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Abstract
Explainable artificial intelligence (XAI) represents
arguably one of the most crucial challenges being
faced by the area of AI these days. Although the
majority of approaches to XAI are of heuristic na-
ture, recent work proposed the use of abductive rea-
soning to computing provably correct explanations
for machine learning (ML) predictions. The pro-
posed rigorous approach was shown to be useful
not only for computing trustable explanations but
also for validating explanations computed heuristi-
cally. It was also applied to uncover a close rela-
tionship between XAI and verification of ML mod-
els. This paper overviews the advances of the rig-
orous logic-based approach to XAI and argues that
it is indispensable if trustable XAI is of concern.

1 Introduction
Machine Learning (ML) models are widely used in deci-
sion making procedures in many real-world applications.
The fast growth, practical achievements and the overall suc-
cess of modern approaches to ML [LeCun et al., 2015;
Jordan and Mitchell, 2015; Mnih et al., 2015; ACM, 2018]
guarantees that machine learning will prevail as a generic
computing paradigm, and will find an ever growing range of
practical applications, many of which will have to do with
various aspects of our lives.

Unfortunately, ML models on occasions catastrophically
fail [Zhou and Sun, 2019; CACM Letters to the Editor, 2019].
They can also support poor decisions due to bias (e.g. race,
gender, age) in the model [Angwin et al., 2016]. Their de-
cisions can be confusing due to brittleness [Szegedy et al.,
2014; Goodfellow et al., 2015]. As a result, there is a criti-
cal need to understand the behavior of ML models, analyze
the (potential) failures of the models (or the data used to train
them), debug them, and possibly repair.

This has given rise to a growing interest in validating
the operation of ML models [Ruan et al., 2018; Narodyt-
ska, 2018; Narodytska et al., 2018b; Katz et al., 2017] but
also motivated efforts aiming at devising approaches to ex-
plainable artificial intelligence (XAI) [Ribeiro et al., 2018;
Lundberg and Lee, 2017; Ignatiev et al., 2018; Narodytska
et al., 2018a; Ribeiro et al., 2016; Ignatiev et al., 2019a;

Monroe, 2018]. Unfortunately, most existing approaches to
explaining ML models are of heuristic nature and are logi-
cally unsound [Ignatiev et al., 2019c] — one can find coun-
terexamples to heuristic explanations revealing their defects.
This exacerbates the problem of trust in AI, as given a misbe-
having ML model and an explanation that proves to be incor-
rect, a user may have even less trust in the ML model.

Recent work [Shih et al., 2018; Ignatiev et al., 2019a] pro-
posed a principled approach to computing provably correct
explanations (at the expected cost of lower scalability), which
is fundamentally different from the heuristic methods. The
approach hinges on the use of logic and operates with effi-
cient prime implicant computation for logical representations
of the decision function associated with an ML prediction.
The approach can be applied directly to the explanation com-
putation but also to validate heuristic explanations [Ignatiev
et al., 2019c]. Finally, it has been recently used to establish a
rigorous relationship of global explanations and a generaliza-
tion of adversarial examples, thus, making a bridge between
XAI and ML model verification [Ignatiev et al., 2019b]. This
paper provides a summary of ongoing efforts to develop for-
mal reasoning approaches for explaining ML models. The
reader is referred to the work referenced for further details.

2 Explainable AI and Heuristic Status Quo
Explainable AI is an emerging field, with a growing num-
ber of areas of research [Weld and Bansal, 2019]. We focus
on explaining predictions of ML models and use the nota-
tion of prior work [Shih et al., 2018; Ignatiev et al., 2019a;
Ignatiev et al., 2019c; Narodytska et al., 2019; Ignatiev et
al., 2019b]1. Given an instance and its associated predic-
tion, an explanation is a set of feature values, with a suitable
set of properties. An ML model can be viewed as a func-
tion M : F → K, mapping inputs (i.e. the feature values

1Here, a set of featuresF = {f1, . . . , fL} is assumed. Each fea-
ture fi is categorical (or ordinal), with values taken from some set
Di. (The work can be extended to the case ofDi ⊆ R.) An instance
I ∈ F, F = D1× . . .×DL, is a vector of feature values. A classifi-
cation problem is assumed, with a set of classes K = {κ1, . . . , κM}.
A prediction π ∈ K is associated with each instance I ∈ F. We con-
sider an ML model M, represented by a finite set of first-order logic
(FOL) sentencesM. (Where viable, alternative representations for
M can be considered, e.g. fragments of FOL, (mixed-)integer linear
programming, constraint language(s), etc.)
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Figure 1: Example of a simplistic boosted tree model [Chen and Guestrin, 2016]. The model targets the well-known Zoo animal classification
dataset. Here, the tree ensemble has 1 tree per each of the 7 classes with the depth of each tree being 1.

F) to outputs (i.e. the classes of the classification problem,
K). Following [Shih et al., 2018; Ignatiev et al., 2019a], we
target computing rigorous explanations of ML predictions.
Given some instance I ∈ F and prediction π, a minimal rig-
orous (or model-precise) explanation E is a prime implicant
of the Boolean function M(I) = π. We can also consider
minimum explanations, in which case the goal is to compute
smallest-size prime implicants.

To illustrate past work on computing explanations, we con-
sider the well-known Zoo dataset2, generate the boosted tree
model shown in Figure 1, and use the following example in-
stance (adapted from [Ignatiev et al., 2019c]):

IF (animal name = pitviper) ∧ ¬hair ∧ ¬feathers ∧
eggs ∧ ¬milk ∧ ¬airborne ∧ ¬aquatic ∧ breathes ∧
¬toothed ∧ backbone ∧ predator ∧ venomous ∧
¬fins ∧ (legs = 0) ∧ tail ∧ ¬domestic ∧ ¬catsize

THEN (class = reptile)

The overwhelming majority of work on computing expla-
nations has been on exploiting heuristic approaches, which
often offer guarantees of quality with respect to a given in-
stance. Concrete examples include [Baehrens et al., 2010;
Ribeiro et al., 2016; Lundberg and Lee, 2017; Ribeiro et al.,
2018; Li et al., 2018] among others3. LIME [Ribeiro et al.,
2016], Anchor [Ribeiro et al., 2018], SHAP [Lundberg and
Lee, 2017] represent three alternative approaches for local ex-
ploring the feature space with respect to a given instance. As
a result, computed explanations are referred to as local (or
instance-dependent).

Despite the prevalence of solutions for computing lo-
cal explanations heuristically, such explanations are model-
agnostic and thus offer no guarantees wrt. the underlying ML
model nor they provide any guarantees of minimality. For the
running example shown earlier, Anchor computes the follow-
ing explanation:

IF ¬hair ∧ ¬milk ∧ ¬toothed ∧ ¬fins
THEN (class = reptile)

2https://www.kaggle.com/uciml/zoo-animal-classification.
3We focus on the most representative approaches. More compre-

hensive recent accounts exist [Guidotti et al., 2019].

As Zoo is a very simple dataset, it suffices to analyze the
instances in the original dataset to show that the explanation
does not hold in general. Concretely, there is at least another
instance (in fact, we found a large number of similar exam-
ples) for which the Anchor explanation also applies, but for
which the boosted tree predicts a different class (essentially
meaning that the provided explanation is incorrect):

IF (animal name = toad) ∧¬hair ∧ ¬feathers ∧
eggs ∧¬milk ∧ ¬airborne ∧ ¬aquatic ∧
¬predator ∧¬toothed ∧ backbone ∧ breathes ∧
¬venomous ∧¬fins ∧ (legs = 4) ∧ ¬tail ∧
¬domestic ∧ ¬catsize

THEN (class = amphibian)

Although one can argue that local explanations are meant
to be local to a concrete instance, it is questionable how useful
such heuristic explanations are for a human decision maker.

3 Trustable Explanations
It is not surprising that heuristic explanations may be incor-
rect as, being model-agnostic, they are unable to catch all
the properties of the underlying ML model. As a result, it
is debatable if (and to what extent) heuristic explanations can
be trusted. In contrast with heuristic explanations, rigorous
logic-based explanations correspond to prime implicants of
the Boolean function associated with predicting the class of
the target instance, and so hold for any point in feature space.
In other words, rigorous explanations are provably correct for
the entire feature space, which makes them trustable.

Two lines of work on computing rigorous explanations
have been proposed in recent years. One is based on knowl-
edge compilation [Shih et al., 2018] whilst the other applies
abductive reasoning [Ignatiev et al., 2019a] detailed below.
Knowledge compilation aims at finding canonical represen-
tations of functions, which in turn enable efficient algorithms
for answering queries that would be too inefficient on the
original formula. Although effective once the target represen-
tation is obtained, the compilation process itself is worst-case
exponential in time and space, which may represent a signifi-
cant obstacle. Also, the use of compilation for computing ex-
planations requires developing dedicated algorithms for each
ML model.
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3.1 Trustable Explanations with Abduction
Rigorous explanations can be obtained by abductive reason-
ing [Ignatiev et al., 2016; Ignatiev et al., 2019a], without the
explicit need of computing a canonical representation of the
function associated with the ML model. An advantage of this
approach is that the common limitations regarding the size of
the representation do not apply. A drawback is that an expla-
nation needs to be computed for each instance, whereas with
compilation-based approaches explanations for any instance
become available as soon as the target representation is ob-
tained. In practice, the use of abductive reasoning requires
a logic-based representation to be devised for a given ML
model. Earlier work considered neural networks [Ignatiev et
al., 2019a] and boosted trees [Ignatiev et al., 2019c].

Given a dataset, we can use any existing approach for com-
puting an ML model. For the boosted tree of Figure 1, one
can devise an encoding using ILP or SMT [Ignatiev et al.,
2019c]. Given the running example, we can compute a prime
implicant which, given the model subject to the prediction,
entails the prediction. In this case, using abductive reason-
ing [Ignatiev et al., 2019a; Ignatiev et al., 2019c], a possible
explanation is:

IF ¬feathers ∧ ¬milk ∧ backbone ∧
¬fins ∧ (legs = 0) ∧ tail

THEN (class = reptile)

This rigorous explanation guarantees that, as long as the six
indicated literals take the value shown, the prediction will be
the same, independently of the value of any of the other fea-
tures. More importantly, the use of SMT or SAT reasoners
enables the generation of a proof (or proof trace) for each
computed explanation, which can be independently validated.
This offers another degree of trust in computed explanations.
Furthermore, there is no conceptual obstacle to extracting
proofs or proof traces from other types of reasoners, e.g. ILP.

Recent work [Ignatiev et al., 2019a] has shown that the use
of abductive reasoning for computing explanations can ana-
lyze neural networks of modest size. In contrast, for boosted
trees, abductive reasoning can be applied to trees of the sizes
of practical interest [Ignatiev et al., 2019c].

4 Assessing and Repairing Heuristic Methods
The observations above raise concerns regarding the qual-
ity of heuristic explanations computed by approaches such
as LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee,
2017], or Anchor [Ribeiro et al., 2018]. This section outlines
recent results on assessing the quality of heuristic explana-
tions. One validates them by abductive reasoning [Ignatiev
et al., 2019c], whereas the other exploits recent work on ap-
proximate model counting [Narodytska et al., 2019].

4.1 Validating Heuristic Explanations
By applying formal reasoning about the logic-based repre-
sentation of a classifier, one can check whether or not an ex-
planation holds in the entire instance space, i.e. there exist
counterexamples [Ignatiev et al., 2019c]. Such reasoning,
thus, represents a principled approach for assessing validity

heuristic explanation

valid? refine

succeed?

redundant correct

repair

incorrect

no yes

yes no

Figure 2: Assessing the validity of a heuristic explanation.

of heuristic explanations. Furthermore, in case the explana-
tion is invalid, one can make an attempt to repair it using a se-
ries of reasoning oracles calls. Also, as heuristic approaches
like LIME, Anchor, and SHAP do not guarantee minimality
of the explanation produced, one can try to reduce it further
in case it is valid. A possible setup for such explanation vali-
dation procedure is shown in Figure 2. Given an explanation,
its validity is checked in the entire instance space. If the ex-
planation is invalid, it is reported to be incorrect and can be
repaired. Otherwise, the explanation is proved to be valid and
an attempt to reduce it is made. If the attempt succeeds, the
explanation is deemed redundant. Otherwise, the explanation
is proved to be correct and minimal.

Table 1 summarizes the experiment detailed in [Ignatiev
et al., 2019c], which given a trained boosted tree computes
a heuristic explanation for each unique instance of an input
dataset, either with LIME, Anchor, or SHAP and assesses
the explanation’s correctness following the setup of Figure 2.
Five publicly available datasets are considered in the exper-
iment. Three of them were studied in [Ribeiro et al., 2018]
to illustrate the advantage of Anchor over LIME, including
adult, lending, and recidivism. Two more datasets (compas
and german) were previously studied in the context of algo-
rithmic fairness (e.g. see [Angwin et al., 2016]).

As can be observed, most explanations computed by
LIME, Anchor, and SHAP are inadequate, from the global
perspective. Observe that for the 4 out of 5 datasets the ex-
planations of all three explainers are mostly incorrect. As
an example, for recidivism and german more than 99% of
Anchor’s explanations are invalid. Similar results hold for
LIME (SHAP, resp.), i.e. 94.1% and 85.3% (85.9% and
63.0%) explanations for recidivism and german are incorrect.
Also note that the number of redundant explanations is usu-
ally lower, with the exception of SHAP. Overall and with
the exception of lending, the number of correct explanations
does not go beyond 17.9% for Anchor, 30.8% for LIME, and
19.1% for SHAP and usually constitutes just a few percent.

4.2 Evaluating Quality of Heuristic Explanations
Earlier work [Narodytska et al., 2019] proposed a generic
strategy to assess the quality of heuristic explanations us-
ing approximate model counting [Soos and Meel, 2019].
Here, we overview the quality assessment results for Anchor
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Explanations

Dataset (# unique) incorrect redundant correct

LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP

adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 10.2% 30.8% 17.9% 19.1%
lending (4414) 24.0% 3.0% 17.0% 0.4% 0.0% 2.5% 75.6% 97.0% 80.5%

rcdv (3696) 94.1% 99.4% 85.9% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%
compas (778) 71.9% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 85.3% 99.7% 63.0% 14.6% 0.2% 37.0% 0.1% 0.1% 0.0%

Table 1: Heuristic explanations assessed, for each data instance of the input datasets. The table shows the percentage of incorrect, redundant,
and correct explanations provided by LIME, Anchor, and SHAP. The total number of unique instances per dataset is shown in column 2.

Dataset Unconstrained inputs Constrainted inputs

Anchor ApproxMC3 Anchor ApproxMC3

adult 0.99 0.67 0.99 0.81
lending 0.99 0.87 0.99 0.92

rcdv 0.99 0.75 0.99 0.80

Table 2: The precision metric estimates by ApproxMC3 and Anchor
(the average over 300 samples).

applied to binarized neural networks [Hubara et al., 2016;
Narodytska et al., 2018b]. We considered the three above
datasets: adult, lending, and recidivism. Anchor’s precision
estimate used is defined in [Ribeiro et al., 2018], as a quality
metric. To perform model counting, we used the approximate
model counting solver ApproxMC3 with the standard toler-
ance and confidence (ε = 0.8 and δ = 0.2) [Soos and Meel,
2019]. Two sets of experiments were performed: (1) con-
strained and (2) unconstrained — depending on whether or
not the instance space was restricted to be a local neighbor-
hood of a given instance. We worked with instances for which
Anchor’s precision estimates were around 0.99. Table 2 sum-
marizes our results. Note that the quality of Anchor’s ex-
planations can vary wildly, indicating that for some datasets
Anchor’s explanations are fairly accurate, but in some other
cases they can be quite inaccurate. For example, observe
that Anchor’s estimates of the precision metric are good for
the lending dataset. On average, the discrepancy between
Anchor’s estimates and our assessment was 0.1 for this set.
In contrast, the average discrepancy was high in the adult
dataset, 0.25. Note that in our experiments, ApproxMC3 had
a significant theoretical error bound on the estimate we pro-
duce. Namely, we could be up to 80% off the true solution
count in the worst case. Theoretically, our framework allows
us to obtain an estimate with much tighter theoretical guaran-
tees but computing these estimates is computationally expen-
sive for the benchmarks considered. However, studies have
reported that the tolerance observed in the experiments is far
better than the theoretical guarantee [Soos and Meel, 2019].

The negative results summarized in this section assume
that, in order to be trustable, explanations are to be mean-
ingful over the entire feature space. This is what rigorous
explanations offer. If for some reason the entire feature space
is not relevant, the computation of rigorous explanations can
also take this information into account.

5 Relating XAI and ML Model Verification
Adversarial examples (AE’s) [Goodfellow et al., 2015] illus-
trate the brittleness of machine learning (ML) models, and
have been the subject of growing interest in recent years.
Over the last few years, a number of works realized the exis-
tence of some connection between AE’s and XP’s [Tao et al.,
2018; Chalasani et al., 2018]. Recent work [Ignatiev et al.,
2019b] exploited global rigorous explanations, introduced the
concept of counterexamples, tightly related with adversarial
examples, and then showed a minimal hitting set duality re-
lationship between explanations and counterexamples, and in
the process proposed approaches for computing adversarial
examples from explanations and vice-versa. These recent re-
sults build on work from the 80s and 90s, first on model-
based diagnosis [Reiter, 1987], and then on computing primes
of (Boolean) functions [Rymon, 1994], but also suggest that
additional connections between analysis of ML models and
other areas of AI can be established.

6 Conclusions
This paper overviews recent work on exploiting the logic-
based approach for computing rigorous explanations to ML
predictions. Moreover, the paper argues that rigorous expla-
nations are trustable, in clear contrast to heuristic explana-
tions, which is confirmed by the experimental results casting
doubt on the quality of the heuristic explanations of [Ribeiro
et al., 2016; Lundberg and Lee, 2017; Ribeiro et al., 2018].
We conjecture that potential incorrectness is intrinsic to ap-
proaches that compute model-agnostic heuristic explanations.
Finally, the paper summarizes recent results relating global
rigorous explanations with adversarial examples. These re-
sults build on earlier seminal work on relating conflicts and
diagnoses in model-based diagnosis through subset-minimal
hitting sets [Reiter, 1987], but also on finding prime impli-
cants and implicates [Rymon, 1994].
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