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ABSTRACT Accurate and fast fault detection in transmission lines is of high importance to maintain the
reliability of power systems. Most of the existing methods suffer from false detection of high-impedance
faults. In this paper, the transfer function (TF) method is introduced to evaluate the effect of impedance and
location of faults by analyzing the voltage and current signals in the frequency domain. Interpretation of
the results of the TF method is considered as a weakness of this method. In order to alleviate this problem,
a convolutional neural network (CNN) and the hybrid model of deep reinforcement learning (DRL) are
utilized to identify and locate single-phase to ground short circuit faults in transmission lines. Single-phase
to ground short circuit faults with various fault impedances are applied on an IEEE standard transmission
line system. Then, the TF traces are calculated and are collected as input datasets for the proposed models.
The fault location results for each network are evaluated via various statistical performance metrics such as
correlation coefficient (R), mean squared error (MSE), and root mean squared error (RMSE). The R-value of
the CNN and DRL models in fault identification is presented as 96.12% and 98.04%, respectively. Finally,
in the early detection of single-phase to ground short circuit fault location (high impedance), the results
revealed the efficiency of the DRL model with R=96.61% compared to CNN with R=95.21%.

INDEX TERMS Transmission line faults, single-phase to ground short circuit, transfer function, deep

reinforcement learning, convolutional neural network.

I. INTRODUCTION

Transmission lines are crucial components in power systems.
With recent innovations, conventional electric power systems
have been evolving into intelligent power systems, consist
of advanced monitoring and control tools [1]. Transmission
lines are always prone to faults due to various reasons, includ-
ing lightning or falling objects. Whenever a fault occurs,
the nominal values of voltage and current deviates in the
power system, which causes equipment damage and power
outages [2]. Reliable, efficient algorithms capable of provid-
ing an accurate analysis of the type and location of faults in
transmission lines are necessary for the implementation of
power transmission protection systems [3].
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Within the context of power system protection, detection
of high impedance faults is recognized to be extremely chal-
lenging [4]. This is due to the fact that these faults do not
significantly affect the voltage and current characteristics.
Indeed, the effect of these faults might be seen as an addi-
tional load [5]. Nonetheless, the detection of these faults is
of high importance as they could cause serious safety risks
and could adversely affect the quality of power supply. There
are practically two types of high impedance faults that can
be considered: (i) a broken live conductor directly touching
the ground, (ii) a close connection to earth like sweeping the
earth through trees or damaged insulation. As power systems
are becoming more complicated and with more stringent
power quality constraints, detection of high impedance faults
has become a major concern for utilities [6]. On the other
hand, the involvement of uncertainties in fault information
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has caused some problems in the operation of fault diagnosis
methods [7], [8]. These uncertainties are mainly classified
into three categories: 1) different faults cases exhibit a com-
plex set of features and diverse behaviors, challenging the
implementation of protection schemes based on a single fault
feature [9], [10]; 2) the instability of the operating conditions
can cause problems for protection schemes adjusted with a
pre-defined setting value [11]; 3) due to high fault impedance,
the currents produced by the faults are not usually sufficient to
be detected by common protection devices [12], [13]. In tradi-
tional protection systems, the protection relay trips the system
once the operating parameter deviates from a preset thresh-
old. However, the settings of traditional protection relays are
computed offline and are not configurable during operation.
This adjustment method is unable to adjust to different types
of faults, meaning that the relay settings are required to adapt
to the new system conditions online. The common protec-
tion schemes with a fixed setting strategy have shown to be
unreliable for protection of power systems [14]. In fact, fixed
relay settings can seriously hinder the development of power
system protection technology.

The single phase-to-ground fault is the most common fault
type in power systems, most of which are accompanied by
a fault impedance at the point of failure [15]. High fault
impedance values can result in the failure or mal-operation
of the power system protection devices, which in turn results
in jeopardizing the power system’s reliable operation [16].
Studies on improving the safety of power protection sys-
tems against fault impedance are classified into three cate-
gories. 1) improving the protection performance against fault
impedance through adaptive adjustment of setting value [17].
For example, in [11], the operating threshold is automati-
cally adjusted based on the fault impedance and according
to the compensated voltage variation. In [18], the authors
proposed a scheme to prevent failures in line protection
performance in response to the dominant conditions of the
system. 2) compensating the fault impedance such that the
measured impedance can more accurately reflect the fault
location [19]. For example, to enhance the performance
against the fault impedance, in [20] the authors proposed
a fault line impedance consideration process. The fault line
impedance, additional impedance, and contained impedance
are shifted together in the multiple levels until the additional
impedance matches with the actual way of the true axis.
The fault distance and fault line impedance are calculated
following the regular connection between the shifted fault
line impedance and the shifted calculated impedance in the
multiple levels. Another type of impedance compensation has
been done in [21], in which the authors first tried to per-
form improved ground-type impedance relay by compensat-
ing spread capacitive currents then the description of internal
high-resistance faults is done while ensuring reliability under
external faults. In [22], the impact of fault impedance on the
performance of distance relays protecting radial distribution
feeders has been studied. In [23], the fault impedance was
calculated based on the active power at the relay point. The
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measured excess impedance was then compensated such that
the fault location could be more accurately located by the
measured impedance. Based on the fact that the sequence
current phase measured at the relay point is almost equal
to that at the point of failure, the authors in [24] expressed
the measured impedance by decomposing it into two com-
ponents, namely resistance and a reactance term. Moreover,
by combining both terms, the fault impedance is eliminated,
and the real fault impedance is calculated. 3) identification
of internal and external faults based on the characteristics
of the fault impedance. For example, in [25], the criterion
for protection against a high-resistance single line-to-ground
fault on the transmission lines is based on the differential
active power principle which can accurately identify a high-
resistance single line-to-ground fault. The authors in [26]
propose an intelligent method for fault localization based
on the information provided by PMUs. The fault segment
is first discovered by analyzing the waveforms of the zero-
sequence current on both sides of the fault. A stack auto-
encoder (SAE) is then formed to implement an end-to-end
strategy to determine the fault point through voltage and
current phasors.

Nowadays, data mining and artificial intelligence (Al) play
asignificantrole in modern power systems. Data mining tech-
niques such as artificial neural networks (ANNs), machine
learning, deep learning, and fuzzy logic are widely employed
for operational tools such as monitoring, management, and
fault identification. The Al systems are widely known for
their high ability to identify the type and location of faults
in power systems.

In [27], the authors used a quality-aware fine-grained cate-
gorization model called Fast R-convolutional neural network
(CNN) that is suitable for category tips learning. This paper
aims to identify the most distinguished image spots for clas-
sification of faults.

In [28], for managing the relationship among electrical
signals at one side and fault data on transmission lines,
authors suggest the purpose of independent neural networks.
This technique allows an automated adjustment of the neural
models qualified for fault classification, location, and detec-
tion. The hidden Markov model (HMM) algorithm is used
in [29] for fault classification in power transmission lines.
The basis of this method is the direct analysis of electri-
cal signals in the form of multivariate time series. In [30],
applications of recurrent neural network (RNN), long short-
term memory (LSTM), and support vector machine (SVM)
are utilized for data-based line trip fault prediction in power
systems. The first one mainly responsible for obtaining the
transient characteristics of multi-sourced data and the other
one is considered for classification to acquire the ultimate
prediction outcomes.

The authors of [31] proposed an anti-heat dynamic assess-
ment approach based on the LSTM technique. In this study,
the cluster features of the power-angle path of a generator
are received as the input after the fault is eliminated, and
the modified LSTM is then employed to learn the nonlinear

15797



IEEE Access

H. Teimourzadeh et al.: High Impedance Single-Phase Faults Diagnosis in Transmission Lines via DRL of TFs

relationships between input properties and transient stability.
At the same time, the time sliding windows and the anti-
heat mechanism are utilized to develop a real-time orderly
prediction framework capable of effectively using the time
series data of PMUs.

One of the major drawbacks in most of the above-
mentioned methods is that the diagnosis operation is not
performed accurately and the proposed solutions have an
error due to the high-dimension of monitored data. To solve
this problem, in [32], [33], solutions based on dimension
reduction and data processing are presented.

In this paper, single-phase short circuit faults detection,
and exact location are identified in two scenarios. The first
scenario calculates the transfer function (TF) of each fault
to identify the presence of the fault in the system by com-
paring the calculated TFs. In the second scenario, in order
to identify the exact location of single-phase short-circuit
faults in transmission lines, the deep reinforcement learning
(DRL) method is proposed as one of the hybrid applications
of deep learning and reinforcement learning. In addition to its
high ability to extract data properties, the proposed method
also improves the idea of hybrid models. To the best of
the authors’ knowledge, this method has not been used to
recognize patterns in TFs of single-phase short circuit faults
and diagnose the exact location of transmission line faults.
The calculation of the TFs clearly shows all the effects of
the faults on the voltage and current signals in a frequency
domain. The proposed hybrid model of DRL, by recognizing
the patterns and extracting the features in the TFs, it will be
able to identify the exact location of the single-phase short-
circuit fault in a transmission line.

The rest of this paper is organized as follows. The second
section describes the TF method. In Section III, the proposed
methodologies are introduced. Section IV describes the sys-
tem under study. In Section V, the results of the assessment
and identifying the fault location are presented in two scenar-
ios. Finally, Section VI concludes the paper.

Il. TRANSFER FUNCTION METHOD
The transfer function (TF) method is a comparative test
to diagnose defects, especially in transient states. So far,
this method has been widely used in power industry, e.g.,
[34]-[38], including detection of mechanical defects in power
transformer windings [34], [39], diagnostic operations in
electrical machines [36], and detection of distribution net-
work damages [37], [38], [40]. Since this method examines
the changes in a system in the frequency domain, in most
literature, this method has been introduced as a frequency
response analysis. A comparison of the healthy and damaged
states transfer functions of the system is the basis of this
method in identifying defects.

In this paper, the TFs related to the system are calculated
as following [37]:

_ ‘FFT(V,) 0

FFT(I,)
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FIGURE 1. Principle structure of CNN.

where FFT (V;) and FFT(I;) are the voltage and current of
the system, both in the frequency domain using fast Fourier
transfer (FFT). The voltage and current signals are extracted
in the EMTP software. Then, Fourier Transform of voltage
and current signals are calculated.

The TF method can display the slightest effects of the
faults, even for very high-impedance faults on the TF trace.
Despite all the advantages of this method, the interpretation
of the TF traces is challenging and requires experienced spe-
cialists. Hence, in this paper, a convolutional neural network
(CNN) and the hybrid method of DRL are suggested for
interpreting the TF traces and extracting the features of them.
The proposed hybrid approach will be able to accurately
categorize and localize the single-phase to ground faults via
extracting the features of its TFs.

Ill. METHODOLOGIES
In this section, we first describe the CNN. Then, the DRL is
presented.

A. CONVOLOTIONAL NEURAL NETWORK (CNN)

CNN is one of the powerful deep learning architectures,
which is mainly used as a tool for feature extraction, pattern
recognition, classification problems, and image processing.
CNN inherently extracts features or patterns based on the
convolution operator. For extracting features, it benefits from
ideas such as local connections, shared weight, integration
and multi-layered structure [41], [42]. As shown in Fig. 1,
convolutional layers, pooling layers, and fully-connected lay-
ers are form the CNN structure. Each layer plays a unique
role in this structure until the feature extraction operation is
performed in the best possible way [43].

Each convolution layer, in its own structure, includes
filters that identify the features in the input data. Convo-
lution operation occurs by passing inputs from each filter.
Each filter can introduce several features [44]. Basic CNN
uses conventional activation functions such as the sigmoid
activation function, in which case it needs to calculate an
exponent. In dealing with high nonlinear data, this issue
will have problems such as increased training and evaluation
times.

To prevent this problem, CNN uses a nonlinear activa-
tion function f(x) = max(0, x) called Rectified Linear Unit
(ReLU) in each convolution layer. The convolutional layer
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utilizes a ReL.U that is defined in the following [42], [45]:

l -1 l 1
x=f (ZieMj D bj> 2)

where x; shows the product of the j-th filter in /-th convo-
lutional layer; f is a nonlinear activation function, operator =
shows convolution, kl.lj denotes the convolutional kernel of the
[-th layers between the i-th input and the j-th output feature
maps, and bjl. defines the bias.

After performing the convolution stage in CNN, another
important stage is pooling. A pooling operation is a form
of sub-sampling of the convolution layer with a summary
statistic. Average pooling and Max pooling are two types of
pooling operations. The average pooling takes the average
value of the extracted features and transfers it to the next
convolution layer, so most commonly utilized in CNN is max-
pooling. Max Pooling issues the maximum values for each
sub-region outputs by dividing the input data into a set of
non-overlapping rectangles. The pooling layer has effective
advantages for CNN, such as reducing the free variables for
reaching the dimensionality reduction and ensure the invari-
ance to shift and distortion. The pooling layer is formulated
as the following form [42], [45]:

x; =f (ﬁ;pooling (xf_1> + bj) 3)
where operator pooling() demonstrates the pooling stage and
B is the pooling kernel.

Convolutional and max-pooling layers are known as the
center of the CNN. After extracting the features of the input
data via several end-to-end convolutional and pooling oper-
ations, the upper-layers are consisting of fully-connected
layers same as a multilayer perceptron (MLP) neural net-
work in order to calculate the weight and scores of the
inputs or extracted features [41], [45]. Finally, the classifi-
cation of the features is done using a Softmax function after

fully-connected layers in the last part of the CNN structure as
follows [41]:

P(y= 1)|x;0 exp(6'x)

| PG=2Ix:0 | 1 exp(62x)
o=\ N > i—1exp(0ix) @

P(y = o)lx;6 exp(f°x)

where 6/x denotes the factors of the classification layer and ¢
represent the number of classes.

B. DEEP REINFORCEMENT LEARNING (DRL)
RL is an important application of machine learning. The
task of RL can usually be described as a Markov decision
process (MDP). As shown in Fig. 2, RL has four important
components such as agent, environment, action (At), and
reward (Rt). Gaining ideal experience through the interaction
between the environment and the agent can be described as
the main idea of RL [46], [47].

RL operates based on the sustainable environment knowl-
edge with a feedback loop for quality and appropriate deci-
sions. It should be noted that RL is a well-known learning
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algorithm based on the agent so that the agent behaves by per-
forming work and achieving results in the environment. Trial-
and-error search and delayed reward are two main features of
RL [47]. Trial-and-error search indicates the occurrence of
a trade-off between exploration and exploitation. Preferably,
the agent wants to use the effective actions taken in the past
to generate the reward, however, the agent must discover
better new actions that may have a higher reward in the
future. By trying different actions, the agent should gradu-
ally support those who receive the most rewards [48], [49].
Recently, solving RL problems has been improved by adding
multilayer neural networks to their structure, which is known
as DRL. The powerful ability of the deep neural network in
pattern recognition, feature extraction, image processing has
increased the efficiency of RL. Deep Q-networks (DQNs)
are one of the powerful DLRs algorithms proposed in 2013.
High accuracy, stability and high speed of the training process
are the most important advantages of this model [50], [51].
Identifying and correctly diagnosing samples in the training
data is the principal idea of the classification agent. The clas-
sification agent with accurate and high-precision diagnoses
includes positive rewards. Therefore, it will be able to achieve
its goal by maximizing the cumulative rewards at [52]:

o0
gr= v (5)
k=0

where, y is the discount factor to balance the immediate
and future reward, r; is the reward at time ¢ and shows the
feedback from the environment.

Through it, the success or failure of the agent’s actions
can be measured. In DQN, a function called the Q function
is as follows, which calculates the quality of a mode-action
combination [52].

0" (s,a) = Ex [g |s; = 5,a; = a] (6

where s demonstrates the current state and a represents the
action. During the DQN training process, in order to reflect
the result of the agent-environment interaction in the action
value function (AVF) (s, a), an update of the action value
of the function is performed by collecting the experience
data set by the agent. Using the following Bellman equation,
a duplicate update process is formed from the AVF [51].

s, a] %)
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Seg 1 Seg 2 Seg 6

FIGURE 3. The schematic representation of the network model.

where s’ is the next time-step of s and @’ depicts the action
accomplished by the agent at the next time-step.

In DQN, designating an action is perform with the optimal
AVF Q* (s, a) as the following equation that determines the
optimal action.

0" (s, a) = maxz E [rt + yral + y2r,+2+ ..
Isi =s,as =a,m] 3

where 7 as a classification policy is a function that receives
a sample and returns probabilities of all labels.

Q functions cannot be solved in high-dimensional contin-
uous mode space. It is essential to present a deep Q-learning
algorithm that fits the Q function with a deep neural network
to solve this problem. The AVF (s, a) can be approximated as
(s, a; 0) by using a CNN with the parameter 8. So, using the
loss function L(#), the action value network can be iteratively
updated [52], [53].

LO)= Y -0 a6) ©)

(s,a,r,s’)eB

where y shows the predicted target of the Q function and it is
defined as [52]:

y=r+(1=b)y YO, d’;6) (10)

where b = 1 if terminal=True; otherwise b = 0, and 6;
represent a parameter for the target action value of the sep-
arate deep neural network. The derivative of the loss function
(L (8)) according to 0 is as [52]:
VL)
ve)

VOC(s, a0
2 ) @—Q(&M))%(ll)

(s,a,r,s')eB

Optimal Q* function is now achieved by minimizing the
loss function. Then greedy policy gets the maximum cumu-
lative reward under the optimal Q* function. Finally, the
optimal classification policy m is achieved [52], [53].

IV. CASE STUDIES

To evaluate the performance of the proposed method,
the power system shown in Fig. 3 is considered. The
model consists of two networks represented by N1 and N2.
As demonstrated in Fig. 3, there are two 230kV transmission
lines. The first one, which connects B1 to B2 is a double-
circuit line and the second one is a single-circuit line between
B2 and B3. Each transmission line distance is 45 miles,
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TABLE 1. Tower configuration for 230kV double-circuit line.

Height at Tower Height at mid
Conductor | HSR(ft) (0 spami(ft)
1 0.0 100.0 73.0
2 0.0 83.5 56.5
3 0.0 67.0 40.0
4 29.0 67.0 40.0
5 29.0 83.5 56.5
6 29.0 100.0 73.0

TABLE 2. Tower configuration for 230kV single-circuit line.

Height at Height at mid
Conductor HSR(ft) Tower (f spam(ft)
1 0.0 100.0 73.0
2 0.0 83.5 56.5
3 0.0 67.0 40.0

and both of the lines are divided into six parts. Constant
and lumped parameter line models are utilized in modeling
of double and single-circuit lines, respectively. Table 1 and
2 represents the parameters of tower configuration for 230kV
double-circuit line and the tower configuration for 230kV
single-circuit line, respectively.

More details on the network information are accessible
at [54]. The system is simulated in ATP/EMTP environment.

V. SIMULATION RESULTS
In this study, single-phase to ground faults are investigated in
various segments of a transmission line by applying the faults
with different impedances. To apply the fault, the transmis-
sion line is divided into six equal parts, each segment (seg)
containing 16.66% of the line. In each seg of this line, single-
phase to ground fault are created in each phase with the fault
impedance of 1, 50, 100, 500, 1000, 3000, and 5000 Ohms.
Then, the voltage and current signals for each faulty
state are measured and recorded. The stochastic nonlinear
current caused by arcing and nonlinear characteristics of
high impedance faults have different effects on transient
and steady-state responses of the power system. Thus, these
effects are used as a criterion for the fault detection. Hence,
appropriate models of fault impedance need to be considered
that are able to represent nonlinearity, asymmetry, and the
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FIGURE 4. High impdance fault model based on a number of Emanuel arc
model.

TABLE 3. Arcs Parameters of HIF.

parameter T(on‘off) R, Ra Vo Vi
Arc 1 0.06 1500 1505 9000 10000
Arc 2 0.08 9000 9600 8000 9000
Arc3 0.12 6500 7000 11000 11050
Arc4 0.14 5800 6500 12000 12500
Arc5 0.1 10000 11100 2000 2050
Arc6 0.16 5300 6200 11000 11500

low frequency of high impedance fault currents. In this
paper, an Emanuel arc model [55] has been used. In Fig. 4,
the EMTP-based simulation model for a high impedance
fault is presented. All parameters for 6 arcs are shown in
Table 3. Fig. 5 shows the line segments and faults in each seg
of the transmission line. After applying various faults, their
identification and location are performed in two different
steps using the TF method and deep learning applications.
Each of the steps is introduced in the following.

A. STEP 1: IDENTIFYING SINGLE-PHASE TO GROUND
SHORT CIRCUIT FAULT VIA THE TF METHOD

In this step, the TF method is used to identify and analyze
existing faults. To this end, the equation (1) is utilized to
calculate the TF related to the intact and damaged states to
illustrate the effects of the fault on the voltage and current
signals on the TF traces. Note that the sampling frequency in
all steps based on the Nyquist - Shannon Theorem is equal
to 28 kHz. Fig. 6 shows the TF related to the intact state of
the studied system. Fig. 7 illustrates the TF traces for single-
phase to ground short-circuit faults with 1-Ohm resistance
in all segments of the transmission line. The TFs related to
single-phase to ground short circuit faults are presented in
the second seg of the transmission line with the all types of
mentioned fault impedances in Fig. 8.
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Figs. 7 and 8 show the effect of the location and impedance
of the fault on the TF traces, respectively. Comparing the
TFs and observing the variations in their amplitude and fre-
quency ranges indicates that there is a fault in the system.
According to Fig. 8, it can be observed that with increas-
ing the impedance of fault, changes in the TFs tend to be
similar to the intact state TF, making it difficult to detect
high impedance faults. Identifying faults in early stages (high
impedance faults) can ensure system stability and prevent
serious damages to transmission lines and other equipment.
Achieving this goal and locating and accurately identifying
high-impedance faults requires a precise and robust method
for interpreting the TF traces. In this paper, the interpretation
of TF traces and the achievement of this important diagnosis
method is made using deep learning applications called CNN
and DRL in step 2.

B. STEP 2: LOCALIZATION AND CATEGORIZATION OF
SINGLE PHASE TO GROUND SHORT CIRCUIT FAULTS

BY DEEP LEARNING APPLICATIONS

In this step, deep learning applications are used to inter-
pret the TF traces. Interpreting the TFs and extracting their
features will ensure accurate classification and localization
of faults. For this purpose and based on the idea of hybrid
models, the hybrid method of DRL is presented in this paper.
In addition, the CNN method is applied to the same data
to compare the results of both methods. Fig. 9 shows the
flowchart of the proposed method for diagnosis transmission
line faults. Using learning methods in the first step requires
a dataset. TF traces are collected and utilized as a data
matrix.

Transmission lines are divided into 6 segments, and in each
phase of each segment, single-phase to ground short-circuit
faults is tested with 7 different impedance values. Thus,
the data matrix consists of 253 traces (126 faulty traces related
to internal faults, 126 faulty traces corresponding to external
faults, and one trace related to intact state). For internal faults,
the location of each fault is considered as the target number
(regardless of the severity of the fault) and is assigned a zero
target number for the trace of intact state. For external faults
related to segs 1 to 6 of the test system, the numbers of 7
to 12 are considered as target, respectively. In the network
training and test stages, each seg of the transmission line
is defined as a class. Zero number class is also assigned
to the TF of the intact state. After designing the networks
and determining the dataset as the input of each network,
70% of the data is determined for training and the rest for
the test. In the meantime, the selection of training and test
data is made randomly by the network itself. Each of the
designed networks is trained with relevant data and uses
test data to validate the training. After training and testing,
the performance and results for each network are evaluated
via statistical performance metrics. In this paper, correlation
coefficient (R), mean absolute error (MAE), and root mean
squared error (RMSE) are used to evaluate the performance
of each network. How to calculate each of these metrics is as
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FIGURE 6. TF associated with the intact state of the transmission line.

follows [56], [57]:
YL (Xi—X) (Y - 7)

R = (12)
VL (% X)X, (v - )
1 Y )
MSE = — ; X; — Y} (13)
1 N
_ — AV
RMSE = | ; X; —Y) (14)

where X;, X, Y;, and Y illustrate the real value, average of
real values, predicted value, and average of predicts values,
respectively. Figs. 10 and 11 show the results of identifying
and categorizing single-phase to ground faults by the DRL
model for training and test data, respectively.

The results presented in Fig. 10 show the network train-
ing with a high correlation coefficient (R=9851). When the
network is trained with high accuracy, it means that it has
been able to extract outstanding features of the data and
know their patterns well. It is also observed that the designed
network is able to distinguish data related to external faults
from the internal single-phase to ground short circuit faults
related to the same segment. The results provided for network
testing are also acceptable, and the test phase and location
detection of single-phase to ground short circuit faults for test
data have been performed with a high correlation coefficient
(R = 0.9804). Fig. 12 shows the MSE and RMSE errors
for the testing stage of the DRL network. It should be noted
that the error values of MSE and RMSE for the training
stage of the DRL were zero. The training and test steps
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TABLE 4. Comparison of training and test results provided by CNN and
DRL.

Train Test
Method R MSE RSME | R MSE RSME
CNN 0.9799 0.5148 0.7174 | 0.9638  0.7805  0.8834
DRL 0.9851  0.4257 0.6524 | 0.9804 0.7058  0.8401

for identifying and classifying single-phase to ground short
circuit faults were performed by CNN, and the results of R,
MSE, and RMSE of the CNN are presented in Table 4. This
table also compares the results of both the CNN and DRL
methods in diagnosing single-phase to ground short circuit
faults.

The results presented in Table 5 show the accuracy and
efficiency of the proposed methods for detecting and locating
single-phase to ground short circuit faults in the transmission
line. It can be seen that the proposed hybrid method of DRL
has been able to pass the training and testing stages more
accurately than the CNN method and provide better results.

One of the important parameters of short circuit faults is the
fault inception angle (FIA) (ranging from O to 90 degrees).
In this paper, in order to evaluate the performance of the
proposed method against the FIA, single phase to ground
short circuit faults with the inception angles of 30, 60, and
90 degress are also tested in each seg of the test system. The
TFs associated with each fault are calculated and used as
the test data for trained networks. Figs. 13, 14, and 15 show
the detection results for faults with the inception angles of 30,
60, and 90, respectively.

It is observed that the proposed method is able to distin-
guish faults with different inception angles. The networks
were trained with the zero inception angle faults and are able
to detect faults with the inception angles of 30, 60, and 90 with
the R values of 0.9760, 0.9680, and 0.9600, respectively.

Fault detection during power swing can be very chal-
lenging. In order to assess the performance of the proposed
method against the power swing, faults with the power swing
are generated in the test system and their TFs are calculated
and selected as test data for trained networks. Fig. 16 shows
the detection results for the power swing faults.

The results presented in Fig. 16 show the accurate perfor-
mance of the proposed method in identifying single-phase to
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FIGURE 8. Changes in TFs due to various short circuit resistances in segment 2 of transmission lines.

ground short circuit faults in the presence of power swing in
the test system. It is observed that the trained network is able
to provide R value of 0.9680 in this prediction.

The nature of the power system and its topology can
change by altering the short circuit levels at both ends power
systems. However, the protection system must be able to
operate accurately despite changes in the short-circuit fault
level. In order to assess the performance of the proposed
method, single phase to ground short circuit faults are applied
in each seg of the test system under two conditions, (i) equal
sources and (ii) stronger remote source. The TFs related
to the tested faults in each condition were considered as
test dataset for the trained network. Figs. 17 and 18 show
the fault detection results under two mentioned conditions,
respectively.
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The results presented in Figs. 17 and 18 show that the
proposed method has a satisfactory performance against the
change in the nature of the power system and its topology due
to changes in the short circuit level. The proposed method was
able to detect system faults in terms of equal resources with
the R values of 0.9840 and in conditions of stronger remote
source with the R values of 0.9520.

It should be noted that due to the fact that the detection and
identification of single-phase to ground short circuit faults
in the early stages (high impedance) is very valuable and
is one of the goals of this paper. High impedance faults are
identified in the following of this section. To do this, in each
seg of this line, single-phase to ground short circuit fault were
tested in each phase with impedance values of 300, 7000, and
9000 Ohms. Then, the voltage and current signals for each
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FIGURE 9. Flowchart of the proposed fault diagnosis technique.
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FIGURE 10. Identification and classification of faults by DRL in the
training stage.

fault were recorded. The TF related to each of these faults
were calculated and used as input for each of the trained
networks. Tables 5 and 6 show the results of identifying
and locating new and unknown faults by CNN and DRL,
respectively.

In fault detection operations in power systems, one of the
most important issues is the detection time. The use of deep
learning and machine learning applications in fault detection
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FIGURE 11. Identification and classification of faults by DRL in the testing
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FIGURE 13. Detection of single phase to ground short circuit faults by
considering the phase angle 30.

operations, in addition to reducing computational complexity,
has also significantly reduced fault detection time compared
to other conventional and traditional methods. In these meth-
ods, due to the difference in the performance of the training
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TABLE 5. Diagnosis and locating new single-phase to ground short circuit faults (high impedance) via CNN.

Real Impedance CNN Real Impedance CNN Real Impedance CNN

value prediction | value prediction | value prediction
R=300 Q 1 R=300 Q 2 R=300 Q 3

l-a-g ~ R=7000 Q 1 2-a-g  R=7000 Q 2 3-a-g  R=7000 Q 3
R=9000 Q 0 R=9000 Q 0 R=9000 Q 2
R=300 Q 1 R=300 Q 2 R=300 Q 3

1-b-g  R=7000 Q 1 2-b-g  R=7000 Q 2 3-b-g  R=7000 Q 3
R=9000 Q 2 R=9000 Q 2 R=9000 Q 2
R=300 Q 1 R=300 Q 2 R=300 Q 3

l-c-g  R=7000 Q 1 2-c-g  R=7000 Q 2 3-c-.g  R=7000 Q 3
R=9000 Q 1 R=9000 Q 3 R=9000 Q 3
R=300 Q 4 R=300 Q 5 R=300 Q 6

4-a-g  R=7000 Q 4 5-a-g  R=7000 Q 5 6-a-g  R=7000 Q 6
R=9000 Q 5 R=9000 Q 4 R=9000 Q 6
R=300 Q 4 R=300 Q 5 R=300 Q 6

4-b-g  R=7000 Q 4 5-b-g  R=7000 Q 5 6-b-g  R=7000 Q 6
R=9000 Q 3 R=9000 Q 5 R=9000 Q 6
R=300 Q 4 R=300 Q 5 R=300 Q 6

4-c-g  R=7000 Q 4 5-c-g  R=7000 Q 5 6-c-g  R=7000 Q 6
R=9000 Q 4 R=9000 Q 6 R=9000 Q 4

TABLE 6. Diagnosis and locating new single-phase to ground short circuit faults (high impedance) via DRL.

Real Impedance DRL Real Impedance DRL Real Impedance DRL

value prediction | value prediction | value prediction
R=300 Q 1 R=300 Q 2 R=300 Q 3

l-a-g ~ R=7000 Q 1 2-a-g  R=7000 Q 2 3-a-g  R=7000 Q 3
R=9000 Q 1 R=9000 Q 0 R=9000 Q 3
R=300 Q 1 R=300 Q 2 R=300 Q 3

1-b-g  R=7000 Q 1 2-b-g  R=7000 Q 2 3-b-g  R=7000 Q 3
R=9000 Q 1 R=9000 Q 2 R=9000 Q 4
R=300 Q 1 R=300 Q 2 R=300 Q 3

l-c-g  R=7000 Q 1 2-c-g  R=7000 Q 2 3-c-g  R=7000 Q 3
R=9000 Q 0 R=9000 Q 3 R=9000 Q 3
R=300 Q 4 R=300 Q 5 R=300 Q 6

4-a-g  R=7000 Q 4 S5-a-g  R=7000 Q 5 6-a-g  R=7000 Q 6
R=9000 Q 2 R=9000 Q 5 R=9000 Q 6
R=300 Q 4 R=300 Q 5 R=300 Q 6

4-b-g  R=7000 Q 4 5-b-g  R=7000 Q 5 6-b-g  R=7000 Q 6
R=9000 Q 4 R=9000 Q 5 R=9000 Q 6
R=300 Q 4 R=300 Q 5 R=300 Q 6

4-c-g  R=7000 Q 4 5-c-g  R=7000 Q 5 6-c-g  R=7000 Q 6
R=9000 Q 4 R=9000 Q 6 R=9000 Q 6

and test stages, the operating time of each is also different.
In this paper, the training time for the CNN and DRL is
62.41s and 37.86s, respectively. The test stage or single phase
to ground short circuit detection are performed by each of
the CNN and DRL networks in 0.9s and 0.5s, respectively.
It should be noted that this time is related to identifying the
total fault samples of each dataset at each stage. Each of the
CNN and DRL techniques detects each fault sample in 0.014 s
and 0.009 s, respectively. The calculations performed and the
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time obtained for fault detection are performed in a ASUS
system with the CPU of Intel Core 17-3630QM, 2.4GHz, and
the fault detection time can be various in the use of other
systems.

After testing each of the trained and saved networks using
new and high-impedance faults, Table 7 shows the results of
this step for both CNN and DRL by R, MSE, and RMSE
metrics. Also, this table provides a comparative approach to
results of single-phase to ground short circuit fault detection
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FIGURE 14. Detection of single phase to ground short circuit faults by
considering the phase angle 60.
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FIGURE 16. Detection of single phase to ground short circuit faults by
considering the power swing.
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FIGURE 15. Detection of single phase to ground short circuit faults by
considering the phase angle 90.

in transmission line for the methods used in this paper and
other solutions presented in other studies.

Based on the results presented in Table 7, it can be seen that
the trained networks were, in most cases, able to detect and
locate high impedance faults. Comparing the results of the
proposed methods, it was observed that the CNN method with
95.21% accuracy and DRL method with 96.61% accuracy
were able to locate new and unknown faults. At this stage,
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Target Class

FIGURE 17. Detection of single phase to ground short circuit faults by
considering sources in equal conditions.

the results confirmed the superiority and efficiency of the
proposed hybrid model of DRL in detecting the single-phase
to ground short circuit faults. Interpretation of TF traces using
learning methods can be the best step in locating transmission
line faults and be important in improving condition monitor-
ing issues of the power system. Finally, it should be noted
that the suggested methods in this paper are also applicable
for real-world data.
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FIGURE 18. Detection of single phase to ground short circuit faults by

considering remote source in stronger state.

TABLE 7. Comparison of the results of different methods in detecting the
single-phase to ground short circuit fault in the transmission line.

High impedance fault Low impedance fault

Method R MSE RSME R MSE RSME

CNN 0.9521 0.2963  0.5443 | 0.9638 0.7805 0.8834

DRL 0.9661 0.2222 04713 | 0.9804 0.7058 0.8401
HMM [29] - - - 0.9000 - -
SVM-+LSTM [30] - - - 0.9770 - -
Fast R-CNN [27] 0.9559 - - - - -
Wavelet-SVM 0.9391 - - 0.9623 - -

[58]

VI. CONCLUSION

This paper aims to identify and accurately locate single-phase
to ground short circuit faults in power networks. To this end,
the deep learning applications to interpret the TFs related
to single-phase to ground short circuit faults are proposed.
For this purpose, a standard IEEE transmission line has
been used. The transmission line is divided into 6 equal
segments so that each part represents one location (class).
In all three phases of these segments, single-phase to ground
short circuit faults were monitored and saved with different
test impedances and voltage and current signals for each fault.
The TF method was introduced and used to assess the effects
of the fault impedances and fault location on the transmission
line. In order to improve the TF method and extract the
features in the TF traces, deep learning applications called
CNN and the hybrid model of DRL were utilized to clas-
sify the faults. The TF traces were collected and used as
input datasets for each network. After training and testing,
the results of detecting and locating single-phase to ground
short circuit faults indicated the superiority and efficiency of

VOLUME 9, 2021

the hybrid model of DRL compared to CNN. DRL method
passed the training and test stages with a correlation coeffi-
cient of R=98.51% and R=98.04%, respectively, while these
results were observed in the conventional CNN, R=98.16%
for training and R=96.12% for test. Then, in order to achieve
the goal of early detection of single-phase to ground short
circuit fault (high impedance), faults with high impedances
(7000 and 9000 ohms) are implemented according to the
previous routine in the transmission line. TF traces of new
faults were used as inputs for test the saved networks. At this
stage, the DRL method was R=96.61% more effective and
powerful than the CNN method, which provided R=95.21%
correlation coefficient. It should be noted that the use of
learning methods can be an important step towards improving
condition monitoring issues in power systems. Note that the
presented method is non-pilot method and utilizes local data.
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