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Abstract
Soliton crystal micro-combs are powerful tools as sources of multiple wavelength channels for
radio frequency (RF) signal processing. They offer a compact device footprint, a large number of
wavelengths, very high versatility, and wide Nyquist bandwidths. Here, we demonstrate integral
order RF signal processing functions based on a soliton crystal micro-comb, including a Hilbert
transformer and first, second and third-order differentiators. We compare and contrast the results
and the trade-offs involved with varying the comb spacing, and tap design and shaping methods.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Radio frequency (RF) signal processing functions, includ-
ing the Hilbert transform and differentiation, are building
blocks of advanced RF applications such as radar systems,
single sideband modulators, measurement systems, speech
processing, signal sampling, and communications [1–50].

∗
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Although the electronic digital-domain tools that are widely
employed enable versatile and flexible signal processing func-
tions, they are subject to the electronic bandwidth bottleneck
of analog-to-digital converters [4], and thus face challenges in
processing wideband signals.

Photonic microwave and RF systems [1–10] have exper-
ienced significant attention over the past 20 years because
of their combined ability to achieve very high bandwidths,
together with their low loss and very high immunity to electro-
magnetic interference.Many approaches to photonic RF signal
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processing have been proposed that take advantage of the
coherence of the RF imprinted optical signals—thereby indu-
cing optical interference. These coherent approaches map the
response of optical filters, implemented through optical reson-
ators or nonlinear effects, onto the RF domain [7–12]. As such,
the ultimate performance of the RF filters largely depends
on the optical filters. State-of-art demonstrations of coherent
photonic RF filters include those that use integratedmicro-ring
resonators (MRRs), with Q factors of >1 million, as well as
techniques that employ on-chip (waveguide-based) stimulated
Brillouin scattering [13, 14]. Both of these approaches have
their unique advantages—the former uses passive devices and
so can achieve very low power consumption, while the latter
can achieve a much higher frequency selectivity, reaching a
3 dB bandwidth resolution as low as 32 MHz.

Coherent approaches generally focus on narrow-band
applications where the frequency range of concern is narrow
and the focus is on frequency selectivity, and where the fil-
ters are generally band-pass or band-stop in nature. In contrast,
incoherent approaches that employ transversal filtering struc-
tures can achieve a very diverse range of functions over a much
wider frequency range, such as Hilbert transforms and differ-
entiations. The transversal structure originates from the classic
digital finite impulse response filter, where the transfer func-
tion is achieved by weighting, delaying and summing the input
signals. Unlike digital approaches that operate under von-
Neumann protocols, photonic implementations achieve the
entire process through analog photonics, where the weighting,
delaying and summing happens physically at the location of
the signals, instead of reading andwriting back-and-forth from
memory.

To achieve the transversal structure optically, four steps
are required. First, the input RF signals are replicated, or
multicast, onto multiple wavelengths simultaneously using
wavelengths supplied from either multiple single wavelength,
or single multiple wavelength, sources. Next, the replicated
signals are assigned different weights for each wavelength,
and then the composite signal is progressively delayed where
each wavelength is incrementally delayed relative to the adja-
cent. Finally, the weighted replicas are summed together by
photodetecting the entire signal. The underpinning principle
to this process is to physically achieve multiple parallel chan-
nels where each channel carries and processes one replica of
the RF signal. In addition to wavelength multiplexing tech-
niques, this can also be accomplished with spatial multiplex-
ing, such using an array of fibre delay lines to spatially achieve
the required parallelism. Although this is straightforward to
implement, it suffers from severe tradeoffs between the num-
ber of channels and overall footprint and cost. Exploiting
the wavelength dimension is a much more elegant approach
since it makes much better use of the wide optical band-
width of over the 10 THz that the telecommunications C-
band offers, and thus is more compact. However, traditional
approaches to generating multiple optical wavelengths have
been based on discrete laser arrays [6–10], and these face
limitations in terms of a large footprint, relatively high cost,
and challenges in terms of accurate control of the wavelength
spacing.

Optical frequency combs—equally spaced optical fre-
quency lines—are a powerful approach to implementing inco-
herent photonic RF filters since they can provide a large num-
ber of wavelength channels with equal frequency spacings,
and in a compact scheme. Among the many traditional meth-
ods of achieving optical frequency combs, electro-optic (EO)
techniques have probably experienced the widest use for RF
photonics. By simultaneously driving cascaded EO modu-
lators with a high-frequency RF source, a large number of
comb lines can be generated, and these have been the basis
of many powerful functions [46–50]. However, EO combs are
not without challenges. On the one hand, they generally have a
small Nyquist zone (half of the frequency spacing), limited by
the RF source, but the bulky optical and RF devices are chal-
lenging to bemonolithically integrated. As such, to address the
issues of size, reliability and cost-effectiveness for photonic
RF systems, integrated frequency combs are a highly attract-
ive approach.

Integrated Kerr optical frequency combs [51–77], or micro-
combs, that originate via optical parametric oscillation in
monolithic MRRs, have recently attracted significant atten-
tion as an innovative and powerful approach to RF photonics
because of their ability to generate many highly coherent mul-
tiple wavelength channels in an integrated single chip source.
They offer a much higher number of wavelengths than typ-
ically is available through EO combs, together with a wide
range of comb spacings (free spectral range (FSR)) includ-
ing ultra-large FSRs, as well as a very small size and low
complexity. Micro-combs have enabled many fundamental
breakthroughs including ultrahigh capacity communications
[78–80], neural networks [81–83], complex quantum state
generation [84–91] and much more. In particular, they have
proven to be very powerful tools for a wide range of RF applic-
ations such as optical true time delays [31], transversal filters
[34, 39], signal processors [29, 32], channelizers [38, 45] and
others [15, 18, 26–45]. They have greatly expanded the capab-
ility and performance of microwave signal processors in many
respects, including increased resolution (for coherent systems)
together with larger bandwidths (for incoherent systems).

In one of the first reports of using micro-combs for RF
signal processing, we demonstrated a Hilbert transformer
based on a transversal filter that employed up to 20 taps, or
wavelengths [36, 37]. This was based on a 200 GHz FSR
spaced micro-comb source that operated in a semi-coherent
mode that did not feature solitons. Nonetheless, this provided
a low enough noise comb source to enable very attractive per-
formance, achieving a bandwidth of over five octaves in the
RF domain. Subsequently [15], we demonstrated 1st, 2nd and
3rd order integral differentiators based on the same 200 GHz
source, achieving high RF performance with bandwidths of
over 26 GHz, as well as a range of RF spectral filters includ-
ing bandpass, tunable bandpass and gain equalizing filters
[32, 33].

Recently, a powerful category of micro-combs—soliton
crystals—has been reported [59, 60, 77]. They feature
ultra-low intensity noise states and straightforward genera-
tion methods using only adiabatic pump wavelength sweep-
ing. Soliton crystals are unique solutions to the parametric
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dynamics governed by the Lugiato-Lefever equation. They
are tightly packaged solitons circulating along the ring cav-
ity, stabilized by a background wave generated by a mode-
crossing. Due to their much higher intra-cavity intensity
compared with the single-soliton Dissipative Kerr solitons
(DKS) states, thermal effects that typically occur during the
transition from chaotic to coherent soliton states are negli-
gible, thus alleviating the need for complex pump sweeping
methods.

We have exploited soliton crystal states generated in record
low FSR (49 GHz) MRRs, thus generating a record large
number of wavelengths, or taps, to achieve a broad array of
microwave and RF signal processing functions. These include
RF filters [35], true time delays [30], RF integration [43],
fractional Hilbert transforms [27], fractional differentiation
[42], phase-encoded signal generation [26], arbitrary wave-
form generation [44], filters realized by bandwidth scaling
[39], and RF channelizers [45].

In this work, we further examine transversal photonic RF
signal processors that exploit soliton crystal micro-combs.
We demonstrate integral order Hilbert transformers as well as
1st, 2nd, and 3rd order integral differentiators and explore in
detail the inherent trade-offs between using differently spaced
soliton crystal micro-combs and different numbers of tap
weights aswell as designmethods. Our study sheds light on the
optimum number of taps, while the experimental results agree
well with theory, verifying the feasibility of our approach
towards the realization of high-performance photonic RF sig-
nal processing with potentially reduced cost, footprint and
complexity.

2. Operation principle

The formation of Kerr micro-combs is a fundamentally com-
plex process that is enhanced by a high 3rd order non-
linear material refractive index, low linear loss, low two
photon absorption, as well as carefully designed disper-
sion which generally needs to be anomalous in the spectral
region of interest [51–65]. A wide range of material plat-
forms have been used to demonstrate micro-comb generation
[58], such as magnesium fluoride, silica glass, doped silica
glass, or Hydex [66–77], and silicon nitride [53–65]. The
MRRs that are the basis to generate the Kerr soliton crys-
tal micro-combs used in this work are shown in figure 1(a).
They were fabricated in Hydex glass, a doped silica glass,
high refractive index platform, together with Complement-
ary metal-oxide-semiconductor (CMOS) compatible fabric-
ation processes. This platform displays very low linear and
nonlinear optical loss, and so very high Q factor MRRs can
be produced that feature narrow resonance linewidths, cor-
responding to Q factors as high as 1.5 × 106. Further, we
were able to achieve oscillation in MRRs that had radii as
large as ∼592 µm, yielding a very low FSR of ∼0.393 nm,
corresponding to ∼48.9 GHz (figure 1(b)) [54, 55]. For the
fabrication process, first Hydex glass was deposited featur-
ing a high-index (n = ∼1.7 at 1550 nm). The deposition pro-
cess was low temperature plasma-enhanced chemical vapour

deposition, which was combined with lithography methods
pattern to the waveguides, which were based on deep UV
stepper mask photolithography. Etching was performed via
reactive ion etching, and the last step consisted of deposition
of the upper cladding layer. Our devices tend to use a ver-
tical coupling design with a ring resonator core to bus wave-
guide core gap typically being about 200 nm. This approach
can control the gap much more accurately than via litho-
graphic methods since it is determined by film growth. The
advantages of the Hydex platform in terms of Kerr optical
micro-combs include a very low linear optical loss of typic-
ally ∼0.06 dB cm−1, together with a moderately large Kerr
nonlinearity of about ∼233 W−1 km−1 and most importantly,
a vanishing two photon absorption even up to extremely high
intensities of∼25 GW cm−2 [66–78]. The devices were integ-
rated with on-chip mode converters which allowed them to be
packaged with fibre pigtails, resulting in a very low insertion
loss for the through-port of 0.5 dB/facet.

To generate soliton crystal micro-combs, we amplified the
pump power up to 30.5 dBm. When the detuning between the
pump wavelength and the unpumped resonance wavelength
decreased so that the power in the MRR reached a threshold,
modulation instability (MI) gain driven oscillation occurred.

This initially generated primary combs with a wavelength
spacing governed by the peak wavelength of the MI gain,
which is a function of both the dispersion and power inside the
MRR. As the detuning decreased further, distinctive optical
spectra were finally observed (figure 1(d)) that were indicative
of what has been seen from the spectral interference between
tightly packed solitons in a cavity—so-called ‘soliton crystals’
[59, 60]. A second power step jump in the measured intra-
cavity powerwas observed at this point, where the soliton crys-
tal spectra appeared. For microwave and RF applications, par-
ticularly with transversal filter structures, we have found that
it is not absolutely necessary to achieve complete coherence
of the comb lines, or that any specific state is needed such as
either single soliton states (DKS) or soliton crystals, in order
to achieve high system performance. The only important cri-
terion is to avoid the completely chaotic regime [58] where the
RF noise is extremely high. Notwithstanding this, the coher-
ent states still yield the best overall performance and indeed,
the soliton crystal states provide the lowest noise states of all
the micro-combs that we have employed. As a result, we have
focused on these states as the basis for microwave oscillat-
ors with extremely low phase-noise [28]. This is an important
point since there exists a much wider range of low RF noise
coherent states that are more easily achievable than any spe-
cific state related to pure solitons [58].

Figure 2 illustrates the conceptual diagram of the trans-
versal structure. A given set of weighted and delayed copies of
the input RF signal are multicast onto the comb wavelengths
in the optical domain and subsequently summed after photode-
tection. Generally, the transfer function of a transversal signal
processor is given by

H(ω) =
N−1∑
n=0

ane
−jωnT (1)
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Figure 1. (a) Schematic of the micro-ring resonator. (b) Drop-port transmission spectrum of the integrated MRR with a span of 5 nm,
showing an optical free spectral range of 48.9 GHz. (c) A resonance at 193.429 THz with a full width at half maximum (FWHM) of
∼94 MHz, corresponding to a quality factor of∼2× 106. (d) (Bottom) Schematic illustration of the integrated MRR for generating the Kerr
frequency comb and the optical spectrum of the generated soliton crystal combs with a 100 nm span.

Figure 2. Conceptual diagram of the transversal structure. (a) H(ω) is the transfer function of the transversal structure, where ω denotes the
angular frequency, N equals the number of taps, αn is the tap weight of the nth tap, and T is the corresponding delays. (b) Experimental
realization of the transfer function. Multiwavelength comb sources with different wavelengths provide different delay taps—each
wavelength has a different delay generated by the dispersive medium. The summation function is performed by photodetection of the
composite signal.

where N is the number of taps, ω the RF angular frequency, T
the time delay between adjacent taps, and an the tap coefficient
of the nth tap, which is the discrete impulse response of the
transfer function F(ω) of the signal processor. The discrete

impulse response an can be calculated by performing the
inverse Fourier transform of the transfer function F(ω) of the
signal processor [11]. The FSR of the RF signal processor is
determined by T, since FSRRF = 1/T. As the multi-wavelength
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Figure 3. Free spectral range of the RF transversal signal processor according to the length of fibre and comb spacing. Here we used single
mode fibre with the second order dispersion coefficient of β = ∼17.4 ps nm−1 km−1 at 1550 nm for the calculation of FSRRF.

Figure 4. Theoretical and simulated RF magnitude according to the number of taps and ideal phase response of a Hilbert transformer with
90◦ phase shift. (a) With a hamming window applied. (b) Without window method applied.

optical comb is transmitted through the dispersivemedium, the
time delay can be expressed as

T= D×L×∆λ (2)

where D is the dispersion coefficient, L the length of the
dispersive medium, and ∆λ is the wavelength spacing of
the soliton crystal micro-comb (figure 1) which indicates
the potentially broad bandwidth RF signal that the system
can process. Figure 3 shows the relationship between the
wavelength spacing of the comb, the total delay of the fibre,
and the resulting RF FSR, or essentially the Nyquist zone.
The operation bandwidth can be readily varied by changing

the time delay via a number of means, such as using differ-
ent delay components. The largest operational bandwidth of
the transversal signal processor is given by the Nyquist fre-
quency which is half of the comb spacing. Thus, employ-
ing a comb shaping method to achieve a larger comb spa-
cing could enlarge themaximumoperational bandwidth. How-
ever, this comes with the tradeoff that it yields fewer taps,
or wavelengths, over the wavelength range of interest, which
in our case is the telecommunications C-band. Hence, the
number of comb lines/taps as well as the comb spacing,
are both key parameters that determine the performance of
the signal processor. We investigate this tradeoff in this
paper.
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Figure 5. Theoretical and simulated RF magnitude according to the number of taps and ideal phase response of (a) first-order differentiator.
(b) Second-order differentiator. (c) Third-order differentiator.

Figures 4 and 5 show the theoretically calculated perform-
ance of the Hilbert transformer with a 90◦ phase shift together
with the 1st, 2nd and 3rd order integral differentiators in terms
of their filter amplitude response, as a function of the num-
ber of taps. Note that a Hamming window [11] is applied in
figure 4(a), in order to suppress the sidelobes of the Hilbert
transformer. To implement the temporal differentiator and Hil-
bert transformer, tap coefficients in equation (1) were calcu-
lated based on the Remez algorithm [92].

3. Experiment

Figure 6 shows the experimental setup of the transversal fil-
ter signal processor based on a soliton crystal micro-comb.
It consists mainly of two parts—comb generation and flatten-
ing followed by the transversal structure. In the first part, the
generated soliton crystal micro-comb was spectrally shaped
with two WaveShapers to enable a better signal-to-noise ratio
as well as a higher shaping accuracy. The first WaveShaper
(WS1) was used to equalize, or flatten, the comb spectrum
from the orignally generated scallop-shaped pattern that is

typical of soliton crystal micro-combs. In the second stage
of the system, these equalized comb lines were all simultan-
eously modulated by the RF input signal with an EO mod-
ulator, which effectively multicast the RF signal onto all
wavelength channels to yield identical copies. The RF rep-
licas were then transmitted through a spool of standard SMF
(β =∼17.4 ps nm−1 km−1) to obtain a progressive time delay
between the adjacent wavelengths. Next, the second Wave-
Shaper (WS2) equalized and weighted the power of the comb
lines according to the designed tap coefficients. To increase the
accuracy, we adopted a real-time feedback control path to read
and shape the power of the comb lines accurately. Finally, the
weighted and delayed taps were combined and converted back
into the RF domain via a high-speed balanced photodetector
(Finisar, 43 GHz bandwidth).

Figure 7 shows the experimental results for the Hilbert
transformer with a 90◦ phase shift. The shaped optical combs
are shown in figures 7(a), (e) and (i). A good match between
the measured comb lines’ power (blue lines for positive, black
lines for negative taps) with the theoretically calculated design
tap weights (red dots) was achieved, indicating that the micro-
comb wavelengths were successfully weighted. Note that we
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Figure 6. Experimental set up of RF signal processor based on soliton crystal micro-comb source. CW: continuously wave. EDFA:
erbium-doped fibre amplifier. PC: polarization controller. WS: WaveShaper. IM: intensity modulator. SMF: single mode fibre. BPD:
balanced photodetector. WA: wave analyzer. OSA: optical spectral analyzer.

Figure 7. Simulated and measured 90◦ Hilbert transformer with varying comb spacing. (a), (e) and (i) Shaped optical spectral. (b), (f) and
(j) Amplitude responses (the |S21| responses measured by a Vector Network Analyzer). (c), (g) and (k) Phase responses. (d), (h) and
(l) Temporal responses measured with a Gaussian pulse input.

applied a Hamming window [11] for single-FSR (49 GHz)
and 4-FSR (196 GHz) comb spacings when designing the
tap coefficients. One can see that with a Hamming window
applied, the deviation of the amplitude response from the
theoretical results can be improved. Figures 7(b), (f) and (j)
show the theoretical and experimentally measured amplitude

response of the Hilbert transformer using a variety of differ-
ent combs having different spacings, including single-FSR,
2-FSR, and 4-FSR comb spacings, respectively, while the
phase responses are shown in figures 7(c), (g) and (k). We see
that all 3 results show behaviour close the expected response of
an ideal Hilbert transform. The system demonstration for the
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Table 1. Performance of our transversal signal processors.

Number of
taps

Wavelength
spacing

Frequency
spacing (GHz)

Nyquist
zone (GHz)

Temporal pulse RMSE

Type Octave OSA shaping Pulse shaping

Hilbert transformer 20 4-FSR 196 98 >4.5 ∼0.0957 /
Hilbert transformer 40 2-FSR 98 49 >6 ∼0.1065 ∼0.0845
Hilbert transformer 80 Single-FSR 49 24.5 / ∼0.1330 ∼0.0782
Differentiator—1st order 21 4-FSR 196 98 / ∼0.0838 /
Differentiator—2nd order 21 4-FSR 196 98 / ∼0.0570 /
Differentiator—3rd order 21 4-FSR 196 98 / ∼0.1718 /
Differentiator—1st order 81 Single-FSR 49 24.5 / ∼0.1111 /
Differentiator—2nd order 81 Single-FSR 49 24.5 / ∼0.1139 ∼0.0620
Differentiator—3rd order 81 Single-FSR 49 24.5 / ∼0.1590 /

Hilbert transform using real-time signals consisting of Gaus-
sian input pulses produced by an arbitrary waveform gener-
ator (KEYSIGHT M9505A) is shown in figures 7(d), (h) and
(l) (black solid curves), recorded by a real-time high-speed
oscilloscope (KEYSIGHT DSOZ504). To facilitate a compar-
ison, we also show the response of an ideal Hilbert transformer
in figures 7(d), (h) and (l) (blue dashed curves). For the Hil-
bert transformer with single-FSR, 2-FSR, and 4-FSR comb
spacings, the root-mean-square errors (RMSEs) between the
theoretical and experimentally measured curves were∼0.133,
∼0.1065, and ∼0.0957. The performance parameters are lis-
ted in table 1.

Figure 8 shows the experimental results for the differen-
tiators with increasing integral orders of 1, 2, and 3. The
shaped optical spectra in figures 8(a), (e), (i), (m), (q) and
(u) show good agreement between the theoretical tap weights
and measured comb lines’ power. Figures 8(b), (f), (j), (n),
(r) and (v) show measured and simulated amplitude responses
of the differentiators. The corresponding phase response is
depicted in figures 8(c), (g), (k), (o), (s) and (w) where it can
be seen that all (b), (f), (j), (n), (r) and (v) show measured
and simulated amplit integral differentiators agree well with
the theory.

Here, we use the WaveShaper to programmably shape
the combs to simulate MRRs with different FSRs. By arti-
ficially adjusting the comb spacing, we effectively obtain a
variable operation bandwidth for the differentiator, which is
advantageous for the diverse requirements of different applic-
ations. Here, we normalised the FSR of the RF response
to have the unique operational bandwidth for comparing
the performance of different processing functions in the
same scales. For the 1st, 2nd, and 3rd order differentiators
with a single-FSR (49 GHz) spacing, the calculated RMSEs
between themeasured and ideal curves are∼0.1111,∼0.1139,
∼0.1590, respectively. For the 1st, 2nd, and 3rd order dif-
ferentiators with a 4-FSR (196 GHz) spacing, the calculated
RMSEs between the measured and ideal curves are ∼0.0838,
∼0.0570, ∼0.1718, respectively. Note that there is some
observed difference in the time-domain between the positive

and negative amplitude and phase responses to the Gaussian
input pulse which leads to a discrepancy with the ideal
response. This is due to a combination of effects includ-
ing the residual imbalance of the two ports of the balanced
photodetector.

In order to reduce the errors mentioned above, for both
the Hilbert transformer and the differentiator, we developed a
more accurate comb shaping approach, where the error signal
of the feedback loop was generated directly by the measured
impulse response, instead of the optical power of the comb
lines. We then performed the Hilbert transform and differ-
entiation with the same transversal structure as the previous
measurements, the results of which are shown in figures 7(h),
(I) and 8(t). One can see that the imbalance of the response
in the time domain has been compensated, and the RMSE
of time-domain shown in table 1 has significantly improved.
While this was the main source of error, the remaining dis-
crepancy between theory and experiment in figures 7 and
8 arises from modulation chirp and third order dispersion
in the fibre, which created distortion. In principle these can
also be compensated for, and this will be addressed in future
work.

Also note that the fact that the soliton crystal micro-comb
was able to supply a larger number of comb lines, in our
case up to 81 for the 1-FSR spaced comb, resulted in a much
higher performance in terms of the spanned number of octaves
in the RF domain as well as the RMSE, etc. On the other
hand, the disadvantage is that single FSR spaced comb yields
a lower operational bandwidth, being limited to approxim-
ately the Nyquist zone, which in that case is 25 GHz. The 2-
FSR spacing and 4-FSR spaced system, on the other hand, can
operate at RF frequencies that are well beyond that of tradi-
tional electronic microwave technologies. Therefore our shap-
ing method gives the flexibility for us to achieve the required
system.

Finally, figure 9 shows the 3 dB bandwidth of the Hil-
bert transformer versus the number of taps, for both theor-
etically calculated and experimentally measured results. As
seen in figure 9, the theoretical 3 dB bandwidth increases
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Figure 8. Simulated and measured first- to third-order differentiators with different comb spacing (single-FSR and 4-FSR).
(a), (e), (i), (m), (q) and (u) Shaped optical spectral. (b), (f), (j), (n), (r) and (v) Amplitude responses. (c), (g), (k), (o), (s) and (w) Phase
responses. (d), (h), (l), (p), (t) and (x) Temporal responses measured with a Gaussian pulse input.

rapidly with the number of taps but begins to saturate bey-
ond 40 taps, meaning that there is limited benefit in includ-
ing more taps. We note that we have previously shown
a similar curve looking at the bandwidth dependence on
the number of taps for a fractional Hilbert transformer in

figure 5(c) of [27], which showed good agreement between
experiment and theory. In figure 9 we only show two
measured points—while we did have data for 80 taps, the
bandwidth was larger than what we could experimentally
measure.
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Figure 9. Simulated and experimental results of 3 dB bandwidth
with different numbers of taps for a Hilbert transformer with 90◦

phase shift. The 3 dB bandwidth is expressed as a relative fraction
of the RF FSR.

4. Conclusion

We demonstrate record performance and versatility for soliton
crystal micro-comb-based RF signal processing functions by
varying the wavelength spacing and employing different tap
designs and shaping methods. Our experimentally measured
system performance agrees well with the theory, thus verifying
that our soliton crystal micro-comb-based signal processor is a
successful and attractive approach for achieving RF signal pro-
cessors that feature broad operation bandwidths, a high degree
of reconfigurebility, and potentially also reduced cost and
footprint.
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