Comparative epidemiology of suspected perioperative hypersensitivity reactions

¹Department of Anesthesia and Intensive Care, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France, ²Department of Immunology, Allergology and Rheumatology, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium, ³Department of Immunology, Manchester University NHS Foundation Trust, Manchester, UK, ⁴Northern Clinical School, University of Sydney, Sydney, Australia, ⁵Department of Anaesthesia, Royal North Shore Hospital, Sydney, Australia, ⁶Intensive Care Unit, Gunma University Hospital, Gunma, Japan, ⁷Department of Anaesthesia and Perioperative Medicine, Auckland City Hospital, Auckland, New Zealand, ⁸Department of Anaesthesia, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia, ⁹Anaesthetic Allergy Referral Centre of Western Australia, Sir Charles Gairdner Hospital, Perth, Australia, ¹⁰Department of Anaesthesiology and Intensive Care, Groupe Hospitalier de Paris-Seine-Saint-Denis, Assistance Publique-Hôpitaux de Paris, Paris, France, ¹¹Université Paris 13, Sorbonne-Paris-Cité, Paris, France, ¹²Danish Anaesthesia Allergy Centre, Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital, Gentofte, Denmark, ¹³Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark, ¹⁴Department of Anaesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway, ¹⁵Department of Clinical Medicine, University of Bergen, Bergen, Norway, ¹⁶Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA, ¹⁷Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK, ¹⁸Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA, ¹⁹Department of Anaesthesia and Perioperative Medicine, Monash University, Melbourne, Australia, ²⁰Department of Anaesthesia, Peninsula Health, Melbourne, Australia, ²¹Division of Allergology, University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia, ²²Allergy Unit, Allergy-Anaesthesia

© 2019 Published by Elsevier Ltd on behalf of British Journal of Anaesthesia.
For Permissions, please email: permissions@elsevier.com

Editorial decision date: 15 January 2019; Accepted: 15 January 2019
Perioperative hypersensitivity (POH) reactions are, in most cases, completely unexpected and unpredictable critical events presenting suddenly without warning. Reactions may be either of allergic or non-allergic origin.1,2 Severity of reactions ranges from mild to severe, and, in extreme cases, may be fatal despite prompt recognition, prolonged adequate resuscitation, and treatment. After pioneering work conducted in Australia,3 the UK,4 and France,5 our knowledge about the epidemiology of perioperative anaphylaxis has substantially improved. Data are now available from large numbers of clinical practice publications, clinical databases, and allergen surveys from many countries.6–17

Although surveillance and analysis of rare and random adverse drug reactions represent statistical challenges, we now have clear evidence that differences between countries do exist. Several factors may contribute to these differences, such as gene–environment interactions, but also differences in anaesthesiology practice, variability in clinical recognition of potential POH reactions, and subsequent referral or variability in the comprehensiveness of the allergy evaluation. However, we have learned to take advantage of these differences to increase our knowledge about hypersensitivity reactions,18 either concerning the respective risk of different drugs or the changing patterns of causal agents and the emergence of new allergens. Recent publications have highlighted these changes in the respective risks for antibiotics,12,19 neuromuscular blocking agents (NMBAs) and sugammadex,20 natural latex,19 dyes,12,19,21 and chlorhexidine.12,22 This review summarises important recent information on the epidemiology of POH, with specific consideration to geographical differences for the most frequently involved causal agents.

Methods

A literature search was performed in the US National Center for Biomedical Information PubMed database with MeSH terms relevant to epidemiologic aspects of POH/anaphylaxis including triggers, geographical differences, and trends. Additional reports of interest identified by the writing group were included. Retrieved results were then reviewed to summarise the current knowledge of POH epidemiology.

Global incidence and mortality: similarities and regional differences

Several series from different countries have estimated the incidence of POH to be in the range of one in 18 600 to one in 353 anaesthetic procedures with substantial geographical variability.11,17,19,20,23–31 In the recent 6th National Audit Project (NAP6) of the Royal College of Anaesthetists, the incidence of severe life-threatening anaphylaxis (grades 3 and 4 POH) was estimated at one in 10 000 anaesthetic procedures. Because of methodology limitations the true incidence of severe reactions was estimated to be 70% higher.12

Anaphylaxis is often thought to be allergic, that is mediated by drug-specific immunoglobulin E (IgE) antibodies.22 However, other immune and non-immune mechanisms such as IgG antibodies, non-specific direct histamine release, contact phase or complement activation and off-target occupation of mast cell MRGPRX2 (Mas-related G-protein coupled receptor member X2) receptors may be involved;19,34 these account for 40% of the cases in some series.19,20,35 Moreover, POH might even occur independently of mast cell and basophil activation, for example by interference with enzymes such as cyclooxygenase 1 (COX1). The incidence of presumed IgE-mediated reactions during anaesthesia has been estimated to be in the range of one in 5000 to one in 13 600.3,16 These data should be interpreted cautiously, as a positive skin test does not necessarily reflect a genuine IgE-mediated reaction.37

The most powerful incidence estimate was reported in France, where a combined analysis of three different independent databases using a capture–recapture method allowed a nationally based estimation of the incidence of
immediate allergic (IgE-mediated) reactions of all grades occurring during anaesthesia, according to sex, age, and causal substance. This report has confirmed the general view that immediate-type hypersensitivity reactions are largely underreported, the incidence of allergic reactions being estimated at 100.6 (76.2–125.3) per million procedures (one in 10,000), a result that is very similar to that reported in NAP6.12,38

POH, including anaphylaxis, occur in a monitored setting, and recent studies have shown that recognition of anaphylaxis was generally prompt.39,40 If anaesthesiologists were considered reluctant to administer epinephrine (adrenaline) in Denmark,41 this does not seem to be the case in the UK and France.39,40 In both countries, most patients with severe reactions were adequately managed with rapid administration of epinephrine; however, fluid administration was sometimes regarded as insufficient. Despite adequate resuscitation, per-case mortality was estimated at one in 26.6 cases in the UK, a result very similar to that observed in France for mortality related to NMBA anaphylaxis.39,40 Even after well treated anaphylactic reactions, adverse sequelae were seen in one-third of cases.50

A very similar perioperative mortality rate of 4–4.76% has been recorded for all causative drugs in the USA and Japan, respectively.52,53 This contrasts with the low rate of 0–1.4% recently reported for Western Australia (2000–9).55

Causal agents

Neuromuscular blocking agents and sugammadex

In many countries, NMBA s are by far the most frequently incriminated culprit, and represent the first8,16,19,20,44,45 or the second12,13 most common cause of POH. Significant differences are observed concerning the frequency of alleged IgE-mediated reactions to NMBA s between countries. Reactions have been reported with a high frequency in France,19,20,38,46–48 Australia and New Zealand,6 the UK,12 Norway,7 Belgium,44,45 South Korea,49 and Spain.12,27 The incidence of IgE-mediated reactions has been estimated at 184.0 per million (95% confidence interval, 139.3–229.7) anaesthetics, reaching 250.9 per million (189.8–312.9) for women in France.31 POH reactions to NMBA s seem to be less frequent in Sweden,18 Denmark,6 and the USA.10–52 Although the incidence seems to remain relatively stable in France,35 a significant decrease has been observed in Norway since the withdrawal of the antitussive pholcodine, which may play a role in NMBA sensitisation.33,54

Structure–activity studies have established that the IgE recognition site of NMBA s involves the tertiary and quaternary substituted ammonium groups and their molecular environment.35,56 This could explain the frequent but not constant skin cross-sensitivity between different NMBA s observed in patients allergic to NMBA s, and variability between patients.17 An alternative explanation for cross-sensitivity in drug naïve patients could relate to off-target occupancy of the MRGPRX2 receptor by various NMBA s.34,37 Cross-sensitivity to all NMBA s is unusual; only ~7% of patients in the last French study.19 Patients suffering from anaphylaxis to succinylcholine cross-react with cis-atracurium in 10% of cases and with rocuronium in 20% of cases. Cross-sensitivity is most frequently observed with rocuronium and less frequently with cis-atracurium.19,44,58 Cross-sensitivity between cis-atracurium and vecuronium is frequent but not constant, observed in ~50% of patients suffering from anaphylaxis to one of these two drugs.19,53 These cross-sensitivity results strongly support the absolute necessity of a systematic cross-sensitivity investigation in patients who survive anaphylaxis to an NMBA in order to identify a possible safe drug for the future.33,59,60

Differences have been reported regarding the relative risk of allergic reactions with the various NMBA s available.61 Several studies report succinylcholine and rocuronium to be associated with a higher risk of anaphylaxis, whereas pancuronium and cis-atracurium are reported to be the NMBA s associated with the lowest incidence of anaphylaxis.8,10,38,44,46,47,49,62 This was not found in the NAP6 survey where only succinylcholine was considered at higher risk, with similar risk shared by the other NMBA s. However, in the UK, the market share of cis-atracurium was only 1.6%, and 40.6% for rocuronium.17 Thus, comparison of the respective allergic risk of rocuronium and cis-atracurium in this report cannot be accurately assessed.

Sensitisation may occur during previous anaesthesia but the majority of patients are drug naïve, that is they do not report previous exposure.14,56 This suggests that there must be alternative, probably environmental, factors that play a role in cross-sensitising patients to NMBA s. Sensitisation resulting from exposure to compounds containing tertiary substituted ammonium group, quaternary substituted ammonium group, or both, such as cosmetics or disinfectants, has been hypothesised.56 This hypothesis is supported by a recent study conducted on hairdressers demonstrating a significant increase in IgE sensitisation to NMBA s and quaternary ammonium ion compounds,63 although the clinical significance of this increase remains to be demonstrated. An attractive alternative hypothesis arises from the work published by Florvaag and colleagues,55 who provided repeated evidence for a connection between the consumption of pholcodine, an opioid antitussive, and IgE-mediated anaphylactic reactions to NMBA s.64–67 Nevertheless, patients with a genuine pholcodine allergy can have congruent negative skin tests and basophil activation tests to NMBA s, suggesting that allergy to this opioid does not necessarily preclude use of NMBA s.45 Johansson and colleagues68 showed, retrospectively, that pholcodine withdrawal from the Swedish market was associated with a decrease in the prevalence of sensitisation against ammonium groups in the general population. Their observations have led to the withdrawal of pholcodine from the Norwegian market. This resulted in a progressive decrease in IgE antibodies to quaternary substituted ammonium in the population and in the number of reports of allergic reactions to NMBA s.53,54 A prospective 4 yr case–control study (the ALPHO study: Allergie aux curares et exposition à la PHolcodine) designed to confirm this possible link between pholcodine exposure and sensitisation to NMBA s in France was initiated in 2015.

The NMBA reversal drug sugammadex was launched in the USA (December 2015) much later than in Europe (2008) or Japan (2010) because of US Food and Drug Administration (FDA) concerns about hypersensitivity reactions. As the use of sugammadex in Europe is limited (probably because of its high cost), occurrence of immediate sugammadex-induced anaphylaxis seems rare.12 In contrast, the incidence of sugammadex-induced anaphylaxis was recently reported as about one in 2500 administrations (0.039%) based on a retrospective observational study conducted in a single Japanese hospital.69 Sugammadex usage in Japan in 2010, in terms of monetary value, was more than four times higher than that in Spain, the country with the second-highest usage.51 The popularity of sugammadex in Japan is such that it has been administered to approximately 10% of the total Japanese population during the 8 yr period since its release.50 This
suggests that the difference in sugammadex-induced anaphylaxis between countries can be explained, at least in part, by differences in the total amount of sugammadex used. The authors of the Japanese study referred to a previous observational study reported from New Zealand that showed that the estimated incidence of anaphylaxis caused by succinylcholine and rocuronium was 0.048% and 0.04%, respectively, and concluded that the incidence of sugammadex-induced anaphylaxis is roughly equivalent to that induced by succinylcholine or rocuronium. Based on this speculation, one can estimate that the total incidence of intraoperative anaphylactic events will increase by at least one-third with the full-scale introduction of sugammadex.

Two recent reports conducted in healthy non-anaesthetised subjects receiving sugammadex at doses of either 4 or 16 mg kg⁻¹, or placebo, repeated twice at weekly intervals, showed an unexpected and dose-related high rate of immediate hypersensitivity reactions after sugammadex administration. The incidence of confirmed hypersensitivity was determined to be 0.7% in the 4 mg kg⁻¹ group, 4.7% in the 16 mg kg⁻¹ group, and 0% in the placebo group in one study. In the second study, the incidence of hypersensitivity was 6.6% in the 4 mg kg⁻¹ group, 9.5% in the 16 mg kg⁻¹ group, and 1.3% of the placebo group. These high rates of reactions contrasts with the number of reactions reported in clinical practice, and highlights the need for a careful survey of sugammadex-related hypersensitivity reactions. Based on current knowledge, sugammadex cannot be recommended as appropriate in the treatment of suspected rocuronium allergy.

Although the mechanism of sugammadex-induced anaphylaxis remains elusive, various hypotheses have been proposed. As sugammadex is a modified γ-cyclodextrin, which is also used for food additives, exposure to γ-cyclodextrin may be the sensitising trigger. Cyclodextrin is frequently used in foods and cosmetics because it can change the physical properties of various compounds by their encapsulation within the cyclic structure. The average person is thought to ingest about 4 g of γ-cyclodextrin per day from food. Therefore, even people who have never received sugammadex may be sensitised by food and cosmetics. None of 12 patients who suffered anaphylaxis to sugammadex had a history of previous sugammadex exposure. If this hypothesis is correct, the incidence of sugammadex-induced anaphylaxis may vary from country to country because the use of food containing cyclodextrins in each country is likely to differ. Another hypothesis is that sugammadex causes anaphylaxis only after it complexes with rocuronium, based on several clinical cases in which rocuronium and sugammadex alone had negative results by skin test, but were positive when combined. These cases suggest that sugammadex may change its structure and become an antigenic determinant after forming a complex with rocuronium.

Hypnotics

Historically hypnotic agents were responsible for a significant proportion of cases of perioperative anaphylaxis, but discontinuation of agents using Cremophor EL as a solvent and declining use of thiopental has dramatically changed this. In the most recent GERAP (Groupe d’Etude des Reactions Anaesthesiques Perioperatoires) survey of anaphylaxis in France, hypnotics were responsible for 2.2% of cases, with propofol and ketamine being responsible for five reactions each and midazolam a single reaction. The recent NAP6 survey in the UK identified only a single case of hypnotic anaphylaxis. This reaction was to propofol, and the authors highlighted the relative safety of propofol given that approximately 2 million patients are administered propofol annually in the UK.

There has been ongoing debate about whether it is safe to administer propofol in cases of egg, soy, and peanut allergy. Studies in Denmark and Spain in recent years suggest that it is. There has been a case report of anaphylaxis to propofol in a patient without clinical history of soy allergy but latent sensitisation demonstrable by positive specific IgE (sIgE). A single report of a child with egg allergy who experienced urticaria and erythema after propofol and had a borderline positive skin test led Harper to suggest that propofol is safe for use in adults with peanut, soy, or egg allergy.

Opioids

Opioids include (1) naturally occurring opiate alkaloids derived from opium (the liquid released by scratched immature seed pods of the opium poppy, Papaver somniferum) such as morphine and codeine; (2) semisynthetic opioids such as pholcodine, hydrocodone, hydromorphone, and diamorphine; and (3) synthetic compounds that are chemically not related to opiates such as methadone, pethidine, fentanyl, and tramadol. Many natural and (semi)synthetic opioids are potent non-specific liberators of histamine. Non-allergic histaminic reactions are much more prevalent than IgE-mediated hypersensitivity to these drugs and they probably result from off-target occupation of the MRGPRX2 receptor rather than from binding to the opioid µ-receptor. Data suggest that many patients labelled with opioid/opiate allergy do not have a genuine IgE-mediated allergy. The reason for this mislabelling is often the uncertainties associated with the use of skin tests with these potent non-specific histamine releasers and unavailability of validated or reliable sIgE assays. Indeed, allergic reactions to these substances are exceedingly rarely reported despite their ubiquitous use during anaesthesia.

Local anaesthetics

Local anaesthetics are commonly used in the perioperative environment, yet no cases of proven local anaesthetic allergy were reported in the NAP6 survey or two other recent studies of perioperative anaphylaxis. True hypersensitivity reactions to local anaesthetic drugs are considered rare. Many reports of allergy prove to be spurious, often related to side-effects of injections in awake patients (e.g. vasovagal reactions) or adverse effects of rapid absorption of vasopressor or toxic serum levels of local anaesthetic. Excipients in local anaesthetic preparations may also be responsible for suspected local anaesthetic hypersensitivity reactions, such as chlorhexidine in urethral gels. Delayed hypersensitivity can also occur with local anaesthetics.

The ester group of local anaesthetics (e.g. procaine, tetra-caine) is considered to be more antigenic than the amide group (e.g. lidocaine, bupivacaine, ropivacaine). The para-amino-benzoic acid metabolite of esters is thought to be responsible for much of the antigenicity of this group. Assessment of suspected immediate hypersensitivity to local anaesthetics should involve skin tests and subcutaneous challenge tests.

Antibiotics

Antibiotics, mainly β-lactam antibiotics such as amoxicillin/ clavulanic acid, cefazolin, and cefuroxime, constitute another
significant cause of perioperative anaphylaxis. In most patients, diagnosis of β-lactam allergy is readily established by skin tests, which still merit a place as the primary diagnostic tool. However, for some compounds there appears to be room for considerable improvement, mainly in optimising the concentration of drug to be used for skin tests. The potential and limitations of in vitro tests in the diagnostic management of β-lactam antibiotics have been reviewed recently.

The NAP6 allergen exposure survey showed that choice of antibiotic prophylaxis was influenced by preoperative penicillin allergy history in 25% of the patients who received teicoplanin or vancomycin, and thereby probably contributed to the high incidence of teicoplanin-induced anaphylaxis in the UK. Other frequently applied alternatives are vancomycin and clindamycin. With the knowledge that history of penicillin allergy is wrong in more than 90% of cases, effective de-labelling is mandatory to optimise appropriate antibiotic administration. Obsolete historic data and statistics suggesting extensive cross-reactivity between penicillins and first-generation cephalosporins such as cephalothin and cephalexin continue to influence modern practice. Therefore, many patients with unverified β-lactam allergy are labelled as ‘pan-β-lactam’ allergic, leading to the withholding of penicillins, cephalosporins, and monobactams. However, during the past few decades, evidence has accumulated that this ‘pan-β-lactam’ allergy label is false in most cases. For example, cefazolin allergy is generally selective, and rarely associated with cross-reactivity to penicillins or other cephalosporins. It appears that cefazolin is generally safe in patients with an IgE-mediated or non-IgE-mediated penicillin allergy, especially when the history is vague. Cefazolin does not share an R1 and R2 group with any other β-lactam antibiotic. There are limited data on cefazolin safety in patients with a history of a significant reaction to penicillin or positive skin testing to penicillin. There is no evidence that the administration of a ‘test dose’ of an antibiotic reduces the severity of an ensuing reaction, and current guidelines are advising against this practice. In contrast, there are different arguments for antibiotics to be systematically administered before induction of anaesthesia. This is likely to improve the detection of unknown allergies, simplify treatment, and orientate the diagnostic investigation.

Hevea latex

Since the discovery of the vulcanisation process by Goodyear and Hayward in the mid-19th century, natural rubber latex (NRL) from Hevea brasiliensis has been used in medical devices for its elastic properties. The first cases of allergy to NRL were reported in 1927 by Stern and Grimm. In 1984, Turjannmaa and colleagues reported the first cases of perioperative anaphylaxis attributed to NRL in healthcare workers (nurses) who underwent surgery. In 1989, Slater reported the case of NRL allergy in two children with spina bifida. In 1990, Moneret-Vautrin and colleagues confirmed an increased risk in patients with a spina bifida associated with the detection of specific IgE against NRL and recommended an NRL-free environment for these patients during surgery.

The number of reported cases of allergy to NRL rapidly increased in the 1980s and reached its peak during the 1990s. The prevailing hypothesis to explain this rapid increase in NRL sensitisation is that the implementation of high hygiene standards after the human immunodeficiency virus (HIV) epidemic led to an increased demand for NRL gloves. To respond to this demand, producers had to change their manufacturing process by reducing the leaching steps of NRL, leading to the release of higher protein content products. High protein content increased antigen exposure and extractable proteins leading to NRL sensitisation. Moreover, donning glove powder absorbs most NRL proteins and facilitates their airborne dissemination increasing the risk of sensitisation for healthcare workers and patients.

Several populations at risk have been identified including children with spina bifida, those with a history of multiple surgeries, especially during childhood, healthcare workers, and non-healthcare workers frequently exposed to NRL. Atopy has been associated with a higher risk of NRL allergy in the general population and among healthcare workers. However, a recent population-based study showed no significant association between atopy and NRL allergy when exposure is low. Some allergies to fruits and vegetable have been associated with a higher risk of NRL allergy, but this may reflect cross-sensitisation that is not always clinically relevant. Chestnut, avocado, banana, and kiwi are the most frequently associated with NRL allergy, a condition referred as the latex-fruit syndrome.

Two Italian studies reported an increased risk of NRL sensitisation in pregnant women when compared with women having gynaecological surgery, results that need to be confirmed.

The incidence of NRL-related perioperative IgE-mediated reactions was estimated at 59.1 reactions (44.8–73.6) per 1 million anaesthetics in France between 1997 and 2004 with an increased incidence in women (91.0 [68.9–113.4]). More recent studies in many countries show a marked decrease in NRL anaphylaxis when compared with other causes of IgE-mediated POH. In a large multicentre study of more than 31 000 paediatric anaesthetic procedures performed in Europe between 2014 and 2015, only one complication was attributed to NRL allergy.

This reduction of NRL sensitisation observed in the general population can be attributed to efforts made by manufacturers and healthcare providers during the past 10 yr to reduce NRL exposure. Primary prevention is based on increased awareness of the risk of NRL allergy, NRL avoidance in at-risk populations, particularly children, use of powder-free latex gloves, and recognition of clinical signs. Interestingly, in Thailand, where the sensitisation to NRL was previously low, the continued use of powdered gloves led to increased sensitisation to NRL in healthcare workers.

Nonsteroidal anti-inflammatory drugs

NSAIDs are COX inhibitors commonly used in perioperative settings during general anaesthesia and after operation for analgesia. They are a rare but well recognised cause of POH. Hypersensitivity to multiple NSAIDs with dissimilar structures is mediated by inhibition of the COX-1 isoenzyme. It is most likely to feature exacerbations of respiratory disease in susceptible patients, urticaria, or angioedema. Less commonly, true anaphylaxis occurs to NSAIDs and is the result of an IgE-mediated allergic reaction to a particular NSAID. In this situation, cross-reactivity may occur to NSAIDs that belong to the same chemical subgroup of NSAIDs, but the majority of NSAIDs will be non-reactive.

Paracetamol is another rare cause of anaphylaxis, particularly in the perioperative setting. The intravenous
preparation may contain mannitol that has been responsible for one such reaction that goes undetected by oral drug challenge.141 Hypersensitivity resulting from COX-1 isoenzyme inhibition is also possible at high doses.142

Disinfectants

Chlorhexidine is known as a major cause of POH. Since the first case of proven chlorhexidine-induced anaphylaxis reported in 1989,143 numerous further cases have been reported mostly related to anaesthesia and surgery. Chlorhexidine products are recommended increasingly to reduce infection risks for patients. For example, national UK guidelines recommend use of 2% chlorhexidine in 70% isopropyl alcohol as the skin disinfectant of choice for central venous catheter insertion and for urethral catheterisation. The use of a chlorhexidine-containing urethral lubricant for catheterisation is also suggested.144 According to the Medicines and Healthcare Products Regulatory Agency licensing records, the percentage of products containing chlorhexidine has significantly increased over the past 20 yr.145 Moreover, even in non-medical environments, chlorhexidine is found in many commercially available products, including mouthwashes, antiseptic creams, toothpaste, and plasters. This increase in chlorhexidine containing products in both medical and non-medical environments clearly identifies its popularity, which may explain the increasing susceptibility to sensitisation followed by the high incidence of chlorhexidine-induced anaphylaxis.

Although chlorhexidine represented 9% of culprit drugs for POH in the NAP6 study,12 regional differences are large in the incidence of chlorhexidine-induced anaphylaxis. Chlorhexidine is frequently incriminated in the UK,146 Belgium,45 Australia,147 and Denmark,6,22 which are countries where chlorhexidine is routinely tested in all patients investigated for suspected perioperative allergy. Reactions are relatively rare in France, probably because of a limited use of chlorhexidine as a disinfectant in the operating room.25 The causative chlorhexidine product was reportedly chlorhexidine-containing lubricant for urinary catheter (44%), chlorhexidine-impregnated central venous catheters (35%), and topical chlorhexidine (16%) in a recent review.147 Chlorhexidine-induced anaphylaxis predominantly occurs in males (\textasciitilde 80%).145,147 This may be because of the more frequent use of urethral lubricant in males. The first case of chlorhexidine-impregnated catheter anaphylaxis was reported in 1997,148 and acute anaphylactic shock during anaesthesia has been reported in Japanese and European patients after insertion of chlorhexidine-impregnated catheters. Such adverse events prompted government warnings in Japan,145 the USA,149 and Australia.150 These led to Japan withdrawing all chlorhexidine-impregnated central venous catheters.151 Although it is not common, POH caused by topical chlorhexidine has also been reported.143,152,153 A high rate of reactions to topical chlorhexidine was reported in Japan, and as a result specific recommendations regarding the maximum chlorhexidine concentration to be used were issued.154,155 Additional warnings concerning urethral gels have been issued. In contrast, the guideline published by the US Centers for Disease Control and Prevention recommends skin preparation with a \textasciitilde 0.5% chlorhexidine solution with alcohol before central venous catheter and peripheral arterial catheter insertion154,155, even more concentrated (2%) chlorhexidine is recommended for the same purpose in the UK.155 Although the incidence of anaphylaxis caused by topical chlorhexidine in the USA is unknown, one can expect a high incidence there as well. Collaborative international studies to compare the usage of chlorhexidine in each country with the incidence of anaphylaxis caused by chlorhexidine would be beneficial. Taken together, the incidence of anaphylaxis caused by chlorhexidine is likely to be underestimated, and clinicians should be aware that chlorhexidine is one of the ‘hidden’ causes of POH.138 The problem of chlorhexidine allergy in the perioperative setting is discussed in greater depth by Rose and colleagues.156

A few cases of anaphylaxis caused by povidone-iodine have been also reported,157,158 although it is notably less than that caused by chlorhexidine.

Dyes

Blue dyes have long been associated with anaphylaxis in the perioperative period, first described in the 1960s.159,160 They are frequently used by surgeons in combination with radioactive isotope to facilitate mapping of lymphatic drainage and identification of sentinel lymph nodes (SLNs) in cases of breast cancer and melanoma. Anaphylaxis to dyes is often delayed in onset compared with i.v. perioperative antigens,12,21 probably as a result of slow absorption from subcutaneous tissue and lymphatics,25,161 delay of recognition, or both because of interference with pulse oximetry with (prolonged) artificial lowering of readings.21,162 The two most commonly used blue dyes for SLN identification are patent blue V (also known as E-131, commonly used in Europe and Australia) and isosulfan blue (commonly used in the USA). The close structural relationship between these two vital dyes (isosulfan blue is a structural isomer of patent blue which is often confused with its hydroxylated relative, patent blue V) means that cross-reactivity has been described and should be assumed.163 In contrast, methylene blue is structurally dissimilar and would not be expected to cross-react, although this has been described.21,164 Allergy to dyes is mainly documented by skin testing, but basophil activation testing can help to identify safe alternatives.165

Controversy about the incidence of reactions to these dyes has existed for years. Barthelmes and colleagues166 looked at several studies of isosulfan blue allergy and reported an allergy rate of 1.42% with severe reactions requiring vasopressor support in 0.44%. In contrast, their own large study of patent blue V reported a lower allergy rate of 0.86% with 0.06% severe using the same criteria. The largest series involving skin test-proven hypersensitivity to patent blue V recorded a rate of 0.34%. In the last survey published in France, blue dyes were the third largest cause of POH of all severity grades.161 Similarly, the recent NAP6 survey in the UK found that patent blue V was the fourth most prevalent cause of perioperative allergy after antibiotics, NMBA, and chlorhexidine,12 and was calculated to occur in one out of 6863 exposures. This value is lower than those in previously mentioned studies, but in perspective is a higher incidence than that calculated for antibiotics, NMBA, and chlorhexidine once exposure rates are considered. Some centres have begun screening patients using skin tests for detection of hypersensitivity to blue dyes before exposure or advocating consenting patients specifically about risks of hypersensitivity with their use.166–168

Methylene blue has been considered a lower allergy risk than patent blue V or isosulfan blue but is theoretically less useful in SLN localisation because of the lack of a sulphonic acid group that would allow lympatic uptake. Methylene blue
Colloids

The epidemiology of hypersensitivity reactions to colloids has changed because of the withdrawal of some colloids from the market and restrictions in the use of others. Only a few studies are relevant to the epidemiology of currently used colloids.

Synthetic colloids are associated with a higher risk of hypersensitivity reactions. In a study in which human albumin was used as a reference, the estimated risk of hypersensitivity reaction to gelatin was 12 times higher, hydroxyethyl starch four times higher, and dextan two times higher per administration. However, hydroxyethyl starch 130/0.4 was not evaluated in this study and old modified fluid gelatins (Haemaccel®, Piramal Healthcare, Mortpeth, Northumberland, UK), with histamine-releasing properties, are no longer used in Western countries.

Allergic reactions to dextan are mainly IgG-mediated and can be prevented in most cases by hapten inhibition. As this product is no longer used for vascular filling, these reactions are no longer seen in the perioperative setting.

Hypersensitivity reactions to newer modified fluid gelatins account for 0.6% of POH in the last GERAP study in France and for 1.2% in Norway. In the UK, 2.8% of anaesthetists reported seeing a POH caused by colloids. In the NAP6 study, only three cases of gelatin-induced reaction were reported.

In the USA, the use of hydroxyethyl starch was associated with a risk of hypersensitivity reactions with an odds ratio of 1.29 (1.02–1.62). Because of the recent restrictions applied to the use of hydroxyethyl starch, hypersensitivity reactions to this fluid were not described in the last GERAP study in France nor in the NAP6 survey in the UK.

Blood products

Hypersensitivity reactions occur to a heterogeneous group of blood components that vary in their risk of causing serious hypersensitivity reactions. The genesis of true hypersensitivity reactions to blood products is complex and is best divided into recipient- and donor-related aetiologies. In the first of these, a recipient’s antibody reacts with an antigen in the blood product. The best known of these is anti-A in a patient who is IgA deficient although many antibodies have been described. For example, traces of drug in the unit can react with the patient’s antibodies, which is the reason for measurement of recipient IgA levels in the investigation of possible blood transfusion anaphylaxis. Donor-related reactions include the transfer of antibodies or lymphocytes in the blood product that react to antigens present in the patient.

The NAP6 survey identified two cases of anaphylaxis (one to cryoprecipitate and one to fresh frozen plasma) in an estimated 84 000 perioperative blood product administrations. This may reflect a local haemovigilance scheme but equally may reflect the difficulty in diagnosing perioperative blood product reactions in the absence of a confirmatory skin test and with multiple other suspect antigens. Furthermore, shock during the administration of blood products may result from non-anaphylactic causes such as ABO incompatibility (acute haemolytic transfusion reaction), bacterial contamination of blood products, bradykinin accumulation, and hypovolaemia.

The incidence of hypersensitivity reactions to blood products overall is estimated at 0.6 per 1000 transfusions. The risk of individual components of blood varies substantially with estimates that platelets cause 1.1 allergic reactions (of all severities) per 1000 transfusions compared with 0.68 and 0.04 for plasma transfusions and red cell concentrates, respectively. Allergic reactions to platelets were likely to be more severe than with other blood components. A report from France suggested that methylene blue treated fresh frozen plasma (introduced as a pathogen reduction strategy) could carry a higher risk of allergic reactions than non-treated units, but this increased risk has not been confirmed in other studies.

Others

Aprotinin, a polypeptide isolated from bovine lung, is capable of stimulating a specific IgE antibody in humans, and has been shown to cause anaphylaxis. Although the incidence seems to be low, sporadic cases of anaphylaxis caused by aprotinin in fibrin glue and aprotinin used as an anticoagulant during cardiac surgery have been reported. The risk of hypersensitivity reaction is low after primary exposure to aprotinin. However, application of aprotinin carries a high risk 4–30 days after previous exposure and cannot be recommended for the first 6 months.

Protamine sulphate is a polypeptide that is used to reverse heparin anticoagulation, and retard absorption of insulin, often as neutral protamine Hagedorn (NPH). The polypeptide is extracted from salmon milt. In addition to IgE-mediated anaphylaxis, protamine can produce multiple adverse reactions, including non-immune mast cell degranulation, complement activation, or IgG-mediated responses that account for the systemic effects. If anaphylaxis occurs during protamine administration when cardiopulmonary bypass is readily available, the method of managing anticoagulation and potential reversal after rehaeparinisation is an unsolved issue. Fortunately, the incidence of protamine-induced anaphylaxis appears to be low in most countries. Patients who receive protamine-containing insulins are at the greatest risk with an incident rate of adverse effects of 0.6–2% (10–30 times more than other patients) in NPH insulin-dependent diabetics undergoing cardiac surgery.

Discussion

The overall incidence of POH ranges from one in 18 600 to one in 353 with substantial geographical variability (Box 1). Several factors explain these differences including the definition of hypersensitivity or anaphylaxis used and the mechanism and severity of the reactions included. The recent NAP6 survey conducted in the UK included only severe grade 3–5 cases, and the incidence was estimated to be at least one in 10 000 anaesthetics, but was likely underestimated. This incidence is similar to that of IgE-mediated POH of all grades in France, which was based on a combined analysis of two independent databases representing a cohort of 2516 cases.

There is also substantial geographical variability regarding the different drugs or substances involved. There are a large number of variables that can have an impact on the most common causes of perioperative anaphylaxis from country to country. These variables include the ability to identify possible...
POH and initiate referral, the severity of the reactions that are included, the type of NMBA and antibiotics used by region, the comprehensiveness of the evaluation (i.e. inclusion of all potential allergens the patient was exposed to, such as chlorhexidine, sealants), possible sensitising substances in a region and availability of in vitro testing.

Hypersensitivity reactions to NMBAxs remain a major cause in most, but not all, countries. Reactions to NRL have been decreasing over the past 20 yr. Reactions involving antibiotics are rapidly increasing, now being more common than NRL and the most common culprit in some series.12,19

This increase in antibiotic anaphylaxis may reflect increasing antibiotic sensitisation in the population, but may also be influenced by the type of antibiotics used for prophylaxis. Thus, reactions to teicoplanin appear to be frequent in the UK but not in France.12 Reactions to cephalosporins represent half of the reactions in France.29 The use of teicoplanin for prophylaxis is not recommended in France, whereas it is frequently used as an alternative in cases of suspected penicillin allergy in the UK.

Reactions involving chlorhexidine are now being reported with increased frequency.12,25 It may be difficult to correctly diagnose because of a lack of exposure recognition as exposure to chlorhexidine is rarely documented on anaesthetic charts.138 Therefore, systematic testing for a possible chlorhexidine allergic reaction seems prudent in cases of POH, even in countries where usage appears to be low.

Allergic reactions involving dyes are also being reported with a high frequency, representing the third most commonly responsible allergen in France. Clinical diagnosis may be difficult as these reactions are usually delayed after dye injection.21 Reactions to hypnotics, local anaesthetics, and NSAIDs remain uncommon in the perioperative environment.

Conclusions
Owing to the rare occurrence of POH, it is mandatory that collaborations are established both within and across specialties to form centres that can build up and report expertise in this highly specialised field. Building a worldwide network dedicated to the investigation of these reactions will not only enable a higher standard of patient care, but will also lead to research collaborations and provide invaluable data on geographical differences, changes in patterns of causal agents, and new or emerging allergen sources.

Authors’ contributions
Design of the study: PMM, DE, TG, MR, VS, TT.
Drafting of manuscript: PMM, DE, TG, MR, VS, TT.
Study conception; data collection, analysis, and interpretation; revising paper: all authors.

Declarations of interest
PD receives lecture and travel fees from MSD France (Courbevoie, France) and from Bracco Imaging France (Courcouronnnes, France), support from Agence Nationale de Sécurité du Médicament et des Produits de Santé (Saint-Denis, France), expert for a task force on ‘neuromuscular blocking agents and anaphylactic reactions’ (until 2016), and is a MSD Expert Board on ‘neuromuscular blocking agents and fast-tracking anaesthesia’ (until October 2019); LHG is a consultant and adjudication committee member for Merck, NJ, USA and for Novo Nordisk Denmark; PMH is an Editorial Board Member of the British Journal of Anaesthesia; PMM is a scientific advisor for the ALPHO study (NCT02250729) funded by a consortium of pharmaceutical companies: Zambon, Urgo, Pierre Fabre, Boots, Hepatoum, Biocodex, Sanofi, LBR, GSK, APL, Bells Healthcare, Pinewood, T & R, Ernest Jackson; PK receives lecture fees from Novartis Pharma Services Inc. and Shire Pharmaceuticals Group Plc.; SM has a Australian National Health and Medical Research Council (NHMRC) ECR Fellowship for investigation of cognitive aids in emergencies. All other authors confirm that they have no interests to declare.

References

37. Spoerl D, Nigolian H, Czarnetzki C, Harr T. Reclassifying anaphylaxis to neuromuscular blocking agents based on the presumed patho-mechanism: IgE-mediated, pharmacological adverse reaction or ‘innate hypersensitivity’? Int J Mol Sci 2017; 18

41. Garvey LH, Belhage B, Kroigaard M, Husum B, Malling HJ, Mosbech H. Treatment with epinephrine (adrenaline) in
suspected anaphylaxis during anesthesia in Denmark. Anesthesiology 2011; 115: 111–6
53. de Pater GH, Florvaag E, Johansson SG, Irgens A, Petersen MN, Guttormsen AB. Six years without pholcodine; Norwegians are significantly less IgE-sensitized and clinically more tolerant to neuromuscular blocking agents. Allergy 2017; 72: 813–9
54. Florvaag E, Johansson SG, Irgens A, de Pater GH. IgE-sensitization to the cough suppressant pholcodine and the effects of its withdrawal from the Norwegian market. Allergy 2011; 66: 955–60
61. Mertes PM, Volcheck GW. Anaphylaxis to neuromuscular-blocking drugs: all neuromuscular-blocking drugs are not the same. Anesthesiology 2015; 122: 5–7
67. Katelaris CH, Kurosawa M, Moon HB, Borres M, Florvaag E, Johansson SG. Pholcodine consumption and immunoglobulin E-sensitization in atopic from Australia, Korea, and Japan. Asia Pac Allergy 2014; 4: 86–90
70. Takazawa T, Lida H. Current status of sugammadex usage and the occurrence of sugammadex-induced anaphylaxis in Japan. APSF News 2018; 33: 11–2
71. Corda D. The anaphylactic risk. APSF News 2018; 33: 11–2

86. Murphy A, Campbell DE, Baines D, Mehr S. Allergic reactions to propofol in egg-allergic children. *Anesth Analg* 2011; 113: 140–4

97. Kvisvelsgaard AD, Mosbech HF, Fransson S, Garvey LH. Risk of Immediate-type allergy to local anesthetics is overestimated—results from 5 years of provocation testing in a Danish allergy clinic. *J Allergy Clin Immunol Pract* 2018; 6: 1217–23

149. Nightingale SL. From the food and drug administration. *Jama* 1998; 279: 1684

159. Kopp WL. Anaphylaxis from alphazurine 2G during lymphography. JAMS 1966; 198: 686–9

Handling editor: H.C. Hemmings Jr