Streptococcus pyogenes aortic aneurysm infection: forgotten but not gone

Bradley J. Gardiner,¹ Joy Wong,² Ming Yii,² Timothy Buckenham,³ Tony M. Korman²

Departments of Infectious Diseases, Vascular Surgery and Radiology, Monash Health, Clayton, Victoria; Department of Medicine, Monash University, Clayton, Victoria, Australia

Abstract

Historically, *Streptococcus pyogenes* was a common cause of endocarditis and infected aortic aneurysm. Today, endovascular infections due to this organism have become exceedingly rare. We report the first case of aortic aneurysm infection due to *S. pyogenes* treated with initial endoluminal repair, review previous reports and discuss current treatment options.

Case Report

A 60 year old man had a past history of smoking, non-alcoholic steatohepatitis and a left iliofemoral bypass with a Polyethylene Terephthalate (Dacron) graft 7 years earlier. His only regular medication was esomeprazole. He became unwell during a trip to the United Kingdom, with sore throat, fevers and sweats. On return to Australia, fever and night sweats persisted, and he had 8 kg weight loss. Four weeks later he presented with back pain, an abdominal computed tomography (CT) scan revealed a para-aortic mass (Figure 1), and he was referred to our emergency department for further management. On examination he was afibrile, heart rate 60 beats/min, normoten sive with a pulsatile non-tender abdominal mass. White cell count (WCC) was 13.9×10⁹/L and C-reactive protein (CRP) 430 mg/L; Day 13 WCC 6.8×10⁹/L and CRP 66 mg/L. He was discharged on day 15 and continuous infusion intravenous benzylpenicillin was continued via an outpatient antimicrobial therapy program, with a plan for 6 weeks therapy followed by lifelong oral amoxicillin.

However he had ongoing weight loss, anorexia, his inflammatory markers failed to normalise. On day 53, he underwent graft explantation and axillo-bifemoral bypass. This was complicated by graft occlusion requiring therapeutic anticoagulation, and subsequent intra-abdominal haemorrhage. This ultimately resulted in irreversible ischaemia of his left lower limb requiring below knee amputation. Culture of the explanted graft revealed *Klebsiella oxytoca*, *Enterococcus faecalis*, and meticillin-sensitive *Staphylococcus capitus* and *Staphylococcus epidermidis*, but *Streptococcus pyogenes* was not reisolated. Repeat CT imaging revealed no source of infection, and there was no evidence of intestinal pathology at the time of laparotomy. He was treated with intravenous piperacillin/tazobactam 4.5 g every 8 hours for a further 6 weeks, followed by oral amoxicillin/clavulanate, with a plan for lifelong antimicrobial therapy. On review 4 months after the initial presentation, he was recovering uneventfully and inflammatory markers had normalised.

Discussion

Streptococcus pyogenes is an organism associated with a diverse range of clinical presentations. It has multiple virulence factors facilitating pus liquefaction and spread through tissue planes, which give it the ability to cause highly invasive infections such as necrotizing fasciitis. *S. pyogenes* is not typically thought to be associated with endovascular infections. Interestingly, infectious diseases textbooks state that in the pre-antibiotic era *S. pyogenes* was often associated with endovascular infections, along with *Streptococcus pneumoniae* and *Haemophilus influenzae*. A review of the limited available primary data from this time however suggests that the predominant organisms were viridans streptococci, and *S. pyogenes* was in fact unusual. In a widely-referenced 1923 review of 217 cases of mycotic aneurysms (mostly associated with endocarditis), Stengel and Wolfert comment the organisms most frequently recovered from blood cultures from the heart valves or from aneurysms have been streptococci, mostly non-haemolytic types. Another early review by Revell et al. examines 24 cases of primary mycotic aneurysm from 1905-1939, of which 13 had a causative organism identified, 6 of which were *streptococci* (no further details available). The term mycotic, initially used to refer to all microorganisms, has for some time now been reserved for fungal infections. *Mycotic aneurysm* has persisted for longer, but has now been surpassed by the more accurate *infected aortic aneurysm*.

The introduction of penicillin had a dramatic effect on the overall incidence and epidemiology of infected aortic aneurysms. There has been a shift away from an association with endocarditis, and although streptococci remain important causative organisms, *Staphylococcus aureus* and *Salmonella* species predominate.

We identified eight cases of infected aortic aneurysm due to *S. pyogenes* described in the literature (Table 1). One died soon after presentation following aneurysm rupture, but seven patients underwent early open surgical repair. Our case represents the first reported case of initial endoluminal repair. Five of seven patients survived the initial post-operative period and were treated with prolonged periods of intravenous and oral penicillin (6...
weeks to 1 year), although details of antibiotic treatment were not available for all cases. Surviving patients were reported to be well at follow-up, ranging from 6 weeks to 87 months.

No randomized controlled trials are available to guide management of infected aortic aneurysm. Given the wide spectrum of potential organisms, obtaining a microbiological diagnosis is of critical importance. There is a high mortality rate associated with conservative therapy. Intervention should be timed before rupture if possible, as emergency procedures have a higher risk of complications. Interestingly, gram-negative aneurysms are more likely to rupture early (80% within 2 weeks versus 10% for gram positives).1

Surgical options include open debridement with either extra-anatomic bypass or local reconstruction, endovascular repair, a hybrid approach, or a staged procedure. Anatomical location is a key factor, with an endovascular approach ideal for difficult-to-access descending thoracic aneurysms, but open repair traditionally preferred for juxta- and infra-renal aneurysms.13

Endoluminal repair is rapidly becoming an increasingly popular treatment option for the repair of non-infected aortic aneurysms. Advantages include a smaller incision, shorter operation time with less blood loss and transfusion requirements and reduced intensive care stay. It does not require cardiopulmonary bypass, aortic cross-clamping, or single lung ventilation, and overall has reduced early morbidity and mortality, with equivalent long-term outcomes.14 It is a tempting option for infected aneurysms as well, particularly in high-risk patients. It does not however allow adequate surgical debridement of the infected area, leading to concern regarding the long-term consequences of direct insertion of prosthetic material into an infected field, and slower uptake in this area.15

Setacci et al.16 review 6 retrospective studies comparing endovascular with open approaches

Table 1. Reported cases of Streptococcus pyogenes aortic aneurysm infection.

<table>
<thead>
<tr>
<th>Case (ref)</th>
<th>Age /Sex</th>
<th>Site</th>
<th>Surgical treatment</th>
<th>Medical treatment (empiric; directed)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (5)</td>
<td>65/M</td>
<td>Infrarenal abdominal aorta</td>
<td>Resection with right axillary femoro-femoral bypass graft (day 1)</td>
<td>Ampicillin-sulbactam & aztreonam; nafcillin & penicillin G</td>
<td>Died 40 hours after admission</td>
</tr>
<tr>
<td>2 (6)</td>
<td>58/F</td>
<td>Infrarenal abdominal aorta</td>
<td>Aorto-bifemoral graft</td>
<td>Not discussed “antibiotics”</td>
<td>Lumbar plexopathy and flaccid paralysis; walking with sticks at 18 months</td>
</tr>
<tr>
<td>3 (7)</td>
<td>36/M</td>
<td>Aberrant origin right subclavian artery</td>
<td>Ligation of aberrant artery; aortic arch repair with Hemashield graft (day 2)</td>
<td>Not discussed “parenteral antibiotics”</td>
<td>Death day 8 – brain death due to diffuse brain ischemia, obstructive hydrocephalus due to cerebellar infarct, & transverse sinus thrombosis</td>
</tr>
<tr>
<td>4 (8)</td>
<td>1.5/F</td>
<td>Ascending aorta</td>
<td>Aneurysmectomy + valveless aortic homograft on day 8</td>
<td>Cefuroxime & gentamicin; high dose penicillin G (6 weeks), oral penicillin (3 months)</td>
<td>Well and active at 12 months</td>
</tr>
<tr>
<td>5 (9)</td>
<td>81/M</td>
<td>Abdominal aorta, vertebral osteomyelitis, bilateral psoas abscess</td>
<td>None</td>
<td>Not discussed</td>
<td>Died (aneurysm rupture)</td>
</tr>
<tr>
<td>6 (10)</td>
<td>72/M</td>
<td>Thoraco-abdominal aorta</td>
<td>Open resection & prosthetic graft implantation (rifampicin-impregnated)</td>
<td>Vancomycin & imipenem; penicillin G (4 million units q4h 12 days), benzathine penicillin 1yr</td>
<td>Well at 6 months on penicillin</td>
</tr>
<tr>
<td>7 (11)</td>
<td>63/F</td>
<td>Thoraco-abdominal aorta</td>
<td>Open Type IV repair (3 weeks after diagnosis)</td>
<td>Not discussed</td>
<td>Alive at 87 months</td>
</tr>
<tr>
<td>8 (12)</td>
<td>2/M</td>
<td>Descending thoracic aorta</td>
<td>Open Dacron repair (day 5) and re-operation due to recurrence proximal to original graft</td>
<td>Ceftriaxone, ampicillin-sulbactam; clindamycin & ampicillin (6 weeks)</td>
<td>Well at 6 weeks</td>
</tr>
<tr>
<td>9 (current report)</td>
<td>60/M</td>
<td>Infrarenal abdominal aorta</td>
<td>Initial endoluminal repair, complicated by secondary graft infection requiring graft excision & axillary-bifemoral bypass</td>
<td>Vancomycin, ceftriaxone & metronidazole; benzylpenicillin (5 weeks), piperacillin-tazobactam (6 weeks), amoxicillin-clavulanate (lifelong)</td>
<td>Well at 4 months, on amoxicillin-clavulanate</td>
</tr>
</tbody>
</table>

Figure 1. Contrast-enhanced coronal section of abdominal CT scan showing the infrarenal sacular mycotic aneurysm (see arrow) on presentation (A) and following contained rupture (B).
for management of infected aortic aneurysm. In general, an endovascular approach seems to associate with a lower 30-day mortality, but higher rate of late deaths and complications. It seems to be a reasonable approach either as a bridge to surgery or in patients who are not candidates for surgery due to age or comorbidities, but can be associated with secondary infection and graft failure. Patients who undergo primary surgery seem to have a higher early mortality rate but possibly a better chance of definitive cure with long-term survival.

In our case, after an initial phase of antibiotic therapy, an urgent endovascular repair was performed due to contained rupture. Although there was initial response to directed antibiotic therapy, deterioration then occurred, requiring endograft excision and axillary-bifemoral bypass grafting. Culture of explanted graft revealed polymicrobial secondary infection, requiring a prolonged course of broad-spectrum intravenous antibiotics and likely lifelong oral suppressive antibiotics.

Conclusions

Aortic aneurysm infection is a serious disease with a high mortality rate. We describe a complicated case secondary to S. pyogenes, a rare causative pathogen, who initially underwent endoluminal repair. Well-timed intervention in conjunction with effective antibiotics can result in reasonable long-term survival. Directed antimicrobial therapy in combination with complete surgical excision of the infected aorta remains the optimal treatment. Endoluminal repair is an emerging treatment option in particular for those with comorbidities contraindicating surgery, but long term monitoring for secondary infection is recommended.

References