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Abstract Decision tree learning algorithms are known to

be unstable, such that small changes in the training data can

result in highly different output models. Instability is an

important issue in the context of machine learning which is

usually overlooked. In this paper, we illustrate and discuss

the problem of instability of decision tree induction algo-

rithms and propose a framework to induce more stable de-

cision trees. In the proposed framework, the split test

encompasses two advantageous properties: First, it is able

to contribute multiple attributes. Second, it has a polylithic

structure. The first property alleviates the race between the

competing attributes to be installed at an internal node,

which is the major cause of instability. The second prop-

erty has the potential of improving the stability by pro-

viding the locality of the effect of the instances on the split

test. We illustrate the effectiveness of the proposed

framework by providing a complying decision tree learning

algorithm and conducting several experiments. We have

evaluated the structural stability of the algorithms by

employing three measures. The experimental results reveal

that the decision trees induced by the proposed framework

exhibit great stability and competitive accuracy in com-

parison with several well-known decision tree learning

algorithms.

Keywords Stability � Decision tree � Split measure �
Split test

1 Introduction

Decision tree learning algorithms are one of the most

widely used algorithms for the classification task. They

can build high precision models from the labelled

training instances effectively and efficiently. Moreover,

the comprehensibility of the output model is an excellent

property of the decision tree learning algorithms. On the

other hand, decision tree learning algorithms are unsta-

ble [2, 14, 25]. An unstable learning algorithm is a

highly data dependent algorithm, such that small changes

in the training data can result in highly different output

models.

Instability arouses suspicion about the validity of the

output model, especially in domains such as medicine,

where the goal is: ‘‘extracting knowledge from the model’’.

The decision tree hypothesis may change heavily because

of small changes in the training data. ‘‘The users view the

learning algorithm as an oracle. Obviously, it is difficult to

trust an oracle that says something radically different each

time you make a slight change in the data’’ [28]. The

consequence of such behaviour would be this concern: is

the output model an integration of the information

extracted from the training data or it is an artefact reacting

to the training instances?

The rest of the paper is organized as follows: we first

illustrate the instability problem which has motivated this

research and then, we discuss about the causes of this issue

and our approach for addressing this problem. Section 2

reviews the related works. Section 3 introduces the pro-

posed framework. For the illustration purpose, Sect. 4

presents a new decision tree learning algorithm which

complies with the proposed framework. Section 5 empiri-

cally evaluates the stability and the performance of the

presented algorithm by comparing it with four
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representative decision tree learning algorithms. Section 6

gives the conclusion.

1.1 Preliminaries of decision trees

Decision tree is a hierarchical model for supervised

learning, which is composed of internal decision nodes and

terminal leaves. ‘‘Each internal node m implements a test

function fx(x) with discrete outcomes that label the bran-

ches’’ [29]. When an input x reaches to an internal node,

the outcome of fx(x is calculated and the corresponding

branch is taken. Throughout this paper, we have used split

test in order to refer to this test function.

In univariate decision trees, a single attribute is employed

at the internal nodes of the decision tree as the split test. This

attribute is selected based on a split measure. Information

gain is a well-known split measure based on information

theory, which is used in several decision tree learning

algorithms [18, 33]. In the following section, we illustrate

the instability problem in the case of decision trees which

employ this split measure. Meanwhile, although there may

be small differences in the sensitivity of different split

measures to the training data, but it is shown that the effect

of this choice on the stability is not significant [7].

Let S be the set of the training instances at node N. The

entropy of S is given by:

Entropy Sð Þ ¼ �
Xm

i¼1

pilog2ðpiÞ ð1Þ

Where m is the number of classes and pi is the probability

that an arbitrary instance in S belongs to class Ci, which is

estimated by
Ci;Sj j
Sj j . Now, if the instances in S be partitioned

into v disjoint subsets based on some attribute A, the

entropy of the resulted partitions is given by:

EntropyAðSÞ ¼
Xv

j¼1

Sj
�� ��
Sj j � EntropyðSjÞ ð2Þ

Then, information gain is defined as the difference between

the original entropy and the new entropy obtained after the

split:

InfoGain Að Þ ¼ Entropy Sð Þ � EntropyA Sð Þ: ð3Þ

In the case of using information gain as the split measure,

information gain is calculated for every attribute and the

attribute with the highest information gain is chosen as the

splitting test for a node.

1.2 Motivating examples

Figure 1 illustrates the instability problem in univariate

decision trees (which use information gain as the split

measure) on a hypothetical 2-class classification problem.

The vertical dashed line shows the split test at the root of

the decision tree built on the black instances, while the

horizontal line shows the split test at the root of the deci-

sion tree built on the black instances plus the one instance

shown in red. In other words, on the original training data

shown in black, the split test at the root of decision tree

would be ‘‘Attribute 1’’ with 0.65 as the splitting-value,

which becomes ‘‘Attribute 2’’ with 0.64 as the splitting-

value by adding the training instance shown in red,.

Therefore, we can see that even a single change in the

training data can result in a highly different decision tree

with a different split test (decision attribute) at the root.

Figure 2 illustrates the instability problem in the tradi-

tional decision tree learning algorithms on the Iris dataset.

Iris dataset is commonly used in the literature. As it is

shown, the split test at the root node has to be selected

randomly, because ‘‘Petal Length’’ and ‘‘Petal Width’’

attributes have the same information gain. In other words,

the split test at the root node of the decision tree may

change on different runs of the algorithm, even when no

change is occurred in the training data.

1.3 Discussion

In the traditional univariate decision trees, such as ID3

[18], C4.5 [19] and their descendants [16, 33], the split test

is a single attribute. Consequently, the attributes compete

for being selected as the split test at the internal nodes in
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Fig. 1 Illustrating the instability problem in traditional decision tree

learning algorithms on a hypothetical classification problem. The split

test at the root node of the decision tree changes from the vertical line

to the horizontal line by a single change in the input dataset, e.g.

adding the instance shown boldface in red (color figure online)
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such decision tree learning algorithms and hence, when

some attributes have close merit based on the heuristic split

measure function, a little change in the training data may

result in selecting a different winner. This brings about

instability, i. e. a little change in training data may cause a

highly different output model.

On the other hand, the divide-and-conquer nature of the

decision tree learning algorithms and the way they select the

split tests (by optimizing for all outcomes of the test) make

them sensitive to the training instances [27]. It is shown that

adding additional instances to the training set will have a

strong influence on the selection of tests at all levels of tree

[27]. That ’s because even a single change in the training

instances can change the split test at a node (even the root

node) and such a change cascades to all of its descendant sub-

trees, because it alters the distribution of the instances that

reach to them. The consequence is that each training instance

can have a global influence on the learnt hypothesis.

Meanwhile, in a study on comparing the effect of adding

new instances to the training set (via windowing) on the

decision tree learning algorithms and the decision rule

learning algorithms, it is experimentally shown that deci-

sion rule learning algorithms exhibit more stability than

decision tree learning algorithms [27], which is justified by

the fact that in the separate-and-conquer rule learning,

adding new instances to the training set only affects the

decision rules that cover those instances and hence, the

parts of the hypothesis that have already been learned well

would not be affected [27].

These deliberations assert that ‘‘to make the system

stable, some kind of localization is necessary’’ [39].

1.4 Our approach

This paper proposes a new framework for inducing deci-

sion trees. In the proposed framework, the split test has

advantageous properties which provides higher stability:

first, it can contribute multiple attributes, which alleviates

the race between the competing attributes to be installed at

an internal node. Second, it is non-monolithic and hence, it

can be designed such that the effect of the training

instances on it be local. These properties help to prevent

major changes in the decision tree structure due to small

changes in the training data.

2 Related works

Decision trees are well-studied classification models and

there are many works in the literature concerning about

their fundamental aspects [4, 5, 8, 11, 16, 24], including

‘‘how a node should be split?’’, ‘‘how the effectiveness of a

split should be evaluated?’’, ‘‘when a node should be turned

into a leaf node?’’ and ‘‘how the class label should be

assigned to the new instances which arrive at the leaf

nodes?’’. However, despite the extensive usage of decision

trees, the important problem of instability is usually over-

looked and hence, there are few works in the literature

concerning about this issue.

2.1 On improving the stability

Breiman [2] has been the first researcher who has identified

decision trees as unstable predictors. Moreover, he studied

the undesirable consequences of instability and he pro-

posed bagging [1] as a way to improve stability. Bagging

refers to a voting scheme in which multiple models are

combined. Making an ensemble of decision trees, i. e.

employing the voting scheme, is the common approach to

improve stability. However, the induced ensemble models

are incomprehensible and complex. Breiman asserted on

the need for exploring the possibility of stabilization of

algorithms by changing their structure instead of voting [2].

Turney [22] has propounded the importance of stability

of decision trees too. He has discussed the relationships

between the stability, the predictive accuracy and the bias

of a learning algorithm and finally, he has asserted to

consider stability as a criteria for evaluation of the classi-

fication algorithms.

Kohavi et. al. [13] have proposed an approach for

improving stability of decision trees based on employing

the voting schema in some special internal nodes, called
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Fig. 2 Illustrating the instability problem in the traditional decision

tree learning algorithms on Iris dataset. The split test at the root node

of the decision tree has to be selected randomly between the ‘‘Petal

Length’’ (the dashed line) and the ‘‘Petal Width’’ (the solid line),

because the information gain of these attributes are equal (u 0.9183)
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option nodes. ‘‘An option node is like an or node in and–or

trees’’ [13], in which multiple split tests (attributes) are

combined using the majority vote approach. However, It is

shown that decision trees created by the option decision

tree approach can be very large, such that the number of

nodes in an option decision tree is comparable with the

total number of nodes in an ensemble of decision trees.

Dannegger [26] has employed the re-sampling technique

at the internal nodes to stabilize the selection of the split

attribute, such that the attribute with the maximum number

of winnings on a user-defined number of bootstraps at the

node-level is selected as the split attribute.

Zimmermann [25] has studied employing an ensemble

of rules within each internal node of the decision tree in

order to improve stability. However, he reported that the

experimental results did not advocate the expected

improvement in the structural stability.

Dwyer [7] has studied the problem of instability of

decision trees in the passive and the active learning set-

tings. He proposed a new split measure, called DKM [7],

and he investigated the effect of using this criteria on the

stability of C4.5 algorithm [19]. He showed experimentally

that to employ the DKM splitting criterion instead of

information gain improves the stability of C4.5 on some

datasets, but it does not show a significant improve in the

general case [7].

2.2 On quantifying stability

An important issue for studying stability is how to quantify

it. Some indicators are proposed in the literature for

quantifying stability of classification algorithms [7, 17, 22,

25]. Two types of stability is defined in the literature:

semantic stability and structural stability [7]. ‘‘Semantic

stability measures the degree to which two classifiers make

the same predictions, whereas structural stability measures

the similarity between particular structural properties of

two trees’’ [7]. Structural stability is more difficult to

achieve than semantic stability, because when two

hypotheses are structurally similar, they would produce the

same predictions, but the converse is not true [7].

Turney [22] has proposed a method for quantifying

semantic stability based on a measure of the agreement

between the concepts built on samples from the same

distribution. This metric which is called expected agree-

ment [22] is used as a measure for semantic stability of

decision trees in the consequent researches [7]. Paul et. al

[17] have proposed the stability of the class prediction as

an indicator for semantic stability of the classification

algorithms.

Zimmermann [25] has considered the low variance in

the size and depth of the trees in the cross-validation setting

as an indicator for structural stability. Dwyer [7] has

defined region stability metric as a novel measure for

structural stability of decision trees. Briand et. al. [30] have

proposed a similarity measure based on the placement of

the attributes at the internal node of the decision tree to

assess the stability of decision trees.

3 The proposed framework

Algorithm 1 presents the proposed framework. Given a

data set D with attribute set A ¼ fa1; a2; . . .; ang and a

target attribute y, the goal is to induce an optimal decision

tree (DT(D)) with minimum generalization error. However,

as inducing an optimal decision tree from a given dataset is

NP-complete, heuristic methods are used for solving the

problem [28].

The existing top-down decision tree learning algorithms

grow the decision tree in a greedy manner by recursively

selecting an attribute as the split test [18, 19], which

maximizes the heuristic split measure, such that:

ai ¼ argmaxai2A HðaiÞ. However, as discussed before,

when some attributes have close merit based on the

heuristic split measure, trying to select the single best

attribute causes such a race-condition which makes the

whole tree structure very sensitive to the training instances.

Algorithm 1 The proposed framework for inducing stable decision trees.
1: function InduceTree(Dataset D, Parameters P ) returns a tree;
2: Let A = {a1, a2, · · · , an} be the attributes of D;
3: Let H(.) be a heuristic split measure function to measure the merit of the attributes;
4: Let R(.) be a feature selection mechanism;
5: Let S Constructor be the split test constructor;
6: Let L Constructor be the leaf-labeller constructor;

7: if Stop Criteria(D) then
8: Build a model ξ using L Constructor on D
9: Return a Leaf node with ξ as the label assigner
10: end if

11: Select the contributing attributes A
′ ⊆ A according to the H(.) and R(.)

12: Build a model ψ using S Constructor(P ) on D, by considering the attributes in A
′

13: Partition the instances in D using ψ
14: For each partition Di of D
15: Treei = InduceTree(Di, Pi);

16: Create Root as an internal node with ψ as the split test and all Treeis as the children
17: return the Root as the induced Tree.
18: end function

In the proposed framework, we suggest to employ more

general split tests in which the number of contributing

attributes is not limited to be just one. In other words, we

propose to use split tests with the ability to contribute

multiple attributes, such that if several attributes achieve

close merit (based on the split measure), there is no need to

choose only one of them. As already discussed and illus-

trated, to choose a single attribute when there are some

attributes with close merits would be a fragile and

unstable decision.

More specifically, depending on the distribution of the

instances at an internal node, the policy is as follows: if

there is a single attribute which is definitely better than the
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other attributes regarding the split measure, it would be

considered as the single attribute to contribute in the split

test, but if several attributes have close merits, we can

allow all of them to contribute.

The remaining question is how to split a node by con-

tributing multiple attributes? In the univariate decision trees

which use a single attribute as the split test, the feature space

is divided into axis-parallel regions by orthogonal hyper-

planes. Oblique decision trees [40] employ multivariate split

tests based on a linear combination of the attributes

(Rn
i¼1eiai þ enþ1 [ 0), which cause the feature space to be

partitioned linearly by the means of non-orthogonal hyper-

planes. However, such a split test is monolithic and hence, it

does not comply with our proposed framework and more-

over, finding the best linear combination of the attributes is

too computational expensive [40].

In the proposed framework, we have suggested to

employ non-monolithic split tests based on multiple attri-

butes. The polylithic structure of the split test provides

several advantages: First, the split test can be designed

such that the effect of the training instances on it be local, i.

e. a training instance can not change the split test totally,

but it may alter some parts of it. Second, such split tests can

split the feature space non-linearly, which would result in

less complex decision trees, especially for the bent com-

plex classification problems [23, 31].

One way for having such non-monolithic split tests is to

train a discriminative model (on the training instances that

have reached to the node) in order to learn to determine the

branch that an instance should be sent through. For this

purpose, various machine learning classification and clus-

tering methods can be considered. This approach leads to a

hybrid classification model.

To make the split tests, we have considered a con-

structor, S Constructor, which constructs a discriminative

model based on the training instances that have reached to

a node, using the attributes in A
0
as the variables. However,

as such a constructor may have several parameters, the

parameters (P) should be passed to this constructor. This

enables tuning the constructor parameters at different

levels of the decision tree. Afterwards, the constructed

model should determine the branch that an instances should

be sent through, as is done by the classical split tests.

As is suggested in the state-of-the-art studies [12, 32],

we have considered using functional leaf nodes in the

proposed framework. Therefore, we have considered

another constructor, L Constructor, which constructs a

discriminative model based on the training instances that

have reached to the leaf nodes. The induced discriminative

model would be embedded in the leaf nodes and is used to

assign the class label to the new instances in the classifi-

cation phase.

Nevertheless, several aspects of the proposed framework

should be made explicit by the decision tree learning

algorithms which are about to be designed in accordance

with this framework, including:

1. The way of selecting the contributing attributes (line

11). This can be conducted by employing suitable op-

timization techniques or heuristic functions.

2. The nature of the split tests at the internal nodes and its

corresponding constructor (lines 5 and 12), along with

the way of tuning the parameters of the constructor at

each level of the decision tree (line 14).

3. The function to be used at the leaf nodes and its

corresponding constructor (line 6).

Recently, novel hybrid decision tree learning algorithms with

special split tests are designed [23, 31], which despite their

distinct design motivations, they can be adapted to comply

with the proposed framework. Fuzzy rule-based decision tree

(FRDT) is a decision tree which employs fuzzy rules as the

split test at the internal nodes [23]. On the other hand, Fuzzy

Min-Max Decision Tree (FMMDT) is a decision tree learn-

ing algorithm, which employs a fuzzy min-max neural net-

work as the split test at the internal nodes [31].

In both of the above algorithms, the split test is based on

multiple attributes and it is not monolithic. More specifi-

cally, FMMDT employs split tests which are composed of

several hyperboxes, while FRDT employs split tests which

are composed of several fuzzy rules. Moreover, FMMDT

provides the localization of the effect of the training

instances on the split test because each training instance

ðxi; yiÞ only affects the nearest hyperbox in the feature

space which corresponds to the same class (e. g. yi) and has

no effect on the other hyperboxes. The locality of the effect

of the instances on the decision rules is already discussed in

Sect. 1.3. In Sect. 4, we will discuss more about the

FMMDT learning algorithm and we extend it to comply

with the proposed framework.

Nevertheless, one of the outstanding benefits of tradi-

tional decision tree models over the other learning models

(e.g. neural networks) is their simple hierarchical structure

which is comprehensible by the domain expert. Moreover,

because of the hierarchical structure of the tree, the tradi-

tional splits (which are based on solely a single attribute)

provide a way of judging about the importance of the

attributes for the classification task.

The proposed framework not only retains the possibility

of inference about the importance of the attributes, but also

improves it. This claim can be justified as follows: consider

a classification task in which there are two correlated

attributes, A and B, with competitive merit. Figure 3 pre-

sents a simple example of such a task. In classical decision

trees, when one of these attributes (e.g. A) is selected at the
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Lth level of the tree for the first time, the other attribute

(e.g. B) would never be selected in the next levels. For

example, if A be selected at the root of the tree, B would

not be used in the decision tree model at all and hence, it

may be considered as a poor and non-informative attribute

for the classification task. In the proposed framework, this

problem does not occur by contributing both attributes at

the split test.

However, the comprehensibility of the model highly

depends on the nature of the split test, e.g. the model build

by the S Constructor. Moreover, there is a trade-off

between the number of contributing attributes in the

internal nodes and the complexity of the internal nodes.

4 An illustrative example algorithm

In this section, we have presented a new decision tree

learning algorithm which complies with the proposed

framework. This algorithm is based on our previous research

which contributed to introduce the FMMDT [31] as a hybrid

decision tree learning algorithm. We avoid detailed descrip-

tion of the FMMDT algorithm, which can be found in [31].

In FMMDT, the split test is a classification model based

on the fuzzy min-max neural networks. The split test is

trained on the instances that have reached to the internal

node. The granularity of the fuzzy min-max neural net-

works at the internal nodes decreases as a function of the

depth of the decision tree. This enables the model to learn

the boundaries between the classes [31]. It is shown

experimentally that FMMDT can induce smaller decision

trees with lower depth in comparison with the traditional

decision trees [31].

In this paper, we have extended the FMMDT learning

algorithm by adding a feature selection mechanism at the

internal nodes. In the original FMMDT learning algorithm,

all of the features are contributed in the split test. In this

paper, we introduce a feature selection mechanism which

enables detecting the features which are close to each other

regarding the split measure. Our policy to improve the

stability of decision tree is to contribute the best attribute

along with all the other attributes close to the best attribute

in the split test at the internal nodes. We have used a sta-

tistical test called Hoeffding bound [34] for the feature

selection purpose, so we have called this new algorithm

FMMDT-HB.

4.1 Selecting the contributing attributes at internal

nodes

As stated before, our proposed policy to improve the sta-

bility of decision trees is to employ split tests in which not

only the best attribute, but also the attributes which are

close to it, are contributing. In this paper, we have used a

heuristic based on the Hoeffding Bound [33, 34] statistical

test to determine the features which are close to the best

attribute regarding the split measure.

Hoeffding bound is a well-known statistical test which is

commonly used for selecting the best attribute at the

internal nodes of the state-of-the-art incremental decision

tree learning algorithms. Assuming that G is the split

measure to be maximized (e.g. information gain), the

hoeffding bound can be computed as:

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ln 1

d

� �

2N

s
ð4Þ

In which R is the range of the values that G can take, N is

the number of training instances and d is a user-defined

confidence value.

Let Xa be the feature with the highest observed G after

seeing N training instances, Xb be the second-best feature

and DG be difference between the observed values. If

DG[ �, then hoeffding bound guarantees that Xa remains

the best attribute even after seeing additional training

instances, with probability 1� d [33, 34].

According to the above, if the difference between the

first-best feature and the second-best (or another) feature

does not exceed the hoeffding bound, then the difference

between these features is not statistically significant.

Therefore, such a feature which is currently the best one,

can not be confidently considered as the feature which is

really the best one. According to this discussion, we have

designed the following heuristic to select the contributing
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Fig. 3 A synthetic dataset with two correlated attributes with the

same merits. In traditional decision trees, once A is selected as the

split test, B would never appear in the corresponding subtree (and vice

versa)
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features (A0), out of the original set of features (A) at the

internal nodes:

– The best feature (e.g. the feature with the highest

information gain) always contributes in the split test.

– The features F that satisfy DGF\� are considered to

have close merit to the best feature and hence can

contribute in the split test, in which DGF is the

difference between the value of the split measure for

F and the value of the split measure for the best

attribute (Xa).

Therefore, we have: 1� jA0 j � jAj. However, as discussed

in Sect. 3, there is a trade-off here: as the number of

attributes that contribute in the split test increases, the

complexity of the split test also increases and hence, it

becomes more difficult to comprehend the model. So, it

may seem rational to somehow limit the number of attri-

butes that are allowed to contribute in the split test.

Therefore, we have designed a parameter, L, which puts a

limitation on the maximum number of attributes that are

allowed to contribute. We have investigated the effect of

this user-defined parameter on the stability of the decision

trees in our experiments.

4.2 The split tests

In FMMDT, an adapted fuzzy min-max neural network

model [21, 31] is employed at the internal nodes as the split

test. This discriminative model satisfies all the above dis-

cussed advantageous properties to improve the stability.

First, it can contribute as many attributes as desired, such

that the number of attributes determines the dimensionality

of the hyperboxes in the model. Second, each training

instance can affect the model locally, depending on:

– It’s class label, and

– It’s position in the feature space.

More specifically, a training instance ðxi; yiÞ may affect the

model in one of the following ways:

1. No effect, if the instances is located inside an existing

hyperbox with class label yi in the feature space.

2. Expanding an existing hyperbox (hb), if hb belongs to

the same class (yi) and it is close enough to the

instance, such that it can be expanded to include it.

3. Creation of a new hyperbox with the same class (yi),

otherwise.

4.3 The leaf function

FMMDT employs a naive bayes classifier at the leaf node

of the decision tree. It is shown that decision trees which

use functional leaf nodes usually outperform the decision

trees in which the leaf nodes are simply labelled with the

majority-class [12].

4.4 Illustrating the stability

In this section we illustrate the stability of the presented algo-

rithm in comparison with the classical univariate decision trees

on the same datasets that are used in Sect. 1.2. Figure 4 repre-

sents the division of the feature space at the root of the tree

induced by the FMMDT-HB algorithm on the training data

shown in black, which would not be changed by adding the

instance shown in red. This reveals the merit of the proposed

framework regarding the stability. Also, Fig. 5 represents the

split test at the root of the tree induced by FMMD-HB on iris

dataset, which does not include any random component.

On the other hand, in the extreme case of being near the

boundary of two different classes in the pattern space,

adding a new training instance can either alter the borders

of a single hyperbox of the split test or create a new

hyperbox and hence, it can not change the split test glob-

ally. This property (i.e. the locality of the effect of the

instances on the split test) prevents major changes in the

decision tree by small changes in the training data and

hence, it brings about more stability.

5 Experimental analysis

To verify the stability and the performance of the presented

algorithm, we have conducted several experiments. We

have extensively used the WEKA [10] and MOA [38]
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Fig. 4 Illustrating the stability of the adapted FMMDT based

algorithm, as an example algorithm which complies with the proposed

framework. The split test at the root node of the tree is not affected by

adding the instance shown boldface in red (color figure online)
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frameworks to conduct the experiments. We have used the

Weka implementation of the following decision tree

learning algorithms for the comparison purpose: C4.5 [19],

Naive Bayes Tree (NBT) [12], Simple Cart (SC) [3] and

Best First Tree (BFT) [20]. We have set the value of the

parameters of the algorithms to the default value in their

Weka implementation.

The FMMDT-HB algorithm is implemented in Java

under the MOA framework. For all the experiments, we

have used the following parameter settings for FMMDT-

HB: q ¼ 0:2, nmin ¼ 10, d ¼ 0:0001 and r ¼ 0:5. All the

experiments are conducted on a 1.7GHz Core i5 Linux box

with 8 GB of main memory. In the experiments, we have

set different limits on the maximum number of contributing

attributes in the internal nodes (as described in Sect. 4.1).

We have named the resulted algorithms as FMMDT-HB-

LX, in which X is a positive non-zero number which

indicates the limit.

We have compared the presented algorithm with four

well-known decision tree algorithms regarding both the

stability and the performance. As suggested by [6], to

compare multiple classifiers on multiple datasets based on

average ranks, the significance of the observed differences

in the metrics is tested with Friedman test [9]. The average

rank of a classifier is calculated by taking the average of

the ranks of it on different datasets. The rank of a classifier

(based on a measure, e.g. accuracy or error) on a single

dataset would be a number between 1 and the total number

of classifiers in the experiment. When the null hypothesis is

rejected, we use the posthoc Nemenyi test [6].

In the following, we explain about the experimental

setup and methodology, performance metrics, the datasets

and the results.

5.1 Data sets

Table 1 presents the datasets used in our experiments.

These datasets are among the commonly used data sets in

the machine learning literature obtained from the UCI

machine learning repository [15].

5.2 Stability analysis

We have conducted several experiments to assess the

structural stability of the algorithms. We have evaluated

the structural stability of the algorithms based on two

methods: in the first set of the experiments, we have fol-

lowed the method suggested by [25]. In the second one, we

have adapted the similarity measure proposed in [30] to the

case of decision trees with multiple contributing attributes

in the internal nodes. The analysis of the results comes in

the following subsections.

5.2.1 The variance measurements

Zimmermann [25] has considered the low variance in the

size and the depth of the decision trees in the cross-vali-

dation setting as an indicator for structural stability. Fol-

lowing this criteria, we have done ten-fold cross-

validation experiments for calculating the variance of the

size and the depth of the induced decision trees. We have

repeated each experiment ten times and hence, the

reported results are the average results over ten runs of

ten-fold cross-validation.

Fig. 5 Illustrating the stability of the adapted FMMDT based

algorithm on the iris dataset. The split test at the root node of the

tree is stable

Table 1 Data sets: origin, name, number of attributes (NumAtts.),

number of classes (Classes.), and number of instances

(NumIntancess.)

No Data set NumAtts Classes NumInstances.

1 Balance 4 3 625

2 BreastCancer 9 2 683

3 Column3c 6 3 310

4 Haberman 3 2 306

5 Ionosphere 34 2 351

6 Iris 4 3 150

7 Liverdisorder 6 2 345

8 Newthyroid 5 3 215

9 SatelliteImage 36 6 4435

10 Sonar 60 2 208

11 Vehicle 18 4 846

12 Waveform 21 3 5000
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Table 2 shows the average and the variance of the depth

of the decision trees induced by the rival algorithms in the

cross-validation setting. It can be observed that for all of

the cases, the variance of the depth of the trees induced by

FMMDT-HB with L ¼ 2 is the smallest value, in com-

parison with the other algorithms.

Table 3 shows the average and the variance of the size

of the trees induced by the algorithms. The size is con-

sidered to be the total number of the nodes in the decision

tree. Again, it can be observed that for almost all of the

cases, the FMMDT-HB algorithm with L ¼ 2 presents the

smallest variance in the size of the tree.

These results indicate that FMMDT-HBalgorithmprovides

a higher degree of structural stability in comparison with the

rival algorithms, because it presents the minimum change in

the structure of the model by the changes in the training data.

5.2.2 The similarity measurements

Briand et. al. [30] have proposed new similarity measures

to assess the stability of classification trees. The basic

version of the measure only takes into account the

internal nodes of the tree, because they determine the

hierarchy of splits which would be translated into a

decision making process [30]. According to this measure,

two decision trees are considered to be identical if they

employ the same split tests at the corresponding internal

nodes.

They have also proposed adapted versions of this mea-

sure to nominal and continuous attributes. However, as the

FMMDT-HB algorithm only supports continuous attri-

butes, we have used the basic version of the measure which

works with continuous attributes. Let A1 and A2 be the

decision trees. Suppose that t0; t1; . . .; tT are the various

internal nodes of the trees, numbered in descending order

from the root node and from left to right and T is the

number of the internal nodes of the trees. According to

[30], the dissimilarity between the two decision trees A1

and A2 is calculated as:

dðA1;A2Þ ¼ 1�
XT

t¼0

qtSt

Table 2 The average and

standard deviation of the depth

of the trees

Data set FMMDT-HB-L2 BFT C4.5 SC NBT

Balance 3.91 ± 0.22 9.28 ± 0.52 8.92 ± 0.68 6.74 ± 1.46 4.48 ± 2.01

BreastCancer 4.01 ± 0.49 6.33 ± 1.38 5.72 ± 1.29 4.86 ± 1.33 1.46 ± 1.73

Column3c 4.0 ± 0.0 6.47 ± 1.86 7.44 ± 1.34 4.66 ± 1.46 4.5 ± 1.12

Haberman 6.53 ± 0.74 4.38 ± 3.75 1.78 ± 1.39 1.5 ± 2.51 0.64 ± 1.08

Ionosphere 1.0 ± 0.0 5.11 ± 1.65 8.47 ± 1.28 3.48 ± 1.82 4.82 ± 0.9

Iris 2.23 ± 0.4 3.67 ± 0.67 3.64 ± 0.56 3.25 ± 0.89 1.15 ± 1.32

LiverDisorder 6.99 ± 0.03 7.01 ± 2.23 8.4 ± 1.39 5.03 ± 2.22 2.78 ± 1.44

Newthyroid 2.53 ± 0.5 4.32 ± 1.05 5.38 ± 0.75 4.21 ± 1.38 2.78 ± 1.69

SatelliteImage 6.99 ± 0.03 14.22 ± 1.36 20.63 ± 2.12 11.67 ± 1.03 0.24 ± 0.76

Sonar 5.96 ± 0.56 4.2 ± 1.87 6.89 ± 0.86 3.12 ± 2.20 3.98 ± 0.78

Vehicle 6.02 ± 0.06 11.7 ± 1.85 13.56 ± 2.0 12.7 ± 3.68 8.93 ± 1.54

Waveform 7.0 ± 0.0 13.81 ± 1.69 16.78 ± 1.42 9.64 ± 1.65 5.43 ± 4.40

The smallest standard deviation is shown in bold

Table 3 The average and

standard deviation of the size of

the trees. The size is considered

to be the total number of the

nodes in the decision tree

Data set FMMDT-HB-L2 BFT C4.5 SC NBT

Balance 16.64 ± 0.87 128.78 ± 25.35 81.2 ± 8.26 55.1 ± 34.68 18.36 ± 10.02

BreastCancer 13.03 ± 1.48 27.66 ± 8.68 20.36 ± 4.59 15.66 ± 5.95 5.16 ± 5.08

Column3c 17.0 ± 0.0 25.48 ± 11.8 24.36 ± 5.59 12.56 ± 6.33 16.7 ± 4.98

Haberman 20.59 ± 2.23 18.84 ± 9.76 4.8 ± 2.7 4.76 ± 6.76 3.14 ± 1.89

Ionosphere 4.0 ± 0.0 15.7 ± 6.63 27.12 ± 4.07 9.9 ± 6.53 15.12 ± 3.15

Iris 9.92 ± 1.06 9.26 ± 1.92 8.28 ± 1.13 7.5 ± 1.78 3.78 ± 2.72

LiverDisorder 21.97 ± 0.09 42.76 ± 25.35 48.96 ± 12.35 24 ± 17.91 7.5 ± 3.20

Newthyroid 11.12 ± 1.96 12.98 ± 2.72 15.24 ± 1.97 11.42 ± 3.68 7.42 ± 3.83

SatelliteImage 49.93 ± 0.22 251.4 ± 50.61 391.04 ± 17.45 123.52 ± 34.22 5.28 ± 13.53

Sonar 18.88 ± 1.68 17.02 ± 7.59 28.48 ± 3.19 11.88 ± 7.33 13.7 ± 2.54

Vehicle 31.1 ± 0.32 123.62 ± 17.61 136.9 ± 19.43 91.84 ± 41.02 56.14 ± 11.29

Waveform 29.0 ± 0.0 333.72 ± 91.46 539.62 ± 31.31 119.56 ± 54.31 41.94 ± 37.67

The smallest standard deviations are shown in bold
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in which St (0� St � 1) is the similarity between A1 and A2

at node t, and q0; q1; . . .; qt are user-supplied non-negative

weights summing to 1. Therefore, 0 � dðA1;A2Þ� 1 and

dðA1;A2Þ ¼ 0 if the trees are identical. If at a node t, the

split test of A1 be xk with r1 as the cut-point and the split

test of A2 be xk0 with r2 as the cut-point, the St is the

similarity between A1 and A2 at node t [30]:

St ¼ Ifk ¼ k
0 g 1� jr1 � r2j

rangeðxkÞ

� �

in which, Ifk ¼ k
0 g 2 f0; 1g is the indicator of xk ¼ x

0
k.

Therefore St ¼ 0 when the splits are made on different

attributes, and St ¼ 1 when the splits are made on the same

attributes with the same cut-point, and St 2 ð0; 1Þ
otherwise.

In this paper, we have adapted this measure as follows:

first, we have extended the Ifk ¼ k
0 g for the splits based on

more than one attributes, in which xk and xk0 are the set of

the attributes that contribute in the split test of the node t of

A1 and A2 respectively. Second, we have neglected the

difference in the cut–points to simplify the calculations.

More specifically, we have defined St as:

St ¼ I
0 fk ¼ k

0 g

where I
0 fk ¼ k

0 g is a real–valued function, which can take

a value in the range [0, 1], defined as:

I
0 fk ¼ k

0 g ¼
xk
T
xk0

�� ��

MAX xkj j; xk0
�� ��� �

For example, suppose that A1 splits on xk ¼ a1; a2f g at

node t. If A2 split on the same set of attributes, then

I
0
k ¼ k

0� 	
¼ 1. If A2 split on xk0 ¼ a1; a3f g, then I

0 fk ¼
k
0 g ¼ 0:5 and if A2 split on xk0 ¼ a3; a4f g, then

I
0 fk ¼ k

0 g ¼ 0. Moreover, if A2 split on xk0 ¼ a1; a2; a3f g,
then I

0 fk ¼ k
0 g ¼ 2

3
.

To calculate the dissimilarity measure for each algo-

rithm, we have again employed the 10-fold cross-validation

setting. In a single run of 10-fold cross-validation for an

algorithm, ten decision trees are created. For each algo-

rithm, we have computed the dissimilarity measure on each

pair of these ten trees and hence, we get ð10� 9Þ=2 ¼ 45

measurements. Afterwards, we calculate the average of

these measurements. We have repeated this method ten

times for each algorithm and the reported results are the

average over all the runs.

Table 4 presents the average value of the dissimilarity

measure for the rival algorithms. Figure 7 depicts these

results. The results show that the value of the dissimi-

larity measure is large (close to 1) for the normal uni-

variate decision trees on most of the datasets, which

reveals the high difference in the structure of such

decision trees due to the changes that cross-validation

method imposes on the training data. On the other hand,

the results show that the FMMDT-HB algorithm

achieves the smallest value for the dissimilarity measure

on almost all datasets. The results also show that the

value of the dissimilarity measure for FMMDT-HB is

close to zero on most of the cases. The last row of

Table 4 presents the average value of the dissimilarity

measure cross the datasets. These results advocate the

superiority of FMMDT-HB algorithm in producing more

similar decision trees, regarding the split attributes at the

internal nodes.

The high values of the dissimilarity measure for normal

univariate decision trees in Table 4 can be explained by

investigating the merit of the attributes of each dataset.

Figure 6 shows the merit of the top attributes based on

Table 4 The average and

standard deviation of the value

of the dissimilarity measure for

the decision tree learning

algorithms

Data set FMMDT-HB BFT C4.5 SC NBT

Balance 0.09 ± 2.0e–3 0.91 ± 4.0e–4 0.90 ± 1.9e–4 0.91 ± 4.7e–4 0.78 ± 1.3e–2

BreastCancer 0.37 ± 4.9e–4 0.79 ± 3.9e–3 0.65 ± 7.1e–3 0.73 ± 2.3e–3 0.38 ± 2.3e–2

Column3c 0.05 ± 1.4e–4 0.83 ± 4.7e–4 0.78 ± 3.7e–3 0.69 ± 9.9e–3 0.86 ± 1.6e–3

Haberman 0.02 ± 8.2e–4 0.51 ± 2.8e–2 0.34 ± 2.1e–2 0.2 ± 1.7e–2 0.29 ± 3.2e–2

Ionosphere 0.01 ± 1.0e–3 0.73 ± 1.9e–4 0.82 ± 1.2e–3 0.57 ± 1.6e–2 0.97 ± 3.5e–4

Iris 0.04 ± 1.9e–3 0.59 ± 6.4e–3 0.29 ± 4.9e–3 0.5 ± 1.0e–2 0.38 ± 4.4e–2

LiverDisorder 0.06 ± 1.0e–3 0.84 ± 1.0e–3 0.89 ± 1.4e–3 0.79 ± 2.3e–3 0.91 ± 7.4e–4

Newthyroid 0.05 ± 3.7e–5 0.76 ± 1.9e–3 0.72 ± 6.4e–3 0.83 ± 2.1e–3 0.69 ± 2.2e–2

SatelliteImage 0.28 ± 1.5e–3 0.87 ± 2.2e–4 0.93 ± 8.2e–5 0.78 ± 5.5e–4 0.01 ± 7.9e–4

Sonar 0.01 ± 3.7e–4 0.86 ± 7.0e–4 0.86 ± 7.0e–4 0.82 ± 5.9e–4 0.95 ± 1.9e–4

Vehicle 0.14 ± 2.1e–4 0.83 ± 9.2e–4 0.81 ± 4.9e–4 0.83 ± 1.1e–3 0.96 ± 9.4e–5

Waveform 0.22 ± 2.7e–3 0.95 ± 9.7e–5 0.96 ± 3.1e–5 0.89 ± 5.0e–4 0.58 ± 7.6e–3

Average 0.11 0.79 0.75 0.71 0.65

Decision trees with smaller values of the measure show more similarity and are shown in bold
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information gain for the Balance, Iris, Ionosphere, Sat and

Waveform datasets.

Figure 6 shows that the four attributes of the Balance

dataset have identical information gain and hence at the

root of the decision tree, the single best attribute either has

to be chosen randomly or the changes in the training data

(e.g. removing one fold out of the ten fold of the data in the

cross-validation setting) may cause to select a different one

of them, each time, as the winner. As discussed earlier,

such a change at the root of decision tree would change the

distribution of the instances that are sent to the children and

hence, it may cause changes in the subsequent levels of the

tree. Similarly, the Waveform and the BreastCancer data-

sets include several identical and near-identical attributes.

For the Iris dataset, the competition is between two attri-

butes with identical information gain and hence, the

Confidence: 1.0E-4
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(b) The vertical axis shows the value of information gain.

Fig. 6 The best split attributes

based on information gain for

five datasets. The attributes are

sorted according to the

information gain in descending

order. According to the

hoeffding bound (computed

with confidence = 1.0E–4 and

using all the instances in each

dataset), the following attributes

are considered to have close

merit: all the 4 attributes for

Balance dataset, the first 2

attributes for Iris dataset, the

first attribute for Ionosphere

dataset, the first 6 attributes for

Waveform dataset and the first

11 attributes for Sat dataset

Fig. 7 The average value of the dissimilarity measure obtained for the five decision tree learning algorithms on the 12 datasets used in the

experiments
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dissimilarity results are smaller in comparison with the

Balance dataset.

We have investigated the effect of the parameter

L (which sets a limit on the maximum number of con-

tributing attributes at an internal node) on the stability of

the FMMDT-HB decision trees. Table 5 presents the value

of the dissimilarity measure for the FMMDT-HB algo-

rithms with L varying from 1 to 4. The last column of this

table presents the results for the FMMDT-HB, in which

hoeffding bound is used to determine the contributing

attributes, but no limitation is imposed on the maximum

number of contributing attributes.

In Table 5, there are some cases for which the dissim-

ilarity value does not change by increasing the L. These

observations can be explained depending on the dataset.

For example, FMMDT-HB-L4 and FMMDT-HB present

identical dissimilarity results on the Balance and Iris

datasets. The reason is that these datasets contain only four

attributes and hence, setting L ¼ 4 is equivalent to the no-

limit case. However, FMMDT-HB-L2, FMMDT-HB-L3,

FMMDT-HB-L4 and FMMDT-HB present identical dis-

similarity results for the Ionosphere dataset (which con-

tains 34 attributes). Here, the reason can be explained by

the difference between the merit of the attributes and the

hoeffding bound. As shown in Fig. 6, the difference

between the first-best attribute of the Ionosphere dataset

and its second-best attribute exceeds the hoeffding bound

and hence, the merit of the first attribute is significantly

better than the second one. In such situations, increasing

the L does not have any effect, because L only limits the

attributes which pass the initial hoeffding bound test.

Figure 8 depicts the data presented in Table 5. It can be

seen that there is no general correlation between the L and

the similarity measure values, such that the increase in the

L may cause increase or decrease in the dissimilarity mea-

sure, depending on the dataset. However, we can see that the

diagram of the FMMDT-HB (e.g. when no limitation is

imposed) has less variance in comparison with the others.

The above results reveal an interesting point. Overall, it

may be expected that the trees become more identical as

the L increases. However, as the results show, this is not

always the case.

For the Balance dataset, which includes 4 attributes with

identical merit (according to the Fig. 6), the similarity

between the decision trees increases by increasing the

L. This is rational because as L gets closer to 4, the need for

randomly discarding some of those qualified attributes

decreases.

On the other hand, for the Waveform and Sat datasets,

which are large datasets and include many attributes with

close information gain (Fig. 6), the experimental results

show that increasing the L sometimes makes the results

worse. The experiments show that for the Waveform and

Sat datasets, the best similarity results are achieved by

setting L ¼ 2 (or 3) and L ¼ 1 respectively. These obser-

vations can be justified as follows.

Let G be a specific split measure to be maximized and A,

B and C be the top three attributes of a dataset respectively

based on G, which are sorted in descending order of G,

such that all of them have close merit based the hoeffding

bound. Let D and E be the next attributes of this dataset,

with significantly less merit in comparison with A based the

hoeffding bound. In such a situation, the F-gap between the

attributes, DðA;BÞ ¼ FðAÞ � FðBÞ, affects the similarity

results obtained by varying the L. For example, suppose

DðA;BÞ ¼ DðB;CÞ ¼ DðC;DÞ ¼ DðC;EÞ ¼ g and hoeffd-

ing bound is equal to 2g. In this case, setting L ¼ 3 does

not necessarily improve the similarity measure in

Table 5 The average and standard deviation of the value of the dissimilarity measure for FMMDT with different settings

Data set FMMDT-HB-L1 FMMDT-HB-L2 FMMDT-HB-L3 FMMDT-HB-L4 FMMDT-HB

Balance 0.75 ± 1.4e-3 0.52 ± 1.6e-3 0.36 ± 5.2e-4 0.09 ± 2.0e23 0.09 ± 2.0e23

BreastCancer 0.31 ± 1.8e23 0.48 ± 8.6e-4 0.39 ± 3.2e-4 0.38 ± 3.4e-4 0.37 ± 4.9e-4

Column3c 0.0 ± 0.0 0.05 ± 1.3e-4 0.05 ± 1.4e-4 0.05 ± 1.4e-4 0.05 ± 1.4e-4

Haberman 0.04 ± 3.1e-3 0.16 ± 3.5e-3 0.02 ± 8.2e24 0.02 ± 8.2e24 0.02 ± 8.2e24

Ionosphere 0.0 ± 0.0 0.01 ± 1.0e-3 0.01 ± 1.0e-3 0.01 ± 1.0e-3 0.01 ± 1.0e-3

Iris 0.39 ± 3.7e-3 0.12 ± 3.1e-3 0.08 ± 2.1e-3 0.04 ± 1.9e23 0.04 ± 1.9e23

LiverDisorder 0.6 ± 2.0e-3 0.41 ± 9.6e-4 0.33 ± 2.1e-3 0.19 ± 1.3e-3 0.06 ± 1.0e23

Newthyroid 0.44 ± 8.7e-3 0.42 ± 1.8e-3 0.13 ± 1.1e-3 0.04 ± 6.0e24 0.05 ± 3.7e-5

SatelliteImage 0.0 ± 0.0 0.24 ± 1.4e-3 0.06 ± 1.5e-3 0.18 ± 2.2e-3 0.28 ± 1.5e-3

Sonar 0.56 ± 3.1e-3 0.64 ± 1.7e-3 0.57 ± 4.2e-4 0.56 ± 1.1e-3 0.01 ± 3.7e24

Vehicle 0.07 ± 1.7e-3 0.04 ± 5.6e-4 0.0 ± 0.0 0.005 ± 9.7e-5 0.14 ± 2.1e-4

Waveform 0.07 ± 1.2e-2 0.0 ± 0.0 0.0 ± 0.0 0.15 ± 4.8e-4 0.22 ± 2.7e-3

The smaller values indicate more similarity and are shown in bold
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comparison with L ¼ 2, because as the changes in training

data may cause the C to win over the B in the L ¼ 2 setting,

it also may cause the D or E to win over the C in the L ¼ 3

setting.

5.3 Performance analysis

Table 6 shows the total number of misclassified instances

and standard deviation for the rival algorithms on twelve

datasets. The results are the average results over ten runs of

ten-fold cross validation. Comparing the average rank of

the rival algorithms, we can see that FMMDT with ds ¼ 2

achieves the best average rank among the rival algorithms.

However, comparing the average ranks with Friedman test,

we obtain v2F ¼ 1:15 and FF ¼ 0:27 with critical value 2.58

at the 0.05 critical level and so, we can not reject the null

hypothesis. Therefore we can conclude that the difference

in the performance of the algorithms is not statistically

significant.

6 Conclusion

In this paper we focused on the problem of instability of

decision tree learning algorithms. To alleviate this prob-

lem, we proposed to employ special split tests at the

internal nodes of the decision trees which satisfy two

advantageous properties. We illustrated our proposed

framework by introducing a complying decision tree

Fig. 8 The value of the dissimilarity measure for the FMMDT-HB algorithms with varying levels of L on each dataset

Table 6 The number of

misclassified instances and

standard deviation for the

algorithms

Data set FMMDT-HB-L2 BFT C4.5 SC NBT

Balance 90.1 ± 8.9 132.4 ± 7.2 139.2 ± 8.1 131.8 ± 7.2 150.4 ± 7.4

BreastCancer 31.9 ± 5.8 34.0 ± 3.6 32.6 ± 5.3 32.3 ± 3.1 21.5 ± 4.7

Column3c 54.1 ± 4.0 63.0 ± 7.6 57.8 ± 8.3 57.4 ± 7.5 59.8 ± 5.1

Haberman 76.9 ± 8.7 88.0 ± 7.8 90.4 ± 7.9 88.0 ± 9.6 86.2 ± 8.3

Ionosphere 64.9 ± 2.4 35.2 ± 4.0 34.1 ± 3.5 37.2 ± 4.3 35.9 ± 3.6

Iris 7.8 ± 2.0 8.2 ± 1.9 8.1 ± 2.9 8.8 ± 2.9 10.0 ± 2.8

LiverDisorder 123.7 ± 8.8 115.1 ± 10.5 119.0 ± 7.1 116.9 ± 11.4 125.3 ± 9.6

Newthyroid 11.1 ± 2.9 16.9 ± 3.0 14.7 ± 3.2 18.8 ± 4 14.0 ± 5.1

SatelliteImage 672.59 ± 22.9 616.6 ± 19.2 623.4 ± 22.4 604.8 ± 21.2 790.7 ± 34.5

Sonar 63.5 ± 8.1 61.8 ± 4.8 58.6 ± 7.5 61.4 ± 6.1 49.8 ± 5.5

VCehicle 402. ± 246.3 ± 10.7 236.0 ± 10.8 244.8 ± 10 247 ± 14.7

Waveform 957.2 ± 19.0 1159.6 ± 23.0 1164.8 ± 35.3 1145.5 ± 31.1 939.4 ± 28.4

Average rank 2.67 3.29 3.0 2.87 3.17

The best results are shown in bold
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learning algorithm. We measured the structural stability of

the proposed learning algorithm by several metrics. The

results confirmed the superiority of the proposed algorithm

in creating decision trees with stable structure, in com-

parison with four well-known decision tree algorithms. In

addition, the proposed algorithm achieved the best average

rank regarding the total number of miss-classified instan-

ces, but its superiority was not statistically significant.
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