions used in earlier
work [9,41,49]. We consider a set of features F = {F1, . . . , FK}, where each
feature Fi takes values from some domain Di. The space of all assignments to
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features defined by F = ΠK
i=1Di is referred to as feature space [32]. Throughout

the paper, all domains in the examples and experiments will be binary, i.e. Di =
{0, 1}, but the results will be derived assuming arbitrary (discrete) domains1.
Since all features are binary, a literal on a feature Fr will be represented as Fr

or as ¬Fr.
To learn a classifier, one starts from given training data (also referred to

as examples) T = {e1, . . . , eM}. Each example has an associated class taken
from a set of classes C. The paper focuses mostly on binary classification, i.e.
C = {c0, c1}. (We will associate c0 with 0 and c1 with 1, for simplicity.) Thus, T is
partitioned into T + and T −, denoting the examples classified as positive (c1 = 1)
and as negative (c0 = 0), respectively. Each example eq ∈ T is represented as
a pair 〈zq, cq〉, where zq ∈ F denotes the literals associated with the example
and cq ∈ {0, 1} is the class to which the example belongs. We have cq = 1 if
eq ∈ T + and cq = 0 if eq ∈ T −. The training data T is consistent if 〈zq, 0〉 ∈
T ∧ 〈zq′ , 1〉 ∈ T =⇒ zq �= zq′ , and inconsistent otherwise. A literal lr on a
feature Fr, lr ∈ {Fr,¬Fr}, discriminates an example eq if zq[r] = ¬lr, i.e. the
feature takes the value opposite to the value in the example. We assume that all
features are specified for all examples; the work can be generalized for situations
where the value of some features for some examples is left unspecified.

An ML model M is represented as a function ϕ : F → C. With a slight abuse
of notation, a consistent training data will also be viewed as a partial function
ϕT : F → C. In a general setting, where the training data can be inconsistent,
we represent the possible values of training data in each point of feature space
by a relation T ⊆ F × C.

Unless otherwise stated, we focus on accurate ML models, indicating that
100% of the training data examples are classified correctly. A non-accurate ML
model may misclassify some examples of training data (e.g. this is the case for
inconsistent data).

Examples of ML Models. The paper focuses almost exclusively on logic-based
ML models, namely decision sets (DSs) and trees (DTs).

Definition 1 (Decision set). A DNF formula φ over the literals⋃
Fr∈F{Fr,¬Fr} is a decision set for a training set T if the function that maps

z ∈ F to c1 if z is a model of φ and to c0 otherwise is equal to ϕT on T .

Definition 2 (Decision tree). A decision tree for a training set T is a decision
set φ =

∨
i ti such that there exists a rooted tree with edges labelled with literals

of φ and such that for every term ti of φ there is a path from the root to a leaf
whose set of labels consists of exactly the literals in ti.

Fairness. Following standard notation [48], throughout this paper we will
assume that F is partitioned into a set of protected features P = {FI+1, . . . , FK}

1 Real-value features can be discretized. Moreover, to focus on binary features, the
fairly standard one-hot-encoding [58] is assumed for handling non-binary categorical
features.
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Ex. Sunny Windy Classes Exams Gender Hike?
e1 1 0 0 0 1 1
e2 0 1 0 0 0 0
e3 1 1 1 0 0 0
e4 0 1 0 1 0 0
e5 1 1 0 0 1 1

(a) Dataset

Gender

0

0

1

1

(b) Unfair decision tree

Sunny

0

0

Classes

0

1

1

0

1

(c) Fair decision tree

Fig. 1. Running example

and a set of non-protected features N = {F1, . . . , FI}, with |N | = I and
|P| = K − I. Thus, following the notation used earlier, we define N = ΠI

i=1Di

and P = ΠK
i=I+1Di, and so F = N × P. Moreover, z ∈ F is split into x ∈ N and

y ∈ P. The protected features are those with respect to which we intuitively want
ML models not to be sensitive2. Throughout the paper, we will use the notation
ϕ(x,y) as a replacement for ϕ(x · y) where z = x · y denotes the concatenation
of vectors. Moreover, when referring to specific points in feature space (or the
space of non-protected or protected features), the notation used will be t ∈ F,
u ∈ N, and v ∈ P (resp. instead of z, x and y). Finally, we use the notation T

to denote the set {ti | 〈ti, ci〉 ∈ T } ⊆ F.

Running Example. We use a simple example to illustrate the main points.
Minor modifications to the original example will be also considered later in the
paper.

Example 1. We consider the example of Fig. 1, where the protected feature set
is P = {Gender}. The purpose of the example is to decide the circumstances
that cause students to enjoy a hike, and we would rather have a classifier that
is gender-balanced, if possible. (For the purposes of the example, it is irrelevant
whether the values of 0 and 1 of feature Gender correspond to male and female
or vice-versa.) By running an off-the-shelf heuristic algorithm for constructing a
decision tree, one obtains a single branching node with feature Gender. Figure 1b
shows the heuristic decision tree obtained with well-known ML packages ( scikit-
learn [58] and Orange [18] gave the same result).

Nevertheless, the evident unfairness of the obtained decision tree results solely
from the algorithms used for constructing heuristic decision trees. Indeed, as
shown in later sections, careful analysis of the training data reveals that there
is no evidence in the data that justifies that feature Gender should play such a
role in deciding the circumstances under which male/female students enjoy hikes.
Figure 1c shows an example of a fair decision tree for this example corresponding
to the single-term DNF Sunny ∧¬Classes.

2 For a number of reasons, datasets can contain such protected features, but their
removal may be undesirable, for example, because this may induce inconsistencies
in datasets.



850 A. Ignatiev et al.

3 Assessing Fairness

We consider in this section an ML classification scenario, with training data T
where the set of features F is partitioned into a set of protected features P and a
set of non-protected features N , and some (interpretable) ML model M trained
on T

3.1 Fairness Criterion

A number of definitions of fairness have been proposed in recent years [48,64].
This paper considers fairness through unawareness (FTU), which was originally
proposed as follows:

Criterion 1 (Fairness Through Unawareness (FTU) [31,48]). An algorithm is
fair if the protected features P are not explicitly used in the decision-making
process.

The operational definition above suggests a syntactic test to decide whether
FTU holds. This section proposes instead a semantic characterization of fairness,
that respects the syntactic definition of FTU. Besides FTU, a number of addi-
tional definitions of fairness are studied in [48,64] and in related work. Moreover,
a possible criticism of FTU is that P may not represent all features capturing
discriminatory information [48]. Nevertheless, FTU exhibits a number of advan-
tages over other criteria, and Sect. 5 provides a theoretical justification for using
FTU as a definition of fairness.

Definition 3 (Criterion for FTU). Given an ML model M computing some
(classification) function ϕ : F → C, we say that M is fair if:

∀(x ∈ N) ∀(y1,y2 ∈ P). [ϕ(x,y1) = ϕ(x,y2)] (1)

Next, we investigate how this criterion can be used to analyze both ML
models and datasets. Note that this criterion can be seen as a hard version of
the causal discrimination measure presented in [27].

3.2 Assessing Model Fairness and Dataset Bias

Checking Model Fairness. As shown later in the paper, it will be convenient
to assess instead the negation of the FTU criterion.

Remark 1. An ML model M respects Definition 3, i.e. (1) holds, iff the following
is false:

∃(x ∈ N) ∃(y1,y2 ∈ P). [ϕ(x,y1) �= ϕ(x,y2)] (2)

Clearly, we can now use (2) to assess whether an ML model M is fair or not,
by searching for satisfying assignments for (2), and this can be achieved with a
satisfiability test, given a suitable logic representation of the ML model M. From
a practical perspective, we can refine the previous result as follows.
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Remark 2. To test condition (2) we only need to test pairs y1,y2 which differ
on a single feature. This is because if (2) holds for some x,y1,y2 then it must
hold for some x,yr,yr+1 (r ∈ {0, . . . , K − 1}) where yr is equal to y1 on the
first K−r features of P and equal to y2 on the other features of P. Analyzing
each feature separately reduces the search space that needs to be considered.

Checking Bias in Consistent Datasets. By exploiting Remark 1
or Remark 2, we can devise a test to assess whether a dataset exhibits unfairness
(in which case we say that the dataset is biased). We consider first the case
when the dataset is consistent, and use the insights to consider the more general
case of inconsistent datasets. For a consistent dataset, the following condition
captures FTU in the dataset.

Definition 4 (Consistent dataset bias under FTU). A consistent dataset
T is biased if the following holds:

∃(x ∈ N)∃(y1,y2 ∈ P).[(x,y1), (x,y2) ∈ T ∧ (ϕT (x,y1) �= ϕT (x,y2))] (3)

Intuitively, a dataset is biased if the protected features serve to distinguish
between two different predictions when the non-protected features take the same
values. Although (3) is harder to read than (2), it is actually simple to develop
a polynomial time procedure for assessing whether a dataset is FTU-biased.
However, we develop instead a polynomial (indeed, linear) time algorithm for
the more general case of inconsistent data, which is also applicable in the case
of consistent data.

Checking Bias in Inconsistent Datasets. Even if the training data is incon-
sistent, one can devise a test to assess whether a dataset exhibits bias. As moti-
vated in Sect. 2, in the presence of inconsistent data, we model the expected
input-output behavior (given the dataset) as a relation. In the case of an incon-
sistent dataset, the following condition captures FTU in the dataset.

Definition 5 (Inconsistent dataset bias under FTU). An inconsistent
dataset T is biased if the following holds:

∃(x ∈ N) ∃(y1,y2 ∈ P) ∃(c1, c2 ∈ C).[y1 �= y2 ∧ c1 �= c2 ∧
(x,y1), (x,y2) ∈ T ∧ T(x,y1, c1) ∧ T(x,y2, c2)] (4)

There is an alternative definition that considers the dataset to be fair if for
each x ∈ N, y1,y2 ∈ P, the sets of classes c ∈ C for which T(x,y1, c) or T(x,y2, c)
hold are identical. We ruled out this alternative definition for reasons described
in Sect. 5.

There is a fairly simple linear-(amortized)-time algorithm that can be used
both with consistent and with inconsistent data, as shown in Algorithm1. Cor-
rectness of the algorithm follows from the fact that condition (4) is actually
logically equivalent to

∃(x ∈ N)∃(y1,y2,y′
1,y

′
2 ∈ P) ∃(c1, c2, c′

1, c
′
2 ∈ C).[y1 �= y2 ∧ c1 �= c2 ∧

(x,y1), (x,y2), (x,y′
1), (x,y′

2) ∈ T ∧
T(x,y1, c

′
1) ∧ T(x,y2, c

′
2) ∧ T(x,y′

1, c1) ∧ T(x,y′
2, c2)] (5)
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Algorithm 1: Checking dataset bias
Input: T , N , P
Output: Biased / Unbiased

1 begin
2 foreach 〈(xi,yi), ci〉 ∈ T do
3 CSet[xi] ← ∅
4 YSet[xi] ← ∅
5 foreach 〈(xi,yi), ci〉 ∈ T do
6 CSet[xi] ← CSet[xi] ∪ {ci} ;
7 YSet[xi] ← YSet[xi] ∪ {yi}
8 foreach 〈(xi,yi), ci〉 ∈ T do
9 if |CSet[xi]| > 1 ∧ |YSet[xi]| > 1 then

10 return Biased
11 return Unbiased
12 end

Table 1. Extension of the dataset of our running example

Ex. Sunny Windy Classes Exams Gender Hike?

e1 1 0 0 0 1 1
e6 1 0 0 0 0 0
e7 1 0 0 0 1 0
e8 1 0 0 0 0 1

The implication (4) ⇒ (5) is immediate. To see the implication (5) ⇒ (4),
suppose that T(x,y1, c

′
1)∧T(x,y2, c

′
2)∧T(x,y′

1, c1)∧T(x,y′
2, c2) where y1 �= y2,

c1 �= c2, but that (4) does not hold. We can deduce that c′
1 = c′

2 and y′
1 = y′

2 and
(y1 = y′

1 ∨ c′
1 = c1), (y1 = y′

2 ∨ c′
1 = c2), (y2 = y′

1 ∨ c′
2 = c1), (y2 = y′

2 ∨ c′
2 = c2)

for which it can easily be verified that there is no solution.
In Algorithm 1 each vector x on the non-protected features is used for index-

ing both sets CSet, YSet using hashtables. By inspection, the amortized running
time is linear (since operations on a hash table have constant amortized com-
plexity [17]).

Example 2. Running the proposed algorithm on the dataset of Example 1 with
protected feature set Y = {Gender} confirms that the dataset is unbiased. How-
ever, if the same dataset is extended with the rows in Table 1 (where e1 is added
for convenience), then the algorithm reports, as expected, that the dataset is no
longer unbiased. Clearly, with x1 = (1, 0, 0, 0) = x6 = x7 = x8, there are now
two different predictions and the dataset is inconsistent. Moreover, there are two
reasons for the dataset to be deemed biased: e1 and e6 are one reason, and e7
and e8 are the other. It should also be noted that e1 and e7 do not represent a
possible reason to declare bias in the dataset.

One way to tackle fairness is to discard the protected features. The following
simple result will be used later in the paper.
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Proposition 1. Consider a consistent dataset T , and let the dataset T ′ be
obtained by discarding the protected features P of T . Hence, T ′ may have
examples with duplicated sets of feature values. T is unbiased iff there are no
inconsistencies in T ′.

3.3 Local Fairness via Explanations

In this section we consider local notions of fairness. An individual is probably
more interested in the fairness of a particular decision concerning themselves
than in the global fairness of the model. We use the notion of explanation to
define local fairness. It turns out that there are two possible definitions of local
fairness based on explanations.

To be concrete, consider the problem of an unemployed woman who has been
refused a loan and who wants to know if this is because she is a woman. Suppose
the bank has learned the following simple model: refuse a loan if the client is
unemployed or if they are a woman. This model is clearly unfair with respect
to gender, but in this particular case the bank can claim that they would have
refused the loan even if the client had been a man. On the other hand, the client
can point out there are two explanations for the refusal: the first explanation is
that she is unemployed (since all unemployed are refused a loan) and the second
explanation is that she is a woman (since all women are refused a loan), and
hence the decision should be considered unfair.

There is recent work investigating similar themes [3] which shows that expla-
nations can be used to fake fairness, but the authors study statistical measures
of fairness.

Following [39,62], given an ML model M computing some function ϕ, an
explanation of some prediction ϕ(z) = c is a prime implicant of the mapping
ϕ : z → c, where c is considered fixed (i.e. a subset-minimal subset of the literals
of z which still entails the prediction c). This notion of explanation allows us to
define fairness of a particular decision/prediction of a model M.

In the following we view a z ∈ F as a set of literals, one per feature.

Definition 6 (Fair explanation). An explanation e of a prediction ϕ(z) = c
is a subset of z which is minimal under subset inclusion such that ∀z′ ∈ F, if
e ⊆ z′ then ϕ(z′) = c. If z = (x,y) with x ∈ N, y ∈ P, we say that e is fair if
e ∩ y = ∅ (i.e. e uses no protected literals).

Definition 7 (Universal/existential Fairness). A prediction ϕ(z) = c is
universally fair if all of its explanations are fair. It is existentially fair if at least
one of its explanations is fair.

It turns out that there is a close connection between FTU and universal
fairness.

Proposition 2. Let ϕ be the function computed by a ML model M. M is fair
according the FTU criterion (1) iff all predictions ϕ(z) = c (z ∈ F) are universally
fair.
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Proof. It suffices to prove that M is unfair according to criterion (2) iff there
exists an unfair explanation of some prediction.

Suppose that M is unfair because ϕ(x,y1) = c �= ϕ(x,y2). All predictions
have at least one explanation, so let e be an explanation of ϕ(x,y1) = c. Thus,
by Definition 6, ∀z′ ∈ F, if e ⊆ z′ then ϕ(z′) = c. Since ϕ(x,y2) �= c, this implies
that e ∩ y1 �= ∅ and hence e is an unfair explanation.

Suppose that the prediction ϕ(z) = c (where z = (x,y)) has an unfair
explanation e. Let e′ = e \ y. Since e is unfair, e ∩ y �= ∅ and so e′ is a proper
subset of e. By subset minimality of the explanation e, e′ cannot be a valid
explanation of ϕ(z) = c, and so ∃z′ ∈ F such that e′ ⊆ z′ and ϕ(z′) �= c. Let
feat(e) denote the features which occur in e and z′[feat(e)] the subset of z′ on
these features. Now, let z′′ = e ∪ (z′ \ z′[feat(e)]). Since e is an explanation of
ϕ(z) = c and e ⊆ z′′, we must have ϕ(z′′) = ϕ(z) = c. But then z′′ and z′ differ
only on the features of e ∩ y (i.e. on protected features) but ϕ(z′′) = c �= ϕ(z′),
so M is unfair according to criterion (2). ��

Using our rigourous definition of explanation and our two notions of fairness
of a prediction, we consider two concrete questions, given a prediction ϕ(z) = c:

1. Are all explanations fair (i.e. do not include any feature from the set of
protected features)? This problem will be referred to as universal fairness
checking (UFC).

2. Does there exist a fair explanation (i.e. that does not include any protected
feature)? This problem will be referred to as existential fairness checking
(EFC).

These two problems correspond to our two different notions of fairness of a
prediction (existential and universal). They clearly differ semantically, but it
would appear that they also differ in terms of the computational complexity to
answer them.

Proposition 3. For polytime-computable ϕ, EFC ∈ co-NP and UFC ∈ ΠP
2 .

Proof. To see EFC ∈ co-NP, observe that a prediction ϕ(x,y) = c has a fair
explanation iff the non-protected features x entail the predicted class c. Thus
the non-existence of a fair explanation is equivalent to the existence of y′ ∈ P

such that ϕ(x,y′) �= c.
To see UFC ∈ ΠP

2 , observe that all explanations of a prediction ϕ(z) =
c (where z = (x,y)) are fair iff for all putative explanations e ⊆ z of this
prediction, either e does not entail the predicted class c or e \ y does entail c.
This is logically equivalent to

∀(e ⊆ z) ∀(z′′ ⊇ e \ y) ∃(z′ ⊇ e). [(ϕ(z′) �= c) ∨ (ϕ(z′′) = c)]

which clearly places UFC in ΠP
2 . ��

Whether UFC is complete for ΠP
2 is an open problem. We conjecture that

it is, since there is no obvious polynomial-time verifiable certificate. It is worth



Towards Formal Fairness in Machine Learning 855

noting that, by Proposition 2 the problem of testing whether all predictions are
universally fair is in co-NP, since the counter-example certificate is simply the
values of x,y1,y2 satisfying criterion (2). This is somewhat counter-intuitive in
that testing the universal fairness of all predictions may be easier than testing
the universal fairness of one prediction.

3.4 Relation of Fairness to Robustness and Adversarial Examples

Informally speaking, robustness is the property that two almost identical inputs
(i.e. points in feature space F) should be labelled equally. We give a general
formal definition for robustness, then we show that fairness can be seen as a
particular case. This may enable previous work on robustness to be adapted
for fairness. We discuss this particular point by presenting the relationship with
adversarial examples.

Let P(F) be the power set of F. Let f be a neighbourhood function: that is,
f : F → P(F). We say that an ML model M with corresponding function ϕ is
robust w.r.t. a neighbourhood function f if ∀z ∈ F, ∀z′ ∈ f(z), ϕ(z) = ϕ(z′).
Consider the example of adversarial robustness [57]. The neighbourhood function
related to adversarial robustness can be defined as far(z) = {z′ | d(z, z′) ≤ ε}
where d : F × F → R

+ is a distance metric and ε > 0. Adversarial robustness
can then be defined as the property that ∀z ∈ F, ∀z′ ∈ far(z), ϕ(z) = ϕ(z′).

Fairness can be viewed a particular case of robustness. Note that defining
fairness using distance (thus neighbourhood) functions is used in the so-called
“fairness through awareness” measure [20,64]. We can consider the neighbour-
hood function f∗ : F → P (F) such that f∗(x.y) = {x.y′ | y′ ∈ P}. That is, the
neighbourhood of an input z is the set of inputs that have the same unprotected
features. The robustness property using the f∗ neighbourhood function is iden-
tical to the fairness criterion (1): two inputs that have the same unprotected
features should be labelled equally.

Using this observation, we can relate work on robustness and fairness. For
example, if one can construct an adversarial example (or counterexample) that
uses changes to protected features, then the model is deemed unfair.

4 Learning Fair ML Models

Section 3 showed how to assess whether datasets or models could be checked for
a specific fairness criterion. The purpose of this section is to investigate ways
of synthesizing ML models when a dataset is unbiased, and when it is biased.
Whereas the case of unbiased datasets requires simple changes to existing ML
model synthesis approaches, the case of biased datasets requires more substantial
changes. As argued earlier, the paper focuses on logic-based ML models, namely
decision sets, decision trees and decision lists. Moreover, the dataset is assumed
to be consistent, for simplicity. The modifications to the case of inconsistent
datasets are also briefly discussed.
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4.1 Unbiased Datasets

This section shows how to synthesize ML models from unbiased datasets. Two
different settings can be envisioned, namely heuristic and optimal approaches.

Heuristic Approaches. Starting from an unbiased consistent dataset, we can
use an off-the-shelf ML tool to learn a fair ML model. A simple solution is to
discard the protected features, since we know from Proposition 1 that inconsis-
tencies will not be introduced. The resulting ML model will not depend on the
protected features, and so the model is fair. There are no restrictions on which
ML model to consider.

Optimal Approaches. Exact approaches for synthesizing DS’s, DT’s and DL’s
have been studied since the 90s, with a peak of recent interest due to the con-
cerns of interpretability and explainability [42]. These approaches offer formal
guarantees, for example in terms of model size and accuracy. As with heuristic
approaches, a simple solution to synthesize fair ML models is to ensure that
protected variables are not allowed to be used when constructing the ML model.
We first briefly recall a formal method for computing minimal size decision sets,
proposed in [41], namely the so-called MinDS3 model, then we show how it
can be modified to synthesize fair DS’s. Notice that similar procedures could be
employed with any other logic-based ML models.

The choice of this model is motivated by simplicity, and others could be
considered as well. Most methods learn a set of disjunctive normal form (DNF)
formulas, one for each class. MinDS3 learns one DNF for one class, and uses the
examples from training data for the other class as the DNF for that class [41].
Given K features and M examples, we consider the synthesis of N rules associ-
ated with class c1, where each rule is a term (conjunction) of up to K literals.
The variables of the model are the following:

– sjr: whether for rule j, the feature Fr is skipped.
– ljr: the literal on feature Fr for rule j, in the case the feature is not skipped.
– d0jr: whether rule j discriminates feature Fr on value 0 (in the sense that Fr

occurs as a positive literal in term j).
– d1jr: whether rule j discriminates feature Fr on value 1 (¬Fr occurs in term

j).
– crjq: whether rule j covers eq ∈ T + (i.e. eq satisfies term j).

The constraints associated with the SAT encoding are the following:

1. Each term (rule) must have at least one literal:
(

K∨

r=1
¬sjr

)

j ∈ {1, . . . , N} (6)

2. One must be able to account for which literals are discriminated by which
rules:

d0jr ↔ ¬sjr ∧ ljr j ∈ {1, . . . , N} ∧ r ∈ {1, . . . , K}
d1jr ↔ ¬sjr ∧ ¬ljr j ∈ {1, . . . , N} ∧ r ∈ {1, . . . , K}

(7)
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3. Each negative example eq ∈ T − must be discriminated by each of the N rules
(eq satisfies no rule). Recall that zq[r] denote the value of feature Fr for eq.
Then, we have:

(
K∨

r=1
d
zq [r]
jr

)

j ∈ {1, . . . , N} ∧ eq ∈ T − (8)

4. Each positive example eq ∈ T + must be covered by (i.e. satisfy) some rule.
– First, define whether a rule covers some specific positive example:

crjq ↔
(

K∧

r=1
¬d

zq [r]
jr

)

j ∈ {1, . . . , N} ∧ eq ∈ T + (9)

– Second, each eq ∈ T + must be covered by some rule.
(

N∨

j=1

crjq

)

eq ∈ T + (10)

To ensure that the DS respect the FTU rule, we add the constraints (sjr),
j = 1, . . . , N , for each Fr ∈ P, denoting that a literal of feature Fr should not
be used in rule j. This way, the synthesized DS will not include literals on the
protected features.

4.2 Biased Datasets

If a dataset is biased, then a completely accurate ML model must exhibit unfair-
ness.

Proposition 4. For a consistent dataset T , if (4) holds, i.e. the dataset is
biased, then any ML model that is accurate must exhibit FTU unfairness.

Proof. If (4) holds, then there exist in T a point (x,y1) with some prediction c1
and a point (x,y2) with some prediction c2. Thus, if some ML model is accurate,
criterion (2) must be false. ��

Proposition 4 indicates that if a dataset is biased then accuracy implies loss
of fairness and fairness implies loss of accuracy. This section investigates how
logic-based models can be synthesized such that fairness is ensured. Due to
Proposition 4, the price to pay is that the model is no longer 100% accurate3.
Furthermore, this section also illustrates how accuracy can be traded off with
the size of the ML model representation.

Maximum Accuracy. The first problem we study is: find a DS that is fair
and has maximum accuracy. As we show next, there is a simple algorithm for

3 It should be noted that, in ML settings, logic-based models that are not 100% accu-
rate are expected to be less sensitive to overfitting. Thus, the fact that some accuracy
is lost is not necessarily a drawback [8].
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obtaining a DS that maximizes accuracy on training data. For each u ∈ N having
v1,v2 ∈ P such that ϕ(u,v1) �= ϕ(u,v2), consider the set of examples, denoted
by Conflictu, where the values of the non-protected features are those in tuple
u. Consider the least frequent class among examples in Conflictu. (For ties,
pick one class randomly.) Redefine the training data by removing the examples
in Conflictu that are associated to the least frequent class. Now, use the model
proposed in Sect. 4 to learn a DS, that discards the protected features.

Proposition 5. The algorithm above yields a fair decision set with maximum
accuracy.

Proof. The learned DS is fair by construction. Moreover, the lack of accuracy
is solely due to protected features being relevant for constructing an accurate
decision set. For each set of common non-protected features, the most frequently-
occurring prediction is chosen. Hence, accuracy cannot be improved if the model
is to be fair. ��

4.3 Non-accurate Interpretable Models

In practice, 100% accurate models are often unwieldy. So an interesting problem
is how to synthesize a fair DS, that respects some accuracy target, while placing
some bound on the size of the ML model. The solution we propose is when values
x of the non-protected features have multiple predictions (due to the protected
features y) to allow freedom of the prediction to be picked (instead of imposing
a majority vote) provided it is a function of only x. This ensures fairness of the
learnt model according to (1), but this flexibility can be used for reducing the
number of rules (or the number of literals in rules) while ensuring that some
target accuracy metric is met.

We now study how to synthesize interpretable models that are not 100%
accurate. It should be noted that earlier work often makes a number of assump-
tions regarding trading off accuracy with representation size [5,30,36,51]; ours
makes none.

We consider the encoding proposed in Sect. 4 for computing a smallest deci-
sion set. Recall that to ensure fairness, we add the constraints (sjr), j = 1, . . . , N ,
for each Fr ∈ P, so that protected features Fr are not be used in any rule j. A
model corresponding to a solution of this SAT instance covers all positive exam-
ples and discriminates all negative examples. To adapt this model, i.e. (6) to
(10), so that it is not necessarily accurate, one can allow each negative example
in the training data not to be discriminated. For eq ∈ T −, let ndjq denote that
eq is not discriminated by rule j, and let ndq denote that eq is not discriminated
(by any rule). Then, we update the model as follows:

ndjq ↔
(

K∧

r=1
¬d

zq [r]
jr

)

j ∈ {1, . . . , N} ∧ eq ∈ T −

ndq →
(∨N

j=1 ndjq

)
eq ∈ T −

(11)
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(Equivalence for the second constraint is not needed.) If the target accuracy is
0 ≤ τ ≤ 1, then the constraint on accuracy becomes:

∑

eq∈T −
ndq ≤ �τ × |T −|� (12)

If the model includes DNF’s for other classes, then (12) must be extended accord-
ingly, both the sum and the right-hand side (e.g. τ × (|T −| + |T +|)).

These proposed changes to the model introduced in Sect. 4 (and taken
from [41]) enables learning a decision set that is no longer 100% accurate, and
so one can trade off accuracy for representation size while ensuring fairness.

5 Theoretical Study of Criteria for Dataset Bias

This section provides a theoretical justification for considering FTU in Sect. 3.
We consider the axioms which a criterion for deciding dataset bias should satisfy.
A criterion for bias is a boolean function f on datasets T ∈ P(F × C) such that
f(T ) = 1 if T is biased. First, any such criterion should be independent of
the coding of features and classes: replacing a boolean feature Fi by ¬Fi or
interchanging the positive and negative classes should not alter dataset bias.
Similarly for merging or splitting features, provided this concerns just protected
features or just unprotected features: for example, whether we use two boolean
features or a single feature with values in {0, 1, 2, 3} should not have any effect on
deciding dataset bias. Formally, coding-independence is invariant under bijective
renaming of feature-values or class-names and merging of any pair of features
which are either both protected or both non-protected.

A criterion f for bias should always return 0 if all data are identical on the
protected features. We call this the lack of arbitrariness condition (if ∃y0 s.t.
∀〈(x,y), c〉 ∈ T , y = y0, then f(T ) = 0). For example, we cannot decide that
there is racial bias if all data only concern people of the same race.

Another desirable property of a bias criterion is monotonicity : a dataset
should not become less biased by eliminating unprotected features (if T ′ is
obtained from T by discarding some unprotected features, then f(T ′) ≥ f(T )).
For example, if salary and age are unprotected features, and race is a protected
feature, then keeping the same classification but ignoring age should not make
the dataset less biased, since we are ignoring information which could legiti-
mately be used to classify the data.

We choose a purely logical approach to learning as opposed to a statistical
approach. In many applications, and for various possible reasons, the sample
distribution may not reflect the true distribution on which the learned model is
to be used. For example, the sample data could have been specifically selected
by a teacher to cover extreme cases rather than being a random sample. In this
logical context, we also impose the following simplicity condition: bias can be
proved by exhibiting just two different decisions (if f(T ) = 1, then ∃T ′ ⊆ T
containing just 2 examples with f(T ′) = 1). Simplicity is a restrictive condition
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which is only justified in the context of explainable AI: other notions of fairness
are possible if we relax this simplicity condition [64].

We say that a dataset is class-uniform if it classifies all data into the same
class and that it is protected-uniform if all data are identical on the protected
features. A criterion f for bias is discerning if it categorizes as unbiased at least
one dataset which is neither class-uniform nor protected-uniform and categorizes
as biased at least one dataset.

It turns out that the FTU (as given by (4)) is the only possible criterion for
bias that satisfies all the above conditions.

Proposition 6. The only discerning criterion for data set bias which satisfies
the coding-independence, lack of arbitrariness, monotonicity and simplicity con-
ditions is the FTU.

Proof. By coding independence, we can merge all non-protected features in N
and all protected features in P, so that we effectively have only two features
(with possibly large domains). Coding-independence means that applying any
permutation to values does not change bias. This implies that the only opera-
tion we can use on features or classes is equality (or inequality). The simplicity
condition implies that we can detect bias from two examples (x1,y1), (x2,y2)
which belong to different classes. Since the criterion for bias is not arbitrary,
we know that it cannot impose y1 = y2. A criterion which was a function only
of x1,x2 would violate the monotonicity condition, since eliminating all unpro-
tected features would then leave us with a trivial bias criterion. We therefore
have to impose the condition y1 �= y2 in the test for bias.

Suppose now that the criterion decides bias by testing just y1 �= y2. Since the
criterion is discerning, it must categorize as unbiased some dataset T which is
neither class-uniform nor protected-uniform. Since T is not protected-uniform,
there are data (u1,v1), (u2,v2) in T such that v1 �= v2. Since T is categorized
as unbiased, both (u1,v1), (u2,v2) must belong to the same class in T . Now,
since T is not class-uniform, there is (u3,v3) which belongs to another class in
T . But, since v3 cannot be equal both to v1 and v2, the criterion for bias decides
that T is biased, which is a contradiction.

We therefore have to impose y1 �= y2 together with a condition on x1,x2

in the criterion for bias. If we also impose x1 �= x2, then this would not satisfy
monotonicity (since eliminating all unprotected features could render the dataset
unbiased). The only remaining case is to impose the condition x1 = x2 together
with y1 �= y2. This criterion for bias corresponds exactly to the FTU (as given
by (4)). ��

Another desirable property of a dataset bias criterion is that bias is invariant
under the addition of irrelevant (i.e. not used by the model) unprotected features,
such as shoe-size when deciding to grant a loan. This appears to be a reason-
able condition. However, the following proposition shows that it is impossible
to satisfy this irrelevant-features condition together with all conditions stated
above.
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Proposition 7. There is no discerning criterion for dataset bias which satis-
fies the coding-independence, lack of arbitrariness, monotonicity, simplicity and
irrelevant-features conditions.

Proof. By Proposition 6 FTU is the only possible candidate criterion for bias
satisfying all these conditions. Consider a dataset which is categorized as biased
by the FTU. However, by adding sufficient irrelevant features we can ensure that
all data are distinct on the unprotected features and hence the FTU would con-
sider the extended dataset to be unbiased, thus contradicting invariance under
addition of irrelevant features. ��

For example, when a bank decides whether to grant a loan to one of its clients
it has information stored such as their bank account number. If this number is
considered as an unprotected feature, any model will satisfy the FTU criterion
(we are assuming there are no two clients with the same account number). The
automatic detection of irrelevant features is an interesting problem for future
research.

6 Preliminary Experimental Results

This section assesses empirically the proposed ideas on a selection of well-known
datasets. The aim of the experiments is to (1) illustrate that datasets can be
practically checked for bias using Algorithm 1, (2) show that ML models can be
tested for fairness using condition (2), and (3) make an attempt to synthesize
fair decision sets [41,49] as discussed in Sect. 4.

Experimental Setup. For the experiments, several Python scripts were imple-
mented, instrumenting SAT and SMT oracle calls. Whenever needed, Min-
iSat 2.2 [21] was used as a SAT oracle while Z3 [52] was employed as an SMT
solver. The solvers were accessed through the well-known Python APIs, namely
PySAT [38] and PySMT [29].

The experiments were performed on a Macbook Pro with an Intel
Core i7 2.6 GHz CPU and 16 GB of memory and focused on a few publicly
available datasets studied in the context of algorithmic fairness. These include
Compas, Adult, German, and Ricci. The datasets are binarized using the stan-
dard one-hot encoding method [58]. Their sizes is detailed in Fig. 2a. Compas is
a popular dataset known [6] for exhibiting racial bias of the COMPAS algorithm
used for scoring a criminal defendant’s likelihood of reoffending; the dataset
includes a few protected features, namely, race-related parameters African Amer-
ican, Asian, Hispanic, Native American, and Other but also Female. Adult [47] is
originally taken from the Census bureau and targets predicting whether or not a
given adult person earns more than $50K a year depending on various features,
among which the protected ones are Race and Sex. German credit data (e.g.
see [24]), given a list of people’s features, classifies them as good or bad credit
risks; the protected features are Sex and Age. The Ricci dataset [26] comes from
the case of Ricci vs. DeStefano [63], “a case before the U.S. Supreme Court in
which the question at issue was an exam given to determine if firefighters would
receive a promotion”; the protected feature is Race.
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6.1 Assessing Dataset Bias

The first part of the experimental assessment aims at checking whether the afore-
mentioned datasets exhibit bias with respect to the corresponding protected fea-
tures. Note that although the Compas and German datasets are inconsistent,
they can still be tested for bias (see Sect. 3). Running Algorithm1 reports that
(1) Compas and Adult are biased with respect to all the protected features while
(2) German and Ricci do not exhibit bias with respect to any protected feature.
Point (1) indicates that there is no way to train an ML model of maximum
accuracy whilst being fair with respect to the protected features. In particular,
this confirms the famous bias-related issues of the Compas algorithm. Moreover,
the results for the Ricci dataset should be highlighted. Since this dataset is unbi-
ased, one is guaranteed that a fair ML model can be synthesized. (This should
be contrasted with the unfair heuristic models studied in earlier work [26]).

6.2 Assessing Model Fairness

Here we focus on testing fairness of boosted tree models trained with the
XGBoost algorithm [13] for the considered datasets. To perform an exhaustive
experiment assessing accuracy of the target models and to be able to draw con-
clusions, we followed the standard paradigm of 10-fold cross-validation. As such,
each dataset is randomly divided into 10 equally sized chunks of examples and
the experiment is done 10 times (one per chunk), each time dealing with 90%
target dataset, i.e. with 1 of the 10 chunks discarded. This way every dataset is
tested for fairness of the respective model wrt. each protected feature 10 times.
Overall, this results in 60 fairness tests for Compas, 20 for Adult, 20 for German,
and 10 for Ricci – the total number of tests to perform is 110. (Recall that each
test is made as an SMT oracle call dealing with formula (2).)

Each XGBoost model trained for this experiment contains 50 trees per class
with each tree having depth 3 (this suffices to get a reasonable classification
accuracy). Boosted trees are encoded into SMT by applying a simple encoding
proposed in [40].

The minimum, maximum, and average running time per test for each of the
datasets is shown in Fig. 2b. Observe that testing fairness is not computation-
ally expensive and can be done for medium-sized boosted trees. Also note that
fairness tests are on average more time consuming for the German dataset.

Regarding the fairness of the trained ML models, the tests reported that
only 2 (out of 10) models trained for the Compas dataset are fair wrt. protected
feature Other. All the other models trained for all datasets are unfair with
respect to every protected feature. This should not come as a surprise given that
these models were trained with no knowledge about the protected features, which
is usually the case in practice. Since the fairness check (2) is model agnostic, this
result confirms the power and applicability of the proposed ideas in practical
situations when fairness of ML models is a concern.
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Adult Compas German Ricci

orig. features 12 11 21 5
binary features 65 46 1073 235

examples 14113 6172 1000 118

(a) Size of the considered datasets.

Adult Compas German Ricci

min. (s) 0.31 0.24 2.50 0.33
avg. (s) 12.22 0.56 87.08 0.36
max. (s) 63.77 3.37 1062.32 0.43

(b) Running Time for Checking Model Fairness.

Fig. 2. Size of the Datasets (left) & Time for Assessing (XGBoost) Model Fairness
(right)

6.3 Synthesizing Fair Decision Sets

This section aims at synthesizing fair decision sets for the case of biased dataset
Compas and unbiased dataset Ricci, based on the approach of [41] (results for
Adult and German are not reported here because synthesis of DS models for
these datasets seems too challenging). While for the former dataset (Compas)
one can drop the protected features from the dataset and then trade off accuracy
with DS size, for the unbiased Ricci dataset it suffices to modify the DS model,
as described in Sect. 4.

Furthermore, since Ricci is unbiased wrt. the protected feature Race, we
can achieve 100% accuracy with the resulting DS model (similarly with decision
trees/lists). In fact, a perfectly accurate decision set for Ricci computed by the
modified MinDS3 model [41] has only two rules, i.e. one rule per class. The
downside here is that each rule is quite long, s.t. the decision set has 68 literals
in total. This is in clear contrast to the interpretability purpose of decision sets.
However, by trading off accuracy with the DS size, one can get the following
non-overlapping MinDS1 model [41] with 97.5% accuracy and having only 4
rules and 7 literals in total, which is easy to interpret:

IF Position �= Leutenant ∧ Oral ≤ 63.75 THEN Class = 0
IF Combine ≤ 69.372 THEN Class = 0

IF Position = Leutenant ∧ Combine > 69.372 THEN Class = 1
IF Oral > 63.75 ∧ Combine > 69.372 THEN Class = 1

Since Compas is biased wrt. the protected features, training a fair ML model
for this dataset can be done by sacrificing the model’s accuracy. Concretely,
the maximum feasible accuracy for this dataset is 69.73%. Although DS models
achieving this accuracy for Compas can be trained, they are too large to inter-
pret (each has at least a few hundred literals). Thus, one may want to sacrifice
accuracy further and get a more interpretable (i.e. smaller) DS model instead.
For instance, the following non-overlapping MinDS1 model has 66.32% accuracy
and it is fair with respect to all the protected features:

IF Number of Priors > 17.5 ∧ ¬score factor THEN Two yr Recidivism
IF Number of Priors > 17.5 ∧ Age Above FourtyFive ∧ Misdemeanor THEN Two yr Recidivism
IF Number of Priors ≤ 17.5 THEN ¬Two yr Recidivism
IF score factor ∧ ¬Age Above FourtyFive THEN ¬Two yr Recidivism
IF score factor ∧ ¬Misdemeanor THEN ¬Two yr Recidivism
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7 Conclusions and Research Directions

We studied the fairness of ML models, by considering the criterion FTU [31,48],
but proposing instead a semantic definition. We also proposed theoretical jus-
tifications for the use of FTU. Moreover, we developed criteria for assessing
fairness in ML models and bias in datasets, and related fairness with explana-
tions and robustness. Finally, we investigated approaches for synthesizing fair
ML models. Future work will address limitations of the current work, namely
assessing non-protected features exhibiting discriminatory information and/or
taking statistical measures into account [12,67].
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