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A B S T R A C T   

Data-driven models for industrial energy savings heavily rely on sensor data, experimentation data and 
knowledge-based data. This work reveals that too much research attention was invested in making data-driven 
models, as supposed to ensuring the quality of industrial data. Furthermore, the true challenge within the In-
dustry 4.0 is with data communication and infrastructure problems, not so significantly on developing modelling 
techniques. Current methods and data infrastructures for industrial energy savings were comprehensively 
reviewed to showcase the potential for a more accurate and effective digital twin-based infrastructure for the 
industry. With a few more development in enabling technologies such as 5G developments, Internet of Things 
(IoT) standardization, Artificial Intelligence (AI) and blockchain 3.0 utilization, it is but a matter of time that the 
industry will transition towards the digital twin-based approach. Global government efforts and policies are 
already inclining towards leveraging better industrial energy efficiencies and energy savings. This provides a 
promising future for the development of a digital twin-based energy-saving system in the industry. Foreseeing 
some potential challenges, this paper also discusses the importance of symbiosis between researchers and in-
dustrialists to transition from traditional industry towards a digital twin-based energy-saving industry. The 
novelty of this work is the current context of industrial energy savings was extended towards cutting-edge 
technologies for Industry 4.0. Furthermore, this work proposes to standardize and modularize industrial data 
infrastructure for smart energy savings. This work also serves as a concise guideline for researchers and in-
dustrialists who are looking to implement advanced energy-saving systems.   

1. Introduction 

Throughout the timeline of manufacturing and processing, there 
were certain incredibly novel technological breakthroughs which 
flourished the possibilities of a new system, and even, a new 
manufacturing era. The first occurrence of such ground-breaking tech-
nology happened in 1763 where James Watt invented a version of the 
steam engine which was incredibly fuel-efficient at that time [1]. This 
key piece of technology opened the doors towards the first industrial 
revolution which relied on the principles of the thermodynamic engine 
and mechanical gear. A reoccurrence of this phenomenon of industrial 

revolution happened in the 19th centuries where many new technolo-
gies, especially electricity, were invented [2]. The acquisition of elec-
tricity and electrical applicants in this time of history allowed for mass 
production of daily products, giving birth to the start of a new economy. 
This was the second industrial revolution. Further development of 
electronics in the next hundred years had advanced both the energy 
industry and utilization of electronics, leading to the third revolution. 
Most notably, the transition from oil and gas to utilizing nuclear and 
bioresources as energy sources [3] has drastically changed the economy. 
In the industry, the extensive use of automation also emerged due to the 
invention of programmable logic control (PLC) and simple robots [4]. 
Today’s enabling elements, which include Artificial Intelligence (AI), 
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advanced robotics, cyber-physical production systems (CPPS), internet 
of things (IoT) and Big Data [5], is leading to another new revolution. 
Industry 4.0, also known as the fourth industrial revolution is the 
idealization of an economy that produces materials or provide services 
with highly automatized procedures [6]. 

In advanced countries, such as Germany, France, Japan [7] and 
China [5], Industry 4.0 projects related to autonomous processing, 
operational improvement and energy-savings have been increasing 
steadily. However, World Economic Forum [8] reported that only 25 
countries within the world are ready to benefit from the changing nature 
of Industry 4.0, which are (in alphabetical order) Austria, Belgium, 
Canada, China, Czech Republic, Denmark, Estonia, Finland, France, 
Germany, Ireland, Isreal, Italy, Japan, Korea Republic, Malaysia, 
Netherlands, Poland, Singapore, Slovenia, Spain, Sweden, Switzerland, 
United Kingdom and United States. Furthermore, researchers such as 
Rajnai and Kocsis [9] had shown that there are significant labour market 
risks associated with Industry 4.0. Nevertheless, the values derived from 
transitioning to Industry 4.0 is too much attractive for both the micro- 
and macro-perspectives in terms of resource conservation, asset utili-
zation, labour allocation, inventory management, quality improvement, 
supply-demand matching, time-to-market management and aftersales 
service [10]. In this case, much more developments are required to 
achieve Industry 4.0 in various parts of the world. In terms of research 
effort, Preuveneers and Ilie-Zudor [11] pointed out that more works 
have to be done on end-to-end production transparency, information 
management in industrial systems, optimization of industrial processes 
with Big Data and cloud computing, production-aided with machine 
learning, human-computer and machine interaction, security threats 
and regulations. Zhou et al. [5] also highlighted that the challenges of 

transitioning to the Industry 4.0 contain complex aspects of scientific 
challenges, technological challenges, economic challenges, social chal-
lenges and political challenges. On the production floor level, Weyer 
et al. [12] demonstrated the importance of infrastructure standardiza-
tion with examples related to electro-mechanical standards, production 
lines, communication standards, control architectures, work stations 
and integration of superordinate IT systems. 

Energy savings is one of the most attractive targets to achieve 
improved energy efficiencies with the technologies of Industry 4.0 [13]. 
Song and Wang [14] proposed a data-driven measuring method to 
consider technological progress for energy saving and emission reduc-
tion in the settings of Industry 4.0. An energy management system 
named Energy Cloud [15] was also deployed to monitor energy con-
sumption in multiple industrial sites by utilizing Big Data and cloud 
computing. Lee et al. [16] argued that deploying a self-aware machine 
within the context of Industry 4.0 could also reduce processing cost by 
saving energy consumption. From a project implementation perspective, 
Oses et al. [17] proposed using a statistical learning approach to mea-
sure and verify energy savings within an industrial plant. The model was 
able to act as a baseline energy-saving model while reducing un-
certainties in real-time. Furthermore, Wang et al. [18] proposed a 
four-level architecture for energy-saving operations which includes a 
physical and sensible manufacturing system, system unit models in 
virtual space, system production model in virtual space and active 
energy-saving operation decision model. By utilizing an intelligent in-
formation processing approach, Yan et al. [19] argued that the intelli-
gent factory can improve system reliability from applying predictive 
maintenance and intelligent energy savings. 

To demonstrate the importance of industrial energy savings from a 

Nomenclature 

AI Artificial Intelligence 
AMO Advanced Manufacturing Office 
APC Advanced Process Control 
BI Business Intelligence 
CAD Computer-aided Design 
CFD Computational Fluid Dynamics 
CHP Combined Heat and Power Plant 
CNC Computer Numerical Control 
CPPS Cyber-Physical Production System 
CPS Cyber-Physical System 
CPU Central Processing Unit 
CVD Chemical Vapour Deposition 
DaaS Data as a Service 
dApps Decentralized Applications 
EMEA Europe, the Middle East and Africa 
ERP Enterprise Resource Planning 
EU European Union 
FEA Finite Element Analysis 
GB/s Gigabytes per seconds 
GPU Graphics Processing Unit 
HMI Human Machine Interface 
HVAC Heating, Ventilation and Air Conditioning 
IaaS Infrastructure as a Service 
IIoT Industrial Internet of Things 
Industry 4.0 Forth Industrial Revolution 
IoT Internet of Things 
IP Intellectual Property 
IP69k International Electrotechnical Commission’s protection 

rating for Dust Tight and Able to Sustain High Pressure 
Cleaning or Steam Jet 

ISO International Standard Organization 

IT Information Technology 
KPI Key Performance Indicator 
LCA Life Cycle Analysis 
MES Manufacturing Execution System 
MYR Malaysian Ringgit 
NDRC National Development and Reform Commission 
NEA National Energy Administration 
OII Open Innovation Intermediaries 
PaaS Platform as a Service 
PASPO Principal Component-aided Statistical Process 

Optimization 
PAT Perform Achieve and Trade scheme 
PLC Programmable Logic Control 
PwC PricewaterhouseCoopers 
QR Quick Response 
R&D Research and Development 
RB-FEA Reduced Basis Finite Element Analysis 
RFID Radio-frequency Identification 
RTU Remote Terminal Unit 
SaaS Software as a Service 
SCADA Supervisory Control and Data Acquisition System 
Sim-to-Real A field of artificial intelligence dealing with transferring 

simulation to the real world 
SPP Standard Payback Period 
SVM Support Vector Machine 
TEE Trusted Execution Environment 
TOE Tonnes of Oil Equivalent 
TPU Tensor Processing Unit 
UI User Interface 
UPS Uninterruptable Power Supply 
USD United States Dollar (Used synonymously with “$”) 
UX User Experience  
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regional viewpoint, the European Council emphasizes to reduce pro-
jections of primary energy consumptions in 2020 by 20% [20]. The 
European Commission also adopted a roadmap up to 2050 to focus on 
low carbon economy with a focus on energy efficiency [21]. United 
States Department of Energy also established the Advanced 
Manufacturing Office (AMO) to improve the energy and material effi-
ciency, productivity, and competitiveness of manufacturers across the 
industrial sectors [22]. To date (as of 2019), AMO has provided more 
than 1300 industrial partnerships and projects related to energy savings 
in the United States. In China, the National Development and Reform 
Commission (NDRC) and the National Energy Administration (NEA) 
jointly release the 13th Five-Year Plan for Energy Development with 
focus on optimizing energy systems, reducing energy consumption, 
promote renewable energy supply, promote efficient energy technology, 
build fair energy market system, strengthen energy cooperation and 
achieve energy sharing [23]. Moreover, the Ministry of Power in India 
[24] is reported to promote Perform Achieve and Trade Scheme (PAT) 
which enhances energy savings within energy-intensive industries. In 
the first PAT cycle, the overall energy saving achieved was 8.67 million 
TOE (tonnes of oil equivalent), exceeding targets by 30%. In South-East 
Asia, the Ministry of Energy, Green Technology and Water [25] of 
Malaysia have also allocated an annual budget of MYR 54.3 million 
(approximately 13 million USD) to improve energy efficiencies of ap-
pliances within the country. Evidently, countries around the globe pri-
oritize energy savings and energy efficiency of industrial systems 
heavily, as it is critical for sustainable development on a 
macro-perspective. 

The transition to an energy-efficient Industry 4.0 is inevitable 
throughout the evolution of mankind. According to Pricewaterhou-
seCoopers (PwC) reports [26], data-driven improvements to resource 
and energy efficiency are expected to have an 18% increase. The report 
also mentioned that the data-driven industry is already generating more 
than 110 billion Euro of additional revenue in Europe. McKinsey & 
Company [27] estimates that Industry 4.0 would improve productivity 
in the technical profession by 45–55%. Nevertheless, in terms of realistic 
energy saving implementation, Máša et al. [28] demonstrated that the 
real challenge is in dealing with the data and processing infrastructure in 
existing facilities. The work also highlighted the main problem within 
existing firms, which is, most of them have incomplete data acquisition 
system. Weyer et al. [12] also agreed that data infrastructure is one of 
the most challenging aspects for firms to transition towards Industry 4.0. 
The work proposed to standardize and modularize the data infrastruc-
ture within smart production systems. Still, there is a research gap for 
the development of an efficient “one-size-fits-all” approach for 
data-driven process analysis and data acquisition for non-experts or 
non-professionals. Furthermore, research in this field will be strongly 
motivated by the (i) significance, timeliness and contribution towards 
Industry 4.0, (ii) international interest in providing a more 
energy-sustainable future, and (iii) government initiatives and policies. 

In this work, Section 2.0 discusses the current state and challenges 
with the consideration of the conventional pipeline for data-driven en-
ergy saving. Section 3.0 discusses enabling technologies that will 
accelerate the research field (such as Industrial Internet of Things (IIoT), 
digital twins and cyber-physical systems, cloud computing, and 
advanced blockchain technologies). Furthermore, Section 4.0discusses 
policies and government initiatives that will provide subsidies or ben-
efits for data-driven energy savings in different countries or regions. 
Additionally, Section 5.0 discusses the difference between the modern 
and traditional implementation of industrial analytics for energy savings 
while giving a focus on industrial-academic collaboration. Authors have 
also provided future directions that may accelerate the research field in 
Section 6.0 while the concluding remark was provided in Section 7.0. 

2. Current state and challenges 

The current situation of utilizing data-driven analytics for the 

purpose of industrial energy savings is steadily rising throughout the 
years (See Fig. 1(a)). From the year 2000–2018, the top ten countries 
that contribute the most to data-driven energy-saving research (in terms 
of published research documents in SCOPUS) are China, United States, 
Italy, Germany, United Kingdom, Iran, Spain, Canada, Russian Federa-
tion and Japan. With modern manufacturing and production system 
having an increasing improvement in sensors and data acquisition, data- 
driven analytics has grown in interests throughout the years within the 
context of the Industry 4.0. 

There are still some undeniable gaps to be addressed by both aca-
demic researchers and industrial practitioners for data-driven analytics 
in the context of Industry 4.0. Kusiak [29] discussed that these chal-
lenges arise in (i) adopting strategies for information management, (ii) 
improving data collection and utilization, (iii) designing predictive 
models, (iv) managing with model uncertainties, (v) connecting fac-
tories and control processes. Mittal et al. [30] provided a concise review 
on the maturity model for aspects of Industry 4.0 showing that there are 
still many technologies that are not matured for the transition towards 
full Industry 4.0. In reality, Zhang et al. [31] discussed that one of the 
main challenges for data-driven energy savings is the complexity that 
arises from the variety of energy use across thousands of processes. To 
deal with this complexity, Shouf et al. [32] proposed the use of 
multi-level energy awareness to process energy data which corresponds 
to process level, machine level, production line level and production 
level. In terms of improving the energy efficiency of existing systems, 
Grueneich [33] laid out five critical challenges that includes: (i) the 
ability to support an increasing magnitude of energy efficiency savings, 
(ii) diversification of sources of energy, (iii) the measuring standards of 
energy savings must be established, (iv) energy-saving outcome must 
include carbon reduction framework, (v) variability of energy efficiency 
must be understood. To successfully overcome such challenges, strate-
gies from technological innovation, energy market, policy framework 
and agency governance must be adopted. 

2.1. Pipeline for data-driven energy savings 

In all cases, data-driven energy-saving procedures can be classified 
into four steps: (i) data acquisition, (ii) data pre-processing, (iii) 
modelling and analysis, and (iv) industrial implementation (see Fig. 2). 
Even though many researchers with actual industrial experiences sug-
gested that the real challenge of data-driven energy savings is at the 
stage of data acquisition [28,29,31,32], academic researchers at the 
current state have more research attention towards modelling and 
analysis. Authors suspect that this is due to the academic ecosystem 
viewing research related to “modelling and analysis” as trendier and 
more applicable. With an overload of research interest in the fields of 
energy modelling and analysis, other parts of the data-driven ener-
gy-saving pipeline (i.e., data acquisition, pre-processing, implementa-
tion) becomes a significant bottleneck for the field of research. There is a 
strong need for a concise review of the development of each part of the 
pipeline to realign the researcher’s interest towards the industry’s 
demands. 

Data collection and acquisition is one of the most important pro-
cedure for data-driven energy savings. The quality of the energy-saving 
implementation is only as good as the quality of the data available. The 
task of data collection is a complex task which includes sensor selection, 
communication protocol, information systems, data warehousing, data 
prioritization and much more unforeseen engineering works [34]. Work 
from Abdelaziz et al. [35] reviewed that even for audit-based ener-
gy-saving procedures, the importance of historical energy-related 
database cannot be avoided. Additional data is also proposed to be ob-
tained via portable data acquisition tools such as fuel efficiency monitor, 
clamp-on power meter, thermocouple sensor and data loggers. By 
considering an enterprise energy-information system, Swords et al. [36] 
reported that data collection is important for both energy data and en-
terprise data. Similarly, the work also emphasized the importance of 
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data collection tools while promoting the use of energy management 
according to ISO 140001. For energy management aspect, data collec-
tion and acquisition is critical as data-driven practices can work 
continuously and seamlessly to detect inefficient and malfunctioning 
equipment, optimize energy usage and performances [37]. Some 
important works related to data acquisition can be found in Table 1. 

Data pre-processing is also known as data cleaning as it is the 

operation of converting raw data from data collection devices to useful 
data for analysis. Many data engineers consider the work of this stage as 
‘data janitor work’. However, the industry proves that preventing “dirty 
data” usage is crucial for industrial energy savings [49]. Cai et al. [50] 
proposed 5 dimensions for the assessment of clean data which covers 
availability, usability, reliability, relevance and presentation quality. 
The work proposed a conceptual idea of utilizing indicators, data quality 
elements and dimensions for the phase of data pre-processing. For the 
application of energy-saving, the energy consumption for computing the 
data cleaning algorithm is often studied by researchers [51]. On the 
technical ground, Chu et al. [52] reviewed that advanced data cleaning 
procedure should be able to carry out qualitative error detection, error 
repairing, and adaptive data cleaning. Nevertheless, the most important 
purpose for data pre-processing for data-driven energy savings is on the 
removal of noise containing data, missing data removal and data 
structure unification [53]. Although there is lesser research work that 
relates to the “data janitor work”, its importance is undeniable, and 
some useful papers can be found in Table 2. 

The core of the data-driven energy-saving pipeline is the procedure 
for modelling and analysis. Data-driven modelling has received very 
much attention in recent years due to its unparallel advantages in 
adaptability, accuracy, predictivity and simplicity [56]. Within this 
field, the rise of AI, digital twins and cyber-physical systems (CPS) have 
been pushing the boundaries of its possibilities [29,57] (this is further 

Fig. 1. Research interest of data-driven energy savings in the industry from 2000 to 2018 based on SCOPUS database: (a) Exponentially growing number of research 
articles (b) Top ten countries with contributing research articles. Search keyword on SCOPUS is “("Energy Savings") AND ("Industrial Process" OR "Manufacturing" OR 
"Production") AND ("Machine Learning" OR "Data" OR "Artificial Intelligence")”. 

Fig. 2. The attention of research works in the data-driven energy- 
saving pipeline. 

Table 1 
Significant works related to data acquisition and collection.  

Work Year Contribution 

Cordeau and Barrington 
[38] 

2010 Evaluate the performance of data acquisition systems to conduct energy balance analysis in two commercial broiler barns. Discussed that better 
data acquisition procedure can give better results. 

Januteniene et al. [39] 2012 Used an external data logger for data collection to carry out real-time process optimization using advanced process control (APC) controller to 
lower overall energy consumption. 

Tian et al. [40] 2012 Proposed a company-level data collection methodology that relied on statistical data of local government, audit reports, and technical reports. 
Compared technical measures from 44 companies to assess the potential of energy-saving in a Chinese fine chemical industrial park. 

Brundage et al. [41] 2013 Highlighted the importance of Energy Efficiency Performance Indicators that uses real-time production data to identify energy-saving 
opportunities. 

Nunes et al. [42] 2014 Collected information related to facilities, equipment, technical operations and production processes from multiple refrigeration systems in the 
fruit and vegetable industry. Performed comparative analysis between various industrial plants of the sector. 

Nunes et al. [43] 2015 Adapted a method of utilization of a combination of the industrial production database and separate technical data to gauge the potential energy 
savings in the dairy food sector. 

Abele et al. [44] 2015 Emphasized the importance of information infrastructure for data collection to achieve energy-efficient production. The work refers to systems 
such as Programmable Logic Controller (PLC) and Human-Machine Interface (HMI) as prerequisites for energy Key Performance Indicator (KPI) 
monitoring. 

Wei et al. [45] 2016 Implemented IoT-based communication framework for data collection within the processing facility and utility systems. Developed a complete 
energy management network to achieve energy savings 

Cosgrove et al. [46] 2017 Collected data for energy savings in a holistic manner. Discussed that industrial energy can be classified as value-added energy, auxiliary energy 
and indirect energy. Highlighted the importance of lean energy management with consideration of value stream. 

Tuo et al. [47] 2018 Propose the usage of real-time data collection to calculate energy efficiency index through “virtual part” of the machining systems. 
Zhang et al. [48] 2019 Multi-attributed data related to total energy consumption were extracted from historical data to optimize machine scheduling.  
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discussed in Section 3.2). Data-driven methods have proven to be much 
superior to traditional engineering correlations and mathematical 
modelling methods. For example, data-driven modelling can be used to 
reduce the number of processes of an oil refinery with minimal back-
ground studies while mathematical programming would require thou-
sands of equations and variable sets for optimization [58]. Leong et al. 
[56] also demonstrated that data-driven modelling methods can easily 
adapt to the uncertainties and changes within the real world, which 
traditional methods generally fail to achieve [59]. Neural networks were 
also recently grown in popularity within the ecosystem of energy savings 
to provide predictive analysis and highly non-linear modelling accuracy 
[60,61]. With rapid evolution within the field of data-driven modelling 
from various study disciplines, the future for data-driven energy-saving 
is promising. In this aspect, some of the significant works that contrib-
uted to utilizing industrial data for data-driven energy savings towards 
the perspective of Industry 4.0, are compiled in Table 3. 

In today’s world, training a data-driven model can be as easy as 
loading a dataset and pressing one button. Nevertheless, ensuring the 
model is truly useful in the real world is not presumption, the whole 
framework has to be properly designed meticulously for it to work [70]. 
There are also many hidden problems during implementation that a 
theoretical study will not consider. For example, inconsistency of 
equipment wearing in a single process [31], uncertainties in operations 
[71], information architecture [70], physical constraints [58] and even 
more unexpected problems. Researchers should favour actual industrial 
implementations of energy-saving solution much more than elegant 
theoretical mathematics as they bring much more insights and experi-
ence to the problem itself. Diving too deep into theoretical problems will 
only lead to producing many “garbage-in-garbage-out” models that do 
no good to the industry. The needs to combine industrial implementa-
tion, knowledge and data-driven modelling is a critical aspect for suc-
cessful projects [28]. Tao et al. [72] pointed out that models without 

consideration of industrial implementation can fail to reflect in the real 
world, leading to poor decisions and catastrophic problems. The work 
provided an example of a Beijing-based company causing a steam tur-
bine to overheat due to not including lubricant levels into its digital 
twin. Some works that carried-out industrial implementation for the 
purpose of energy savings can be found in Table 4. 

Apart from operational difficulties during industrial implementation, 
the user interfaces and user experience (UI/UX) of the energy solution is 
also important. Zhang et al. [31] demonstrated that a good user interface 
for data visualization is effective in identifying low energy efficiency 
ball mills in a Chinese milling factory. Good visualization at this stage 
can compress complex high dimensional data into simple bar charts that 
are directly indicative of the priority within the process [58]. Further-
more, Lade et al. [76] argued that a visualization platform is essential for 
the industrial Big Data that is gathered. The work discussed the impor-
tance of data visualization for aiding engineers to obtain a lucid and 
comprehensive overview of the whole process system. Some ready-made 
tools for this purpose are available in the market, such as AWS Quick-
Sight, Google Data Studio, Tableau and Microsoft BI which makes 
implementation straightforward. The upcoming sections will discuss the 
information infrastructure that will be hosting the data pipeline (Section 
3.0), integration of advanced technologies, government policies and 
barrier between researchers and industrialists. 

3. Industrial infrastructures and enabling technologies 

Industrial infrastructure for managing the processing and opera-
tional data is generally distributed and non-unified. Data infrastructure 
technologies may range from QR (Quick Response) codes and RFID 
(Radio-frequency Identification) tags to smart machines and devices 
[77]. From a holistic viewpoint, the hierarchy of the data acquisition 
system (see Fig. 3) can generalize the information infrastructure within a 

Table 2 
Significant works related to data cleaning and pre-processing.  

Work Year Contribution 

Miksovsky et al. 
[54] 

2002 This work proposed a data pre-processing tool called SumatraTT. The software was tested to be able to copy data, format data, calculate new attribute, 
filter data, report and visualize data on the case study of a water distribution company. 

Huang et al. [49] 2006 Shown the effectiveness of data pre-processing in providing a data-driven solution for a semiconductor chemical vapour deposition (CVD) process. The 
data pre-processing procedure focuses on data reduction, treating missing values, noise reduction and anomaly detection. 

Deng et al. [51] 2018 Demonstrated that low energy in-network data cleansing algorithm can be used to pre-process data for Cyber-Physical Production System (CPPS) 
models. 

Lenz et al. [53] 2018 Proposed a holistic approach to deal with manufacturing unit data as a whole system. Reduced the software and computational effort required to 
perform data cleaning to remove noise and deal with missing data. 

Dai et al. [55] 2019 Pointed out that data pre-processing is crucial in noise reduction, missing value interpolation and inconsistency mitigation. Highlight the difficulties 
for data pre-processing, compression and storage.  

Table 3 
Significant works related to data-driven modelling and analysis.  

Work Year Contribution 

Giacone [62] 2008 Statistical process control approaches were used as a modeling method for energy management in small and medium-sized companies. 
Motlaghi et al. [63] 2008 Used a simple neural network model to model a crude oil distillation column and optimized the process 
Errico et al. [64] 2009 Performed modelling of a crude distillation system to achieve energy saving. Utilizes real data from processing plant to construct process 

model in a commercial process simulator (i.e. Aspen Plus). 
Le and Pang [65] 2013 Implemented an energy-saving decision system based on wavelet transformation, segment clustering and support vector machines (SVM). 
Katchasuwanmanee et al. 

[66] 
2015 Revealed an energy-smart production management system named “e-ProMan”. It uses real-time and historical data to perform correlation 

analysis on energy, work and data flow on industrial machines. 
Ronay and Bhinge [60] 2015 Performed energy prediction for the consumption of a machine tool using an ensemble of neural networks that were optimized by the NSGA-II 

(Non-dominated Sorting Genetic Algorithm II). 
Zhou et al. [67] 2016 Revealed that models for data-driven energy management systems are mainly based on evolutionary optimization, mathematical 

programming, machine learning techniques and statistics. 
Zou et al. [68] 2017 Used a stochastic mathematical model to relate sensor data to state variables and disruption events. Carried out an energy-saving evaluation 

based on energy-saving opportunity window concept. 
Durrani et al. [61] 2018 Data-driven optimization of a crude distillation unit for the consideration of energy efficiency using Taguchi method, Genetic Algorithm and 

Artificial Neural Networks. 
Adenuga et al. [69] 2019 Demonstrated an energy efficiency analysis modelling system which considers aspects of energy consumed, operational energy costs, baseline 

power, production power and utilized total power. 
Ji et al. [57] 2019 Used a Deep Belief Network with a combination of a Genetic Algorithm to reduce energy consumption in a simulated machine tool.  
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conventional industrial plant. As the basis for information infrastruc-
ture, sensors and machines are connected to input/output (I/O) to 
transfer physical and measured information to electronic input. For most 
processing system, there exists a programmable logic control (PLC) to 
deal with process actions which require fast responses. The supervisory 
control and data acquisition (SCADA) system is a monitoring system for 
the overview of the manufacturing area. Control set-points and opera-
tional settings are mostly carried out at the SCADA level. Manufacturing 
execution system (MES) are higher-level computerized system to track 
material and energy flow and to aid with production management. 
Lastly, enterprise resource planning (ERP) is a system used in 
management-level for customer services, sales, procurement, produc-
tion, distribution, accounting, human resource, corporate performance 
and governance. Conventionally, the data is collected from the bottom 
of the hierarchy (Fig. 3) and gradually moving up. Processing data is also 
stored in some cases and processing historian software and databases 
can be used. For the computation and optimization of system and 
operation, the data can either be sent to embedded devices, cloud ser-
vices or a centralized machine to be processed. Alternatively, the deci-
sion made by the computation will flow in the reverse direction of the 
hierarchy, ultimately being implemented on the machine level. 

In large industries, the de facto standard of data acquisition system is 
the SCADA system with Modbus RTU protocol [78]. However, in 

small-and-medium enterprises, Máša et al. [28] discussed that many 
facilities have incomplete data acquisition system and the imple-
mentation of SCADA systems (at the very least) is crucial for 
energy-saving projects. Yuan et al. [79] also observed the incomplete-
ness of energy Big Data in the industry due to non-ideal data collection 
infrastructure. Additionally, Yan et al. [19] discussed that industrial 
information is multisource, heterogeneous and sometimes unstructured. 
The existence of good information infrastructure is crucial for 
energy-saving projects. Nevertheless, the implementation of SCADA 
system in existing industrial facilities is a major challenge due to the 
expensive costs of the systems. For example, Stojkovic and Vujosevic 
[80] demonstrated that even a compact and small experimental SCADA 
system would cost around 10,000 USD in Europe. OmniSite company 
[81] estimated that a typical industrial SCADA system (20 stations) in 
the United States would cost a total of 476,500 USD in 10 years. In many 
cases, the integrity of SCADA system should not be compromised for 
costs, as disastrous incidents can occur due to inadequate security within 
the system. Works of Miller et al. [82] showed that poor implementation 
or operation of SCADA systems can potentially give catastrophic acci-
dents due to malware infiltration and misuse of resources. Furthermore, 
for industrial processes, the SCADA system should not fail under power 
shortage. The cost of mitigating power shortage is often overlooked. For 
instance, a single industrial-grade 10 kVA uninterruptable power supply 
(UPS) system that can acts as backup power for 18 min could easily cost 
more than 3500 Euros (approximately 3855 USD) [83]. Zhu [84] even 
pointed-out that data acquisition for intelligent analysis is a compromise 
between the cost for information infrastructure and the data quality. The 
work highlighted the need to process corrupted data under 
cost-constraints. Evidently, industrial data acquisition is not a simple 
task. 

3.1. Industrial internet of things for data coverage 

A recent direction to reduce the cost of acquiring industrial data is by 
implementing the industrial internet of things (IIoT) sensors and in-
frastructures [76]. In terms of device pricing, Zheng et al. [85] pointed 
out that IoT improves intelligent interconnection of data infrastructure 
by utilizing low-cost information gathering and dissemination devices. 
As the cost for IoT devices diminishes with technical progress, many 
processes can benefit from an increased awareness of data-driven ana-
lytics [86]. Works of Xiaojun et al. [87] estimated that IoT system can 
reduce hardware costs by 1/10 for the purpose of industrial monitoring 
and forecasting. Moreover, the amount and variety of data that is 
enabled by industrial IoT infrastructure are remarkable. Ahmed et al. 
[88] discussed that technologies from IoT have enabled explosive 
growth in the number of devices connected to the data infrastructure, 

Table 4 
Significant works which include industrial implementation of energy-saving solutions.  

Work Year Contribution 

Gao [73] 2013 Google implemented a Neural network-based controller to predict and learn the power usage efficiency of its industrial data centre. The application was 
successful in catching erroneous meter reading and optimize plant operational parameters. 

Touš et al. [71] 2015 Used a combination of Artificial Neural Network and regression analysis to achieve a stochastic Monte Carlo optimal planning decision in a waste-to- 
energy plant. The work implemented the simulation tool in a combined heat and power (CHP) plant within the Czech Republic and improved planning 
accuracy by 45%. This relates to 130 Euro increase in daily revenue. 

Xu et al. [74] 2017 Developed a novel system architecture focused on distributed energy savings and Big Data analysis for industrial cloud manufacturing. The system was 
implemented in the form of a functional module. 

Zhang et al. [31] 2018 Utilized a complete architecture of energy Big Data perception and acquisition which utilized IoT. Implemented a proof-of-concept application in the 
ceramic manufacturing industry. The energy monitoring system successfully identified potential energy-saving opportunities from a poorly maintained 
ball mill unit. 

Teng et al. [75] 2019 Proposed the combination of correlation-based principal component analysis-aided statistical process optimization (PASPO) to find optimal processing 
conditions from the SCADA system which simultaneously improved product quality, process energy and environmental impacts. The framework was 
deployed in a Malaysian oil refinery where process energy improved by 3.5%, Acidification Potential improved by 90.89% while main product yield 
and quality improved by 84.4% and 46.5% respectively. 

Gallagher et al. 
[70] 

2019 A cloud computing-based system called “IntelliMaV” was applied to verify the energy savings in near real-time. The system uses various machine 
learning models (such as ordinary least square, k-nearest neighbours, Artificial Neural Network and Support Vector Machines) for learning the data. 
The system identified various energy-saving potential from a large biomedical manufacturing facility in Limerick, Ireland.  

Fig. 3. Typical hierarchy of data acquisition systems.  
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allowing for Big Data analytics. The work discussed that IoT environ-
ment provides opportunities for intelligent decision-making, improved 
efficiencies, reduction of data silos and value-added applications. 
Additionally, Shrouf et al. [77] also repositioned the importance of IoT 
in smart factories, highlighting that IoT can improve the factory sus-
tainability, mass customization, flexibility, planning methods, proactive 
maintenance, connected supply chain and energy management. The 
perspective that industrial Big Data can be achieved as a result of IoT 
adaptation in manufacturing had also been proposed by Mourtzis et al. 
[89]. Evidently, the implementation of IoT in Industry 4.0 would greatly 
improve data collection frequency, data coverage and data variety. 

The pathway towards industrial IoT is not all sunshine and rainbows 
as there are many major challenges. Kim et al. [90] surveyed that IoT for 
energy management faces challenges from a technological prospect, 
market potential and regulatory environment. One of the most signifi-
cant technical challenges is the robustness and reliability of industrial 
IoT [91]. Specifically, Duan et al. [92] even discussed that the reliability 
of data transmission has become the major bottleneck of the IoT appli-
cation in industry as data transmission failures can lead to production 
errors. One of the most recognized solutions for this reliability problem 
in industrial IoT is by applying 5G-enabled IoT (5G-IoT) technologies 
[93]. 5G is the fifth generation of mobile, cellular technologies and so-
lution which features over 10 Gb/s of data rate and lesser than 1 ms of 
latency. Cheng et al. [94] discussed that 5G would enable remote 
real-time monitoring, operation control and unmanned factory with its 
low packet loss rate (<1 × 10− 12), which the latest 4G transmission 
technology cannot achieve. The timing of when will 5G be industrially 
matured and applicable is also to be questioned. Although some re-
searchers expect 5G to be rolling out between 2018 and 2020 [95], with 
the recent global technological trade war revolving around 5G [96], a 
delay in rollout is imminent [97]. A conservative expected roll-out date 
for the 5G technology will be around 2025 [98]. We propose an expected 
timeline for the evolution of industrial data-driven energy-saving 
timeline in Fig. 4. 

Another significant challenge for the transition of IoT is on the se-
curity of the IoT network, software and hardware. By rediscovering past 
experiences, researchers such as Sadeghi et al. [99] pointed out the 
challenge in terms of network security for industrial IoT. They revealed 
that common security attacks on industrial IoT System can be in the form 
of runtime-attacks, reverse engineering, malware, network 

eavesdropping, man-in-the-middle attack, denial of service attack, social 
engineering and phishing. Within these security issues, Sajid et al. [100] 
revealed that malware and malicious codes are statistically the most 
pressing security issue for IIoT system. Nevertheless, more research 
effort is being carried out in the fields of security technologies for IIoT 
[101] such as ARM TrustZone and variants of security controller. In 
terms of network and software security, researchers are also working to 
design trusted execution environments (TEEs) for industrial IoT appli-
cations [102]. 

An obvious obstacle for the implementation of IoT devices in the 
industrial setting is on the standardization of the system to meet in-
dustrial regulations [12,90]. For most matured industrial processes, the 
IoT (and non-IoT) devices have to be up to International Electrotechnical 
Commission’s (LEC) protection rating of IP69k [103] (i.e., dust-tight and 
able to sustain high-pressure cleaning or steam jet). Furthermore, in 
specialized industries, more difficult-to-achieve protection standards 
may apply. For example, in the oil and gas industry, there may be a 
regulatory requirement for devices to be explosion-proof [104], which 
can greatly incur costs of industrial IoT implementation. At this stage of 
development, IoT devices are far from being matured in terms of being 
standardized for industrial requirements [12]. More researches and 
manufacturing efforts must be carried out to advance the field. 

3.2. Digital twins and cyber-physical systems 

The first concept of a digital twin was presented by Grieves [105] to 
better understand production and design using a virtual factory repli-
cation (see Fig. 5). Later, the famous work from Glaessgen and Stargel 
[106] proposed a digital twin paradigm for NASA and US air force 
application. The work described digital twin as an integrated 
multi-physics, multiscale, probabilistic simulation of an as-built system 
that corresponds to the best available model, sensor updates, system 
history, etc. Subsequently, Grieves and Vickers [107] extended the 
original digital twin concept towards mitigating undesirable and critical 
behaviours in complex systems. This crucial work also discussed the 
application of digital twins within product lifecycles. A concise guide-
line for digital twin-driven product design was also presented by Tao 
et al. [108]. Their work discussed that six important steps were required 
to build a functional digital twin, which includes (i) build a virtual 
representation of physical product using CAD or 3D modelling (ii) 

Fig. 4. Expected timeline for the evolution of data-driven energy savings in Industry 4.0.  
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process data to facilitate design decision-making (iii) simulation of 
physical systems in the virtual environments (iv) test the physical system 
to calibrate the virtual world (v) establish real-time bi-directional secure 
connections between physical and cyber system (vi) collect more related 
data for continuous system integration. 

Nevertheless, implementing digital twins within existing in-
frastructures is not an easy task. Uhlemann et al. [109] discussed that 
challenges related to digital twins include difficulties in real-time data 
acquisition, requirements for information systems and infrastructure, 
improper implementation, standardization of data acquisition systems, 
costs of investment, weak integrity between the cyber and physical 
world and data security. Furthermore, the paper also highlighted the 
functional dilemma of the simulation aspect and optimization aspect 
within digital twins. It is to be questioned whether the accuracy of 
simulation or optimization should be prioritized. Moreover, it is 
required to consider and balance between fault-estimation [110] and 
state-estimation [111] for dynamic systems of digital twins or 
cyber-physical systems. State- and fault-estimation possess computa-
tional dilemma, but can be utilized for effective condition monitoring 
[112] and predictive maintenance in industrial systems via digital twins 
[113]. Despite the difficulties, the infrastructure of digital twins has 
been established in various industry-leading companies such as General 
Electric, PTC, Siemens, Oracle, ANSYS, Dassault, SAP and Altair [114]. 
Digital twins have also been implemented for the recovery, recycle and 
remanufacture of waste electrical and electronic equipment [115]. 
Wang et al. [116] had also shown that digital twins are effective for the 
application of rotary equipment in manufacturing. Some preliminary 
software solution for the deployment of digital twins are already avail-
able in the market (see Table 5). 

The driving model of digital twins was initially based-on 3D finite 
element analysis (FEA) or computational fluid dynamics (CFD) [106]. 

However, the time taken to simulate a few minutes of such analysis in 
the virtual world would take time in the scale of hours in the real world 
[123] due to the complexity of solving large amounts of particles within 
the model. In such cases, the simulation cannot provide real-time solu-
tions for the digital twin’s requirement. Although leading researchers 
are able to use finite element-based simulation as the digital twin for 
smaller cyber-physical systems [124], extending such approach to a full 
production or manufacturing system is generally difficult without clever 
simplifications. Due to this difficulty during simulation, some researcher 
classifies larger manufacturing systems as cyber-physical production 
systems (CPPS) to specifically address its problems and solutions. 

A successful approach to tackle this problem was from using 
knowledge-based domains. For example, Miller et al. [125] extended 
their 3D-CAD (Computer-Aided Design) digital twin with behavioural 
information. By taking in knowledge-based input from experts, they 
were able to improve the value of their digital twin for utilization. The 
knowledge-based domain also includes the utilization of data from ex-
periments. Kraft et al. [126] demonstrated that digital twins can benefit 
greatly from the integrative use of computational fluid dynamics and 
experimental fluid dynamics. Especially for cyber-physical production 
systems (CPPS), the existence of knowledge-based data cannot be 
exempted as there are many human decisions apart from pure physics. 
For the case of Liu et al. [127], they used knowledge of discrete events, 
system dynamics and physical components to construct their digital twin 
for the application of shop-flow manufacturing systems. 

Artificial Intelligence (AI) is a more advanced approach to imple-
ment seamless digital twins. For instance, C2PS was a digital twin ar-
chitecture developed by Alam et al. [128] to analyze key properties of 
cloud-based digital twin such as computation, control and communi-
cation. The work utilized a Bayesian belief network which dynamically 
considers the digital twin’s context. Recent work from Luo et al. [129] 
utilized an artificial neural network to model and utilize the data 
streams from the digital twin of a CNC milling machine tool. The work 
proved that AI approach can be used as a multi-domain unified model-
ling method for establishing a digital twin. Some more advanced works 
can be found from pioneering teams of AI. Peng et al. [130] from OpenAI 
demonstrated that a randomized initialization for Deep Reinforcement 
Learning acts as a method to reduce the “reality gap” to Sim-to-Real 
problems. Rusu et al. [131] from DeepMind, also demonstrated that 
for a Sim-to-Real problem, the utilization of a progressive network to 
bridge the reality gap and policy transfer can perform more efficiently 
than Deep Reinforcement Learning. It is clear that this is still a pro-
gressing field and there are still many developments awaiting. 

Fig. 5. Illustration of a digital twin for a cyber-physical production system.  

Table 5 
Software solutions for digital twins available commercially.  

Software Solution Company Featuresa 

PREDIX [117] General Electric 
(GE) 

Supports infrastructure with asset-centric communication, edge-to-cloud, distributed architecture, data management, integrated 
analytics and embedded cybersecurity. The digital twin is mainly dependant on asset models and knowledge base. Machine 
learning is also supported in the platform. 

IoT Production Monitoring 
[118] 

Oracle Supports real-time Key Performance Indicators-based (KPIs) analytics. A feature named ‘Deep Dive’ is available to gain 
operational visibility in multiple manufacturing levels. Able to diagnose production anomaly, act on prescriptive analytics and 
reduce inefficiencies. 

Akselos [119] Akselos Provides a high-fidelity multi-physics 3D-based digital twins framework that utilizes RB-FEA (reduced basis finite element 
analysis) technology. The technology uses a parametric component approach to pre-solve simulation building blocks to speed up 
the 3D digital twin. It also supports cloud computation and sensor integration. 

Digital Twin Builder [120] ScaleOut 
Software 

A fully customized digital twin that is constructed by Java or C# object-oriented programming codes. Supports cloud computation 
and data source integration. Good infrastructure for process event messages and real-time feedback. 

Elements for IoT [121] CONTACT 
Software 

Provides an asset state-based digital twin for monitoring and predictive analytics. Supports sensor integration, 3D models, 
maintenance history, customer records, cloud computation and edge connectivity. 

Seebo Industry 4.0 
Platform [122] 

Seebo Interactive Specializes in process flow-based digital twins. The application focuses on process-based predictive analysis, automatic root cause 
analysis and predictive simulations. Artificial intelligence-enabled analytics and streamline IoT data integration are enabled 
through Microsoft Azure technology stack in the back end.  

a As of the time of writing. 
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3.3. Cloud infrastructures 

Cloud infrastructure is a remote system that covers both hardware 
and software that support web frontend applications which are con-
nected to the cloud storage [132]. It is the core foundation for cloud 
computing (see Fig. 6). The application of cloud computing can be 
back-dated to the early 1960s, where it was introduced as the “inter-
galactic computer network” by Joseph Carl Robnett Licklider [133]. 
Nowadays, its utility has been widely extended (e.g., Elastic Compute 
Cloud by Amazon [134], App Engine by Google [135], etc.). Generally, 
the cloud services can be distinguished into Infrastructure as a Service 
(IaaS), Platform as a Service (PaaS), Software as a Service (SaaS) and 
Data as a Service (DaaS) [136]. 

The global market for private cloud service is anticipated to reach $ 
262.4 billion by 2027 [137]. The ever-expanding market is probably due 
to the unique advantages offered by cloud computing technology. In 
terms of the economic aspect, the deployment of cloud computing can 
avoid the need for high investment cost for constructing a data centre 
[138,139]. Data security is another factor that caused a high adoption 
rate of this technology. With the aid of cloud infrastructure, data loss can 
be avoided. Up till 2018, about 94% of organizations in Europe, the 
Middle East and Africa (EMEA) have integrated cloud services into their 
business model [140]. Scalability (or flexibility) is another key feature of 
cloud computing which allows users to conveniently scale up or scale 
down the resources (e.g., the need of cloud storage) based on the actual 
requirement [139]. Aside from that, the high mobility of the cloud 
service (i.e., the service and data can be accessed anytime anywhere) 
allows a timely response to be taken. This is important for energy 

providers especially when the energy sector is getting more and more 
competitive [141]. Last but not least, the implementation of cloud 
computing helps to enhance business capability. With the aid of the Big 
Data analytics which is embedded in most cloud infrastructure, 
insightful findings can be yielded from the massive data [141]. For 
instance, by integrating the smart metering with cloud technology, en-
ergy suppliers are granted with a bird-eye’s view on the electricity flows, 
starting from the origin to the destination [142]. In other words, outages 
can be efficiently and accurately identified, while correction actions can, 
therefore, be carried out earlier. 

It is estimated that the annual generation of data for a plant is about 
72 TB per year (attributed to the application of IoT) [89]. Therefore, it is 
vital to have enough data storage capacity to store the tremendous 
amount of data. Cloud storage is a cost-effective alternative to conven-
tional hardware storage. Based on Fig. 6, cloud storage can be classified 
into four types, i.e., personal cloud, public cloud, private cloud and 
hybrid cloud, where some details of these cloud storages are tabulated in 
Table 6. The deployment of cloud storage in the energy sector have been 
elucidated in numerous works. For instance, Chen et al. [143] high-
lighted various roles of open innovation intermediaries (OIIs) (includes 
providing cloud storage to store and protect the clients’ data), in pro-
moting the smart grid industry in China. It can be used to store weather 
information, energy profile and other data that were generated in the 
smart grid [144]. Alonso [145] proposed to use cloud storage that was 
developed by Ingenia to store Big Data that were generated from the 
energy adapters in an integrated network. Despite the importance of 
having cloud storage, the huge energy consumption issue for data 
storage remains a major concern nowadays. It is anticipated that the use 

Fig. 6. A holistic view of cloud computing options for industrial applications.  

Table 6 
Four types of cloud storage available.  

Cloud 
Storage 

Description Example and Pricing 

Personal  • Stores individual’s data in the cloud environment which is 
accessible from anywhere at any time.  

• Syncs and shares data across multiple devices [149]  
• A subset of public cloud storage  

• iCloud (free tier: 5 GB; 50 GB plan: $ 0.0198/GB; 200 GB plan: $ 0.01495/GB; 1 TB plan: 
$0.00999/GB [150])  

• Google Drive (free tier: 15 GB; 100 GB plan: $ 0.0199/GB; 1 TB plan: $ 0.00999/GB; 10 TB 
plan: $ 0.00999/GB [151]) 

Public  • Enterprise stores data in an external cloud storage provider, which 
results in lower data storage cost required.  

• Lesser flexibility to alter the cloud environment.  

• IBM Cloud (below 500 TB: $ 0.022/GB; more than 500 TB: $ 0.020/GB [152])  
• Amazon Elastic Compute Cloud (free tier: 5 GB; first 50 TB: $ 0.023/GB; subsequent 450 

TB: $ 0.022/GB; over 500 TB: 0.021/GB [153]) 
Private  • Enterprise stores data in an internal data center, which results in 

higher capital investment cost and maintenance cost needed.  
• Provide higher level of security as the enterprise owns the cloud 

environment.  

• Phoenix co-lo (capital investment for a scenario of 100 virtual server instances: >$ 300 k 
[154])  

• Private cloud will become more economically preferable when the monthly spend is more 
than $ 17 k [155]. 

Hybrid  • Combines the use of public and private cloud storages.  
• Critical and confidential data are stored in an internal data center, 

while other data are stored in an external cloud storage provider.  

• Cantemo Portal case (Monthly cost for scenario when 100% of the 2000 TB data are stored 
in private cloud: $ 24,000–40,000; Monthly cost for scenario when 20% of the 2000 TB data 
are stored in private cloud and the remaining are stored in public storage: $ 12,800–48,000 
[156]).  
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of cloud infrastructure will consume up to 20% of the global power 
consumption by 2025 [146]. To address this issue, some researchers (e. 
g., Long et al. [147]and Yang [148]) are exploring ways to improve the 
energy efficiency of the cloud system. 

Aside from selecting the data storage system, an efficient computing 
system is needed to deal with the enormous amount of data sets. Apache 
Hadoop [157] and Apache Spark [158] are the two iconic computing 
systems that can be used to process large-scale data, where the latter 
offers in-memory cluster computing feature that causes it to be out-
performing the other [159]. It is capable to run the same task 100 times 
and 10 times faster in memory and on disk respectively [160]. In 
addition, unlike Apache Hadoop, Apache Spark is suitable for real-time 
and streaming data analysis [161]. Apache Spark can be built on Java, 
Scala, Python, etc. Till-date, some works have reported the use of 
Apache Spark in the energy sector. Apache Spark machine learning tool 
(MLib) is utilized to perform Big Data analytics for well and reservoir 
management system [162]. More recently, Krome and Sander [163] had 
developed a hybrid computing system that integrates the use of Apache 
Spark and the R language, to perform time series analysis for energy 
price and load profiles forecasting. 

Aside from cloud computing, edge computing which the data is 
processed at the source point rather than in a centralized cloud-based 
data centre, is being introduced. This computing technology is often 

used to deal with the time-sensitive data generated from the Industrial 
Internet of Things (IIoT), i.e. interconnected sensors, instruments, smart 
devices and facilities (Fig. 7). To achieve the edge computing services, 
the uses of microcontroller (e.g., Arduino [164], which serves as a 
simple computer that can run a single program repetitively) and 
general-purpose computer (e.g., Raspberry Pi [165] and NVIDIA Jetson 
Nano [166] which is capable to run multiple complex programs; where 
the latter offers greater capability in machine learning and AI applica-
tions) are needed. Note that the edge computing technology can be 
implemented in the energy sector to enhance production capability and 
improve process efficiency. For example, in a scenario where the 
windmills are located at remote areas which is not accessible to the 
internet, edge technology can be implemented to (i) collect and analyze 
data; and (ii) optimize and make decisions (e.g., adjust the opening 
angle of wind turbine blades) [167]. In one of the recent publications, an 
Edge-IoT platform was proposed to effectively reduce the energy con-
sumption of an energy distribution network [168]. 

To efficiently process the massive amount of data, specialized 
hardware such as Graphics Processing Units (GPUs) and Tensor Pro-
cessing Units (TPUs) are required [169]. In general, GPUs and TPUs are 
used as accelerators for the sub-portions of the model that can be 
decomposed into data-parallel computations [170], where the latter is 
designed specifically for neural network machine learning. The overall 
comparisons of each type of processing unit are highlighted in Table 7. 

3.4. Potential for blockchain 

The blockchain technology was originally designed by Satoshi 
Nakamoto to serve as the main foundation for Bitcoin [174]. In general, 
it is a growing list of records (or blocks) that stored the information of all 
committed transactions [175]. As shown in Fig. 8, The blockchain ar-
chitecture can be decomposed into six layers, i.e., data layer, network 
layer, consensus layer, incentive layer, contract layer and application 
layer [176]. This unique structure enables the automated execution of 
smart contracts in the peer-to-peer network which allows multiple users 
to make changes in the ledger simultaneously [175]. This technology 
enables four key features of persistency, anonymity, decentralization 
and auditability which further improve the overall cost-effectiveness 
and the efficiency of a data management system [177]. 

To date (as of 2019), three generations of blockchains have been 
developed (see Fig. 9). Blockchain 1.0 refers to the origin utility of 
blockchain technology which generally used for trading cryptocurren-
cies [178]. Bitcoin [174] system is one of the most well-recognized ex-
amples that utilized blockchain technology to allow peer-to-peer 
transactions that operate without the need for a centralized adminis-
trator [179]. This first generation of blockchain is then evolved to 

Fig. 7. Linkage between cloud, edge and Industrial Internet of Things (IIoT).  

Table 7 
Comparisons between the three processing units [171–173].  

Criteria CPUa GPU TPU 

Compute primitive Scalar (1 × 1 
data unit) 

Vector (1 x N data 
unit) 

Tensor (N x N 
data unit) 

Application General-purpose Graphics 
Rendering 

Machine 
Learning 
model 

Operations per cycle tens tens of thousands up to 128 
thousand 

Relative Performance to 
watt ratio (based on 
CPU) 

1 2.9 83 

Throughput per secondb 5482 13,194 225,000 
Training costc $ 1.0507 $ 0.3995 $ 0.2410 
Machine cost $ 0.14/hour $ 1.87/hour $ 4.57/hour 
Developers Intel, NVIDIA, 

IBM, Samsung, 
etc. 

NVIDIA, AWSd, 
AMD, PowerVR, 
etc. 

Google 

Footnote. 
a Central Processing Unit. 
b Under 7 ms latency limit. 
c Trained with Adam until 0.25 validation loss was reached for 5 runs. 
d Amazon Web Services. 
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Blockchain 2.0, where the values being transferred is no longer restricted 
to currency but in the form of smart contracts (i.e., programs or scripts 
that will self-operate after certain conditions and requirements are met 
without the need of manual commands) [180]. This generation of 
blockchain focuses on the deployment of decentralized applications 
(dApps). There are three well-recognized features for dApps, i.e., (i) 

open-sourced (changes are based on the consensus of the users and 
developer where the code base is available and accessible for scrutiny), 
decentralized (all data are stored on decentralized platform to 
encourage transparency, trust and efficiency) and incentivized 
(rewarding system to encourage the involvement of the validators). 
Ethereum, which was proposed by Vitalik Buterin [181] in late 2013, is 
one of the most prominent examples for Blockchain 2.0 applications. 
Unlike the Bitcoin system, Ethereum focuses on executing codes for any 
decentralized applications that are deployed in the network, instead of 
merely offering a peer-to-peer cryptocurrency transaction system. Under 
this context, Ether is the cryptocurrency that fuelled the blockchain, 
where it is paid to run the smart contract. Blockchain technology is 
currently applied in diverse applications (also known Blockchain 3.0) 
such as IoT [182], healthcare system [183], education [184], digital 
government services [185], etc. 

In other words, the functionalities of blockchain technology are no 
longer limited to the finance and asset transfer-related applications, and 
therefore, higher scalability is obtained [186]. There are numerous 
successful blockchain-based decentralized operating systems under the 
third generation of blockchain which non-exhaustively includes EOS 
[187], Cardano [188] and ICON [189]. More recently, major companies 
such as IBM, Intel and Microsoft, are attempting to incorporate AI and 
machine learning into the blockchain system [190]. The unique ability 
of AI and machine learning which is capable to address and express 
uncertainty opens another possibility for blockchain application in 
solving complex problems [179]. Under this generation, a novel data 
structure, Tangle (i.e., one of the distributed ledgers that is based on 

Fig. 8. Generic blockchain architecture.  

Fig. 9. Evolution of blockchain technology.  
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Directed Acyclic Graph (DAG)) is commonly being implemented as it 
can overcome the efficient issues of the conventional blockchain 
network [191]. IOTA ledger is one of the notable DAG-based ledgers that 
was designed to track, record and execute decisions between machines 
and smart devices that are connected in the IoT network [192]. It was 
founded by David Sønstebø and his colleagues back in 2015 [193]. 
Fig. 10 represents the schematic diagrams for the structures of con-
ventional blockchain and tangle. As shown, unlike the conventional 
blockchain structure, the data flow in a tangle is constrained to a single 
direction [194]. This enables higher efficiency of data transfer, i.e., 
about 100–270 times faster than that of the conventional blockchain 
technology [194]. As a trade-off to this increment in terms of efficiency, 
tangle provides a lower level of security due to its less robust nature of 
the structure (i.e., each device merely needs to validate two previous 
transactions). 

Till date, blockchain technologies have been gradually applied in the 
energy sector to fulfil a diverse range of objectives, including (i) bill 
payment with cryptocurrency; (ii) rewarding system using crypto-
currency; (iii) peer-to-peer energy trading market; (iv) imbalance set-
tlement for energy market; (v) blockchain-enabled IoT platform; (vi) 
blockchain-enhanced smart metering; (vii) certification system; (viii) 
electric vehicle application; (ix) blockchain-based Life Cycle Assessment 
(LCA); (x) AI-enhanced blockchain for market forecasting; and (xi) 
blockchain-enhanced Intelligent Energy Storage (IES). These applica-
tions are then classified based on the corresponding blockchain tech-
nology used, while the remarks of each application are summarized in 
Table 8. 

Despite the vast potential of blockchain technology, there are still 
various challenges that need to be addressed. For instance, the deploy-
ment of distributed ledger technology (DLT) solutions (e.g., integrating 
smart meters with blockchain network) can be costly [195]. Aside from 
this, the low throughput (i.e., the transactions which can be cleared per 
second) of the technology is another main concern that must be over-
come. For instance, the conventional electronic payments that utilized a 
centralized network can clear thousands of transactions per second (e.g., 
Visa can support about 1700 transactions per second [196]), whereas 
Bitcoin network which utilized distributed network can merely address 
about 7 transactions per second [197,198]. Finally, privacy concern is 
another key challenge that may hinder users from venturing into 
blockchain-based interventions. Despite the economic benefits attrib-
uted from the blockchain-enabled IoT platform, users might still be 
reluctant to share their personal information (e.g., consumer behaviour) 
into the open-source network [199]. For this reason, numerous works 

have explored strategies for the development of privacy-friendly 
blockchain-based platform [200–202]. 

4. Policies and government initiatives 

Energy efficiency is continually improving according to yearly 
evaluations. Industrial energy consumption in 2013 was 17% below its 
2000 level and represented 25% of the energy used by final consumers. 
The chemical industry was the main consumer with 19% of the total 
industrial consumption, followed by steel with 18% in 2013 [235]. The 
study [236] focuses on the evaluation of energy use in most demanding 
industrial sectors (iron and steel, chemical and pharmaceutical, petro-
leum refineries, pulp and paper, etc.). It presents that process heating 
was the most significant energy use (about 66% of total energy con-
sumption) followed by electricity use (26% of total energy consumption) 
in 2013. 

Policymakers whose motivation is mainly decreasing energy con-
sumption, try to introduce various rules and incentives. One of the tools 
applied is energy auditing. In the case of EU, this is specified in the 
energy efficiency directive 2012/27/EU [21]. Regular energy audits are 
mandatory for large enterprises and it is recommended to introduce 
programs encouraging SMEs to undergo energy audits too. The directive 
also emphasizes the necessity for high-quality audits which should be 
carried out by accredited experts or supervised by independent au-
thorities in a cost-effective manner. Energy audits should also respect 
regional or international standards such as EN ISO 50001 on energy 
management. Some of the government initiatives from various countries 
are tabulated in Table 9. 

The common method of energy efficiency assessment for action plans 
and regulations in various countries revolves around energy audits. The 
audits usually propose implementation of an energy management sys-
tem which should be responsible for all the measures and other future 
activities (monitoring of energy consumption, evaluation, maintenance, 
etc.). Often, a large part of the energy audit is focused on improving 
buildings efficiency by use of insulating building elements, energy- 
efficient lights, energy-efficient air conditioning, rarely efficient HVAC 
setpoints and scheduling, etc. Regarding the energy-saving measures for 
the process itself, the audits typically recommend replacing the low- 
efficiency units with new highly efficient ones, use of adjustable speed 
drivers, occasionally process integration or waste heat recovery. Some 
tips and guidelines can be found, for example, in these documents: 
Worrell et al. [248], Hesselbach et al. [249] and ICF Consulting Ltd 
[236]. However, implementation of these energy-saving measures often 

Fig. 10. Schematic diagrams for the structures of conventional blockchain and tangle (DAG-based blockchain).  
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faces many barriers from which the main barrier is the economic barrier 
as demonstrated in the case of Sweden [250]. Two years’ simple 
payback period (SPP) is mostly considered to be feasible for industrial 
enterprises. Few of them may consider payback period up to 5 years, 
while anything with a higher payback period is considered not feasible 
[236]. 

ICF Consulting Ltd [236] evaluated over 230 energy-saving oppor-
tunities with respect to the payback period. In the category of oppor-
tunities with SPP period under 2 years, integrated control systems are 
supposed to have the greatest energy-saving potential followed by 
sub-metering and interval metering (it is possible to show more mea-
sures) for energy use monitoring. However, there might be other op-
portunities for process efficiency improvement. These can be uncovered 
by applying advanced modelling, simulation and optimization methods. 
Digitalisation in Industry 4.0 provides new options thanks to the avail-
ability of large amounts of operational data. Nevertheless, a procedure 
utilizing data for energy efficiency improvement by advanced methods 

must be time and cost-effective, so it satisfies the 2 years payback period 
rule. 

5. Traditional and modern industrial implementations 

The concept of energy savings was formed in the 1970’s, when the 
energy crisis struck the American domestic oil supply. In 1973, Ameri-
can’s support for Israeli in the Arab-Isreali War had triggered the Arab 
nation to stop supplying oil to the American. With that, the oil price had 
tripled. This had exposed the American with the risk of the energy crisis. 
The concern in the energy crisis has created the momentum to increase 
public awareness on energy conservation [251]. The concept first star-
ted with the mentality of “just use less”. Delmes et al. [252] highlighted 
that energy conservation is highly consumer behaviour dependent. The 
reluctance in conserving energy is mainly due to the lack of information, 
ease of convenience and lack of immediate result [253]. However, the 
constant increase in energy demand has led the global community to 

Table 8 
Energy saving-related application of each generation of blockchain generation.  

Blockchain 
Technology 

Application Remark 

Blockchain 1.0 Bill payment with cryptocurrency Recently, more utility offering companies accept bill payments with cryptocurrencies, e.g., Eva Energy [203] 
in Romania, NexGen Energy [204] in New Zealand, Elegant [205] and Enercity AG [206] in Germany. Despite 
the analysis shows that the use of Bitcoin can benefit consumers from 4 to 6% reduction in their electricity bill 
[207], most users are still using fiat currencies to complete the transactions instead. 

Rewarding system using cryptocurrency KWATT was used to reward energy supplier that had committed into waste-to-energy initiatives (i.e., 1 coin is 
awarded for every kW of energy generated from waste) [208]. Whereas SolarChange had launched SolarCoin, 
a cryptocurrency which is designed to reward energy supplier that generate and supply solar energy [209]. On 
the other hand, customers who showed good behaviour, such as supporting carbon-neutral energy can also be 
incentivized with such virtual currency (e.g., GoodCoin [210]). All the aforementioned tokens or coins can be 
used to mine other available virtual currencies or be sold to reclaim fiat currency [198]. 

Blockchain 2.0 Peer-to-peer energy trading market Peer-to-peer energy trading market is an interconnected network that allows users to trade energy, i.e., users 
that have excess energy can either store or sell to other users who encounter energy deficit [211]. To date, few 
companies, including The Brooklyn Microgrid in the United States [212], Power Ledger in Australia [213], 
WePower [214] have contributed to the development of such trading ecosystem (some noted as microgrid 
system). Mihaylov et al. [215] on the other hand, had proposed the use of virtual currency (i.e. NRGcoins) to 
represent the energy flow into and from the grid, where the rate of the NRGcoins varies according to the 
real-time supply demand situations. 

Imbalance settlement for energy market Smart contract in blockchain technology enables the near-real-time tracking and confirmation of the billing 
[198,216]. With the aid of the distributed ledger technologies, the issue of having a huge settlement period (up 
to 28 months [198]) can, therefore, be resolved. 

Blockchain 3.0 Blockchain-enabled IoT platform Blockchain can be utilized to facilitate the data exchanges between IoT devices [198], where the 
interoperability of the IoT platform can be assured [217]. Under such platform, smart devices can be 
programmed to achieve certain desired goals, such as minimizing the need for external energy. Therefore, 
users can now make more rational decisions about their respective energy usage (e.g., the Swedish housing 
society case study proposed by Mattila et al. [218]). Grid+ [219] is one of the blockchain-based energy 
companies that connect consumers to the grid via the integration of blockchain technology with IoT devices. 
This can further result in an energy bill reduction of about 40% [220]. 

Blockchain-enhanced smart metering Due to the nature of blockchain that could offer higher traceability, the utility charges can become more 
transparent [198]. Companies are exploring applications of blockchain technologies for various metering 
systems, such as electricity (e.g., Klenergy Metron developed by Pylon Network [221], blockchain-based 
pay-as-you-go solar services offered by M-PAYG [222]), water (e.g., automated system that can make decisions 
on maintenance scheduling by Engie [223]) and heat (e.g., the four Energy Innovation Projects launched by 
Blocklab [224]. 

Renewable energy certification (REC) systems Conventionally, power is non-traceable as it will be mixed with others in the common pool [225]. To address 
this issue, companies such as Acciona [226] and SP group [227] have adopted blockchain technology so that 
their clients can verify that the energies they consumed were sustainable. As a side note, smart contracts are 
used to perform automated tracking of REC [198]. 

Electric vehicle application The use of blockchain technology offers electric vehicle users greater rights in selecting the source of power 
supply and provides greater transparency in the power charges (e.g., Share&Charge [228]). 

Blockchain-based Life Cycle Assessment 
(LCA) 

The blockchain-based LCA enables a more reliable and trusted data collection correspond to the actual energy 
consumption throughout the entire product life cycle [229]. In a recent publication, Lu et al. [230] had 
highlighted the potential of blockchain technology in tracking the life cycle performance of the oil and gas 
supply chain. This intervention is essentially useful for policymaking, product design and improvement, supply 
chain management, environmental assessment and process debottlenecking. 

Artificial intelligence (AI) enhanced 
blockchain for market forecasting 

Numerous companies aim to develop an AI-enhanced blockchain to achieve accurate and efficient forecasting 
of the energy production and consumption pattern [231]. The Bittwatt platform [232] and Jouliette platform 
[233] are few of the notable examples that applied AI and blockchain technologies to conduct a successful 
market forecast. 

Blockchain-enhanced Intelligent Energy 
Storage (IES) 

Blockchain-enhanced IES integrates the strength of the two technologies (blockchain and AI). Blockchain 
technology serves as a media to trace the energy information, such as charges, prices and carbon footprint data 
that can facilitate users in making energy storage management decisions; where AI, on the other hand, is 
capable to provide optimal energy storage management decision for users, based on collected data [234].  
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extend energy conservation to energy efficiency. 
Even though energy generation has contributed up to 72% of the 

global greenhouse gas (GHG) emission [254], the EIA has projected that 
the global energy demand will continue to increase between 2018 and 
2050 [255]. Borozan [256] also highlighted the importance of energy 
contributing to the global economy. As such, the global community 
improves energy consumption by prioritizing energy efficiency instead 
of energy conservation. With that, Petrecca [257] recommended an 
energy management strategy of reducing the energy consumption per 
unit of products with a constant or reduce cost from the operation. 

In practice, the conventional approach to energy saving is highly 
dependent on policy and management approach through energy audits, 
management commitment and standard operating procedures [35]. 
Many countries such as Malaysia [258], South Africa [259], United State 
[260] and European Union [261] have prioritized energy efficiency 
approach in order to meet the energy demand without compromising 
the global warming. In the European context, an energy manager 
training program was implemented in the in early 2000 under the 
EUREM initiative to increase energy efficiency in companies [262]. 
Apart from European region, Malaysia also has its energy manager 
program under the Energy Commission Malaysia. According to Li et al. 
[263], energy management for building can contribute to 20% energy 
saving which reflects as 60 billion Euros of saving. 

The paradigm shift in industry 4.0 has introduced data analytic with 
Big Data [67] and machine learning [70] to enhance the energy-saving 
strategy. Di Orio et al. [264] reviewed that data-driven models such as 
machine learning techniques can be trained to predict and plan for en-
ergy saving. Basl [265] added that the influence of industry 4.0 en-
courages industries to installation IoT devices to move towards smart 
factories. With that, many industry players are tapping on to the po-
tential of Big Data to enhance and improve productivity through data 
analytics. Li et al. [266] had also compared the performance of machine 
learning models with traditional human estimation. The outcome had 
proved that the machine learning model is far superior to the human 
being’s ability and capability when dealing with complex energy pre-
diction. The accuracy and prediction from the machine model have 
outperformed the human’s performance extensively. The new era of 
digitalisation has empowered data-driven technology to provide opti-
mized and cost-effective solutions that the industry can leverage on. The 
differences between modern and conventional approaches for energy 
savings can be found in Table 10. 

5.1. Barriers and gaps between evolving academics and industry 

The era of the information society is transitioning towards a 
knowledge-based society [274]. Knowledge has become the new 

Table 9 
Initiatives and policies of countries and regions for energy improvements.  

Country or 
Region 

Initiatives or Policies Description 

European 
Union 

Revised Energy Efficiency Directive [21,237] The directive sets the target for an improvement in energy efficiency at EU level of at least 32.5% in 2030, 
following with an extra 20% target in 2020. 

National Energy and Climate Plant (NECPs) [238] Energy and climate plans are designed to meet EU’s target for 2030. EU Member States are to establish a 
national energy and climate plant from 2021 to 2030. The plans address issues related to energy 
efficiency, renewables, emissions reductions, interconnections, research and innovation. 

United States Advanced Manufacturing Office (AMO) Initiatives [22] Provided more than 1300 industrial partnerships and projects for energy saving and energy efficiency in 
US. Conducted numerous studies that related to energy utilization. 

Federal Energy Management Program (FEMP) [239] The program focuses on services to aid agencies in meeting water and energy reduction targets (such as 
audits, energy management, efficiencies, operations and contracts). Actions from the program are 
mandated by laws which are included in title 42 of the United States Code. 

State Energy Program and Energy Efficiency and 
Conservation Block Grant Program [240] 

Reward projects (according to American Recovery and Reinvestment Act) that reduces operating costs, 
develops manufacturing capacity, improve energy performance, produce clean energy, enhances 
environmental performance or a combination of the above. 

State & Local Energy Efficiency (SEE) Action Network 
[241] 

An action network facilitated by the federal government to help states, utilities and other stakeholders to 
take energy efficiency to scale and achieve targets by 2020. Provides policy design for energy audits and 
energy efficiencies. 

China Plan for Energy Development [23] National Development and Reform Commission (NDRC) and the National Energy Administration (NEA) 
provided five-year plans to improve energy systems, save energy, promote renewables, target energy 
efficiencies, develop energy market, strengthen energy cooperation and achieve energy sharing. 

Chinese Laws and Regulations with the Energy Charter 
Treaty [242] 

China adopted “One Belt One Road” imitative and various energy treaty practices. The new Silk Road 
Economic Belt extends to Asia, Africa, Pacific countries to construct an “Energy Silk Road” for global 
energy benefits. 

Mandatory minimum efficiency standards [243] Developed by China National Institute of Standardization to provide mandatory energy efficiency 
standards to residential and commercial appliances, lighting, heating and cooling equipment. 

India Perform Achieve and Trade Scheme (PAT) [24] Ministry of Power initiated the scheme to improve industrial energy efficiencies, strengthen energy 
security, lower emissions, improve renewables and contribute to the country’s economic value. The 
scheme covered various energy-intensive sectors for benchmarking. 

The Energy Conservation Act [244] The Act empowers the government to notify energy-intensive industries, establish energy standards, 
appoint energy audits and other regulations regarding energy conservations. 

Energy Efficiency in Small and Medium Enterprises 
Scheme [245] 

Bureau of Energy Efficiency and designated state agencies have initiated diagnostic studies in various 
enterprises cluster. The task was to conduct energy audits, prepare project reports, enhance capacities of 
service, provision for financing, improve awareness and outreach. 

Malaysia National Energy Efficiency Action Plan [25] Ministry of Energy, Green Technology and Water prepared a budget (approximately $ 13 million) to 
promote low energy prices, finance for energy efficiency, national plans for energy efficiency, champion 
to drive energy efficiency and consistency in embarking on energy efficiency. The action plan covers 
energy targets up to the year 2025. 

Economic Transformation Programme [246] The programme covers a large variety of entry point projects and allocated 14 million MYR 
(approximately $ 3.3 million) for the improvement of energy efficiency in the energy industry. The action 
on energy efficiency focuses on better energy-efficiency practices, simulate sales of energy-efficient 
appliances, provide co-generation economic support and other energy-efficient technologies. 

Green Technology Master Plan [247] The master plan was established by the Ministry of Energy, Green Technology and Water to focus on six 
key sectors which include energy, manufacturing, transportation, building, waste and water. The purpose 
of the master plan is to provide policy directions towards green technology, elevate economics of energy- 
efficient technologies, improve cost efficiency, lower energy prices and accelerate technological 
advancement.  
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economic resource where knowledge transfer is important and necessary 
in order to commercialize knowledge through proper channels [275]. 
Bekkers and Bodas Freitas [276] found that about 10% of new products 
or processes are the contributions from academics. The industry and 
academic collaboration have formed a critical relationship worldwide 
[277] especially in today’s knowledge-based society [278]. Collabora-
tion between an organisation with different expertise and perspective 
can be difficult. However, the outcome can be impactful. 

Many research outcomes have highlighted the importance of 
collaboration between industry and academics. For instance, a healthy 
and strong collaboration can boost innovation performance, enhance 
product development [279] and improve the novelty of a product [280]. 
A study has found that collaborative research and informal contacts with 
the industry were more important than contract research to establish 
effective knowledge exchange [281]. In collaborative research, both 
academic and industry can gain mutual benefits, especially on knowl-
edge transfer for innovative ideas. Table 11 lists the benefits that both 
parties can leverage to achieve greater output. 

With regards to the mutual benefits that the academic and industry 
sector can leverage upon, challenges arise especially in this data-driven 
era [293] indicated that the information generated from Big Data ana-
lytics can improve decision making. With the available technology, 
advanced technology can analyze Big Data to obtain insight and 
high-value output that can bring higher value to the energy aspect of an 
organization. The sustainable of an organization is becoming more 
dependent on the organization’s ability to manage Big Data, knowledge 
and information [294]. Therefore, the collaborative relationship be-
tween the industry and academic forms an important element in 
exploring the potential of energy saving with Big Data analysis. 

However, the concern of data-sharing in every organization has become 
a barrier to establish academic collaboration and implementation of new 
technology [295]. To form a healthy collaboration, both parties have to 
establish a common understanding of possible challenges resulting from 
operation structure, culture and constraint [291]. The challenges and 
conflicts are identified to maximize collaboration output in Table 12. 

The collaborations between academics and industry are very 
important to create new innovative solutions and data exchange. In the 
data-driven era, the barrier and gap between the industry and academics 
are mainly challenged by the lack of talent, suitable collaboration 
partner and the infrastructure of data processing. In order to address the 
challenges in energy sectors using data-driven approaches, the contex-
tual understanding should be established. The proper policy and 
agreement shall be in place to avoid unnecessary misunderstanding 
where data-driven policy is concerned. 

6. The way forward 

The future for data-driven energy savings for Industry 4.0 is bright 
and promising. However, certain efforts from researchers, industrialist 
and policymakers will certainty accelerate field developments. From the 
perspective of researchers, more research effort is required in addressing 
the full data pipeline which includes data acquisition, data cleaning, 
modelling and industrial implementation. The responsibility of re-
searchers in this field includes:  

(i) Provide more low-level research and halt discrimination on “data 
janitor”-type research. 

Table 10 
Comparison between conventional and modern.   

Conventional Approach Modern Approach 

Data collection method Human and instrumentation. IoT-based infrastructure. 
Cost Cost is dependent on human experience, qualification and 

expertise [267]. 
High fixed cost due to investment cost, servicing cost and upgrading of parts [268]. 

Flexibility on task 
fulfilment 

Humans need to be trained to achieve the flexibility to perform 
multi-tasking task [268] 

High flexibility depending on computation algorithm and model [269]. 

Flexibility on 
availability 

Humans are restricted by mental and physical limitation. High, as the algorithm can operate on 24 h mode [270]. 

Capacity on information 
processing  

• Time intensive [271].  
• The ability to detect errors and corrections may not be 

consistent.  

• Moderate to high time effectiveness in data processing [272].  
• Moderate to high ability in error detection and corrections. 

Ability on problem- 
solving [268]  

• Solving ill-structured problems.  
• Managing exception conditions.  
• Perform collaboration to troubleshoot heuristics-based 

problems.  

• Learning and formalizing the troubleshooting process.  
• Able to detect and recommend corrections based on repeated problems.  
• Perform predictions on standard problems based on continuous monitoring. 

Performance variation Performance variance is high as it is dependent on individual 
capacity [267]. 

Performance variance is low. 

Quality variations on 
decision making 

Decision making is highly dependent on individual experience, 
qualification, problem-solving ability and competency [267]. 

Decision-making performance is highly depending on the quality of the input data. 
However, the quality can be improved by training the system with larger datasets 
[273].  

Table 11 
Advantages of academics and industry from collaboration.  

Benefiting Party Advantages Source 

Academics Access to industry funding OECD [282] 
Access industry equipment and patent Barnes et al. [283] 
Commercialization of research idea Perkmann et al. [284] 
Leverage on industry requirement to train future talent Deloitte Global and the Global Business Coalition [285] 
Access to industry insights and operation data Sannö et al. [286] 
Enhance R&D facility and capability Grimpe and Hussinger [287] 
Improves the university’s reputation Van Rijnsoever et al. [288] 
Academic aims to publish finding at reputable journals to be the outstand their competitor. Newberg and Dunn [289] 

Industry Leverage on expensive research infrastructure Ankrah and Al-Tabbaa [277] 
Access to high-quality talents Myoken [290] 
Access to high-technology and knowledge Barnes et al. [283] 
Low-risk exploration study Wallin et al. [291] 
Commercialization of patent and IP Han [292]  
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(ii) Focus on realistic industrial implementations instead of pseudo- 
theoretical problems.  

(iii) Accelerate development in enabling technologies.  
(iv) Carry out more interdisciplinary collaborations and 

communications. 

As the implementation of data-driven energy-saving systems will be 
physically within the industrial area, industrialists also play an impor-
tant role in the future development of this field. The responsibility of 
industrialist includes: 

(i) Respect research advances from the academic world and partic-
ipates in collaborations.  

(ii) Provide honest feedback and problems to researchers.  
(iii) Allocate funds for R&D projects and technological transitions.  
(iv) Enhance information infrastructure and data collection methods 

within the facility. 

Project economics is one of the bigger constraints for both academics 
and industrialists. Contrarily, the task for policymakers to encourage 
industrialists and researchers to further develop novel industrial systems 
that can contribute to global energy savings and energy efficiency 
elevation. The responsibility of policymakers is less in quantity, but 
significant in quality, which includes: 

(i) Provide effective funding schemes for academic-industrial en-
ergy-saving projects.  

(ii) Encourage energy audits and regulate policies to favour advanced 
energy-saving systems. 

With concise cost and energy consideration, the development of 
digital twin-based infrastructure will pose to be a beneficial step in the 
fields of energy development for mankind. It will be thrilling to see what 
future technological development will be unveiled to us soon. 

7. Conclusion 

This paper discusses that the future of digital twin-based 

infrastructures for data-driven energy savings remains optimistic. As 
SCADA system remains the de facto standards in typical industrial fa-
cilities, there are many industries that have incomplete data acquisition 
systems due to the costs of implementation. A potential solution for low- 
cost data acquisition with high coverage is by using IIoT sensors. 
However, the connection reliability of such devices needs to be 
improved by using 5G connections as redundancy. For this matter, more 
technological development is required to lower the costs of devices and 
shorten the roll-out timing for industrial implementations. This paper 
also points out the importance of modularizing and standardizing data 
infrastructure during implementation. Moreover, there are many limi-
tations in these directions, such as ensuring the reliability of sensor 
devices, balancing the accuracy in simulation and optimization of digital 
twins, bounding the complexity of the computation, and putting all the 
data infrastructure together within feasible investment costs. Hence, the 
timeliness of research in this field is critical towards its significance and 
relevance. In terms of digital twin modelling, data sensor integration, 
data security, computational and data storage services, there are already 
many commercial services that can support the implementation. 
Nevertheless, this paper recommends that further developments in the 
fields of AI, Blockchain 3.0, 5G-enabled IIoT, Digital Twins are essential 
to accelerate research advances in the practical implementation of this 
field. In utilizing such technologies for energy saving, there is interna-
tional interest in the forms of government initiative and policies (in 
regions such as Europe, United States, China, India, Malaysia, etc.) that 
can support smart energy-saving projects. Future developments in the 
field require close communication and collaboration between academic 
researchers, industrialists and policymakers. To secure an energy- 
sustainable future, each party should provide responsible collabora-
tion and contribute to their speciality. A strong symbiosis between 
multiple parties in a multi-disciplinary setting will contribute greatly to 
the success of digital twin-based infrastructures for data-driven energy 
savings. To conclude, the novelty of this paper is that the current context 
of industrial energy-savings was extended towards a more digitalized 
paradigm for smart industrial energy-saving in Industry 4.0. 

Table 12 
Academic and industry collaboration: challenges.  

Barrier and 
challenges 

Academic Industry 

Data access and 
handling 

Energy consumption behaviour varies with industry sectors, the researchers 
need access to reliable real-time industry data to produce impactful outcome 
[296]. 

Kaisler et al. [297] highlight the concerns over ownership of data where the 
data privacy is concerned. 
Industries are not technological and physically ready for Big Data such as 
upgrading IT infrastructure, developing new cultures and new employee 
skillset [298]. 
Lack of expert in data-driven technology in the organization [299]. Many 
energy-related organizations are not aware of their capability and competency 
in handling Big Data especially in electricity, oil and gas and transportation 
sectors [300]. 

Project schedule Academic are exploring for long term collaboration to develop, explore and 
validate the energy-saving model. 
The inflow volume of data is too huge where the researcher needs to invest in 
proper data storage management especially in the non-IT sector such as energy 
[301]. 

Industries are looking for short term outcomes to maintain their position in the 
market [302]. 
The industry expects positive research outcomes to be produced in order to be 
ahead of their competitors. 

Relationship Long term collaboration [303] especially on the researching funding aspect 
[282]. 

Howells et al. [304] highlighted that some industries have problems accessing 
the university’s knowledge and information as they do not have any contact 
with the university. 
Establishment of collaboration is highly depending on the university’s 
expertise, capability and infrastructure of laboratories that align with the 
industry’s direction [305]. 

Resource Support from Academic is restricted by the university’s schedule. For example, 
the usage of expensive lab infrastructure is highly depending on the 
availability of the equipment [277]. 

Industries are looking for high availability of support from the academic [306] 
such as human resource [290] and laboratory [307]. 
The bargaining power, financial power and setback handling from research 
outcome differ with the scale of the company [303]. 

Expectation Funding from the industry is an important, industry data and data validation Develop talent, technology and commercial able solutions. Data security is 
lagging falling from the current research ecosystem [301].  
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