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Abstract: This paper describes a driving simulator study exploring driver willingness to engage in
automated driving. The study aimed to explore factors that may influence willingness to engage
(WTE) in automated driving and willingness to resume control (WTRC) in Level 3 automated vehicles
during everyday driving. Automated driving is an emerging technology that promises a range of
benefits. The first step towards sustainable automated driving is the successful introduction of Level
3 automated vehicles. This study investigates key factors that influence the driver’s willingness to
engage in automated driving in a Level 3 automated vehicle. A purpose-built driving simulator was
used. Forty participants were exposed to driving situations of differing complexity in both manual
and automated driving modes, and their willingness to engage or disengage automated driving
and perception of safety were recorded. Results demonstrated a strong negative effect of perceived
situation complexity on willingness to engage in automated driving. Other significant factors that
determine drivers’ willingness to engage in automated driving were trust in automation and driving
enjoyment. The identification of perceived situation complexity as a significant factor in drivers’
willingness to engage the automated driving vehicle control mode was the major finding of this
research. This finding suggests that it is possible to improve the rate of uptake and sustainability of
automated driving with external interventions (technological, regulatory and publicity).

Keywords: vehicle automation; situation complexity; willingness to engage; perceived safety;
simulation

1. Introduction

Driving is a very complex activity. A wide range of skills and abilities are required for
safe driving [1], often while conditions are not ideal. It is not always the case that the driver
is trained, experienced, rested, well-behaving and free of distractions. Moreover, there are
other participants in the traffic system with their own imperfections. Interactions between
traffic entities are many, not always predictable, and require a long time to learn and master.
The number of vehicles on the roads is continuously increasing, making driving even
more complex [2,3].

In addition to increasing traffic density, drivers are subjected to the introduction of new
information, communication and entertainment technologies inside the vehicle. As a result
of these trends, the driving task has increased in complexity and faces new challenges [4].
Problems with a surge of in-vehicle information technologies relate to the introduction of
secondary tasks that compete with the primary driving task, potentially causing excessive
workload and distraction [5,6]. An increase in the mature-age driving population in
developed countries also represents a problem as they are particularly susceptible to an
increase in driving task complexity. Loss of cognitive and physical abilities occurs in this
group which, in the desire to maintain independence, continues to engage in driving despite
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being more prone to accidents [7]. Deaths of road users older than 65 years increased by
2.2% annually over the last decade in Australia [8].

It can be concluded that the development of automated cars promises new hope for
traffic safety. However, it also raises important research questions about human factors
regarding the acceptability of that technology, sustainability, driver trust, intentions of
use, ease of use, and even optimisation of the human–machine interface [9–11]. Despite
such concerns, it is generally accepted that the social benefits of automated vehicles will
outweigh likely disadvantages as part of a sustainable transport system [12].

The Society of Automotive Engineers (SAE) developed a taxonomy that identifies
different levels of vehicle automation [13], which has been widely accepted in the literature.
The levels identified range from 0 (no automation) to 5 (full automation). The current level
that is commercially available is considered to be 2 (driver assistance).

Early deployment predictions for Level 3 automation (referred to as conditional
automation) have proven to be overly optimistic, suggesting the issue is more complex
than previously assumed. It has been proposed that highly automated vehicles be allowed
on roads once they are judged to be safer than an average human driver [14]. However,
the more realistic scenario is that the safety benefits of automated vehicles will need to
be supported by evidence as being significantly safer. It is predicted that until automated
vehicles (AVs) are completely reliable and safe under all conditions, the human driver
will remain responsible for safe driving [15]. Legal prerequisites, precise geolocation/map
data, robust monitoring of the driver’s state for handing over control, connectivity between
vehicles, road users and infrastructure, and the optimal interaction between automated
and non-automated vehicles were identified as “major enablers for the safe and efficient
operation of automated transport” [16] (p. 3).

Level 3 vehicle automation is on the verge of becoming mainstream from a technologi-
cal point of view. As it continues to develop and becomes more accessible, it may follow the
path of the Anti-lock Braking System (ABS) [17] and Electronic Stability Control (ESC) [18],
which became mandatory in 2003 and 2013, respectively, for all new cars sold in Australia,
after the effectiveness of these technologies was demonstrated on roads [19–25].

Therefore, this research was conducted under the assumption that, in the foreseeable
future, all new vehicles would have Level 3 automation capability, mostly because this
technology would become an affordable part of the standard vehicle kit. Under this
scenario, all drivers of new vehicles would be able to choose vehicle control mode, even if
vehicle automation was not an important feature for some drivers. There is still a significant
gap between the available level of automated driving technology and current regulations,
which prevent the legalisation of Level 3 automated vehicles. Crossing this final hurdle
requires a better understanding of how automated vehicles will be used, and identifying all
possible issues and problems with it. This research aimed to contribute to that knowledge.

Some of the commonly researched topics related to automated vehicles are the transfer
of control, benefits and disadvantages of AVs, and behavioural adaptation to AVs [26].
The literature search identified a lack of simulator-based studies that exposed drivers to
Level 3 AVs and that investigated issues associated with everyday driving. In particular,
there is a lack of research on the factors that influence a driver’s use of vehicle automation.

Therefore, this study aimed to explore factors that may influence willingness to en-
gage (WTE) in automated driving and willingness to resume control (WTRC) in Level
3 AVs during daily, non-critical driving. Results of previous research suggest that more
demanding driving situations are likely to be associated with higher WTRC and lower
WTE. Situation complexity, traffic density and driving speed were identified as some of
the factors affecting the difficulty of the driving task [27], and were utilised in the current
study to manipulate driving complexity.

This study exposed participants to a variety of situations that represented different
levels of driving task demands. Three external factors from the range of factors that
influence WTE, as identified by the adapted theoretical framework and findings from
previous research, were found to be suitable for manipulation in experimental scenarios
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and selected as the independent variables for the study. They were: driving mode, situation
complexity and driving speed.

The driving mode represented two experimental conditions, manual driving and
automated driving. Two distinctive levels of situation complexity (SC) were selected, low
SC and high SC. These levels were presented in the form of five events in the simulator
drive. One event represented low complexity and the other four high complexity. The
Free (free driving) event was selected to represent a low-complexity condition as driving
task demands were minimal. The free driving situation can be defined by having the
free choice of lane, velocity is not affected by other cars, and there is comfortable time
headway [28]. Four events were selected to represent high SC in the study: rain and
fog (RF), oncoming car (OC), give way (GW), and vehicle following (VF). These four
high-complexity events represented a wide variety of situations instead of relying on
different levels of complexity of a single event. However, each of these four events made
the driving task more demanding in comparison with the low-complexity event. The GW
event forced the participant (driver) to make a gap-acceptance decision at an unsignalised
intersection. The driver had to decide when to enter the intersection as there were multiple
opportunities presented. The VF event aimed to expose participants to a borderline short
time headway situation and therefore increased driving task demands. A mean threshold
between risky and comfortable time headway (TH) in simulated driving was found to be
between 1.5 and 2.0 s [29]. Therefore, TH was set to 1.5 s to increase the driver’s perception
of risk without making the driving task appear unrealistic. The RF event aimed to expose
the driver to low visibility and deteriorated driving conditions. Fog is recognised as one of
the most dangerous conditions for drivers, and several studies confirm that such conditions
contributed to the increase in driving task demands [30,31]. Finally, the purpose of the
OC event was to expose participants to a latent hazard that never materialised. Latent
hazards are traffic situations that experienced and alert drivers recognise as situations that
have a high likelihood to develop into acute threatening situations, despite their harmless
appearance at first sight [32]. The driver faced a potentially safety-critical event in which
the oncoming vehicle signalised the intention to overtake, despite safe overtaking not being
possible in the current situation. The third independent variable was speed, where higher
driving speed was associated with an increase in driving task demands.

Two dependent variables were measured: (1) WTE observed during manual drives or
WTRC observed during automated drives; and (2) perception of safety (POS) during all
drives. Both dependent variables were subjective and self-reported with a questionnaire.
Based on the reviewed literature the following hypotheses were formulated:

• An increase in SC has a negative effect on WTE and a positive effect on WTRC;
• An increase in SC has a negative effect on POS;
• Higher POS is negatively associated with WTE and positively associated with WTRC.

This paper first presents the methods used, then outlines the results and discusses
the findings.

2. Materials and Methods

This section describes the methodology used and the experimental design of the
driving simulator study. The study used a 2 × 2 × 2 factorial design (Table 1). The
independent variables were speed (low/high), driving mode (manual/automated) and SC
(low/high). Dependent variables were WTE or WTRC and POS.

Table 1. Independent variables and conditions.

Factors (IVs) Conditions

Speed Low/High
Driving mode Manual/Automated

Situation complexity Low/High
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The experiment used the simulation freeze technique. During each freeze of the
simulation, participants were asked to complete a questionnaire item. The use of this
technique has been reported in several simulation studies, such as the measurement of
situation awareness during the takeover performance in automation [33] and the use
of an adaptive cruise control system [34]. Although simulation freeze was somewhat
artificial [35], task performance is not affected by the number and duration of freezes [33].

Forty participants were involved in the study: 30 males and 10 females, ranging in age
from 18 to 79 years, with a mean age of 40.35 years and a standard deviation of 16.26 years.
The mean number of years of driving experience was 21.55 with a standard deviation
of 16.15 years. Participants were recruited from Monash University (undergraduate stu-
dents, post-graduate students and staff), outside the university using personal contacts,
the Monash University Accident Research Centre (MUARC) participant database, and
advertising on social media. Participants were required to have either a full driver license
or a second-year probationary license. They were also required to drive at least 5000 km per
year. Apart from the aforementioned criteria, participants were not specifically recruited
according to any demographic characteristics or specific attitudes towards automated
driving. Participants were offered AUD20.00 each. Ethics approval was obtained from the
Monash University Human Research Ethics Committee.

The experimental research was conducted in a purposely built MUARC Automation
simulator, which was previously validated for behavioural research examining the human
factors of vehicle automation [27]. The simulator consisted of a car seat and standard
controls mounted on a rigid frame (Figure 1). The simulated vehicle was equipped with an
automatic transmission. Visuals were presented on three 46′ ′ high brightness bezel-less
displays. Each display had a resolution of 1080p and the image refresh rate was 60 Hz. The
driver and the passenger both had a horizontal field of view of 140◦ and a vertical field
of view of 45◦. The sound was presented via left, right and centre satellite speakers and a
subwoofer for reproducing low-frequency effects.
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Figure 1. Automation driving simulator.

A 10′ ′ tablet was used to administer questionnaires. The tablet was mounted on the
right side of the simulator dashboard for easy access.

A conservative driving style was adopted for the presentation of automated drives.
This was done to minimise the potential for adverse reactions to automated driving. The
experimental scenario itself needed to minimise opportunities for conflicts between the
participant’s preferred driving style and the automated driving style; for example, avoiding
sharp bends or overtaking situations.

Four scenarios were developed. Scenarios 1 and 2 were created in an urban environ-
ment with a 50 km/h speed limit. The road had two lanes and three intersections. Scenarios
3 and 4 were created on a highway in a country environment with a speed limit of 90 km/h.
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This speed limit was chosen as the highest speed limit allowed on highways in Victoria,
Australia. Each drive lasted approximately seven minutes. During each drive, participants
were exposed to five distinctive events. The events were one low-complexity event (Free)
and four high-complexity events (GW, RF, OC and VF). A schematic showing the order of
events on a 50 km/h road is shown in Figure 2 and the order of events on a 90 km road
in Figure 3.
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Figure 3. Events in 90 km/h drive.

Two drives were presented in manual driving mode (Scenarios 1 and 3) and two in
automated driving mode (Scenarios 2 and 4). During manual drives, participants were
required to control car speed and steering. In automated mode, participants were free of
the physical component of the driving task. All experimental scenarios with associated
conditions and order of events are presented in Table 2. Scenarios were presented in
counterbalanced order.

Table 2. Study experimental scenarios.

Scenario Speed Limit Control Mode Event 1 Event 2 Event 3 Event 4 Event 5

1 50 km/h Manual GW OC VF RF Free
2 50 km/h Automated GW OC VF RF Free
3 90 km/h Manual RF Free VF OC GW
4 90 km/h Automated RF Free VF OC GW

Each event contained a question point. At pre-determined locations within each event,
the simulation would freeze for 10 s, manifesting as a sudden stop in travel, absence of car
engine sound and a still speedometer. Figure 4 illustrates the frozen simulator drive during
the RF event. During each simulation freeze, participants entered their ratings for WTE or
WTRC and POS. After 10 s, the simulation would continue until the following event until
all five events had been presented and ratings entered.

Each question point had two parts. Part A of the question required the participant
to rate WTE during manual driving (Figure 5a) or WTRC during automated driving
(Figure 5b). Ratings were provided on a four-point scale (1 = Very unwilling, 2 = Unwilling,
3 = Willing, 4 = Very Willing). Part B of the question rated POS of the current situation.
The POS score was entered using a sliding scale, ranging from 1 for very unsafe to 100 for
very safe.
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Figure 5. Example of questions: (a) manual drive (WTE and POS); (b) automated drive (WTRC
and POS).

Before the simulator drives, participants were given a brief introduction to automated
vehicles explaining different levels of vehicle automation, with an emphasis on Level 3 au-
tomation and choice of control mode since they would be experiencing Level 3 automated
driving in the simulator. Participants were then presented with a definition of willingness
and an explanation of an experimental task. They were instructed that Level 3 automation
was capable of handling all situations during the experimental drives, but they had to be
alert if there was a takeover request. Following practice drives, four experimental scenarios
were presented in a counterbalanced order. During each drive, participants were instructed
to observe road and traffic conditions. At each question point, participants would enter
their ratings for WTE (during manual drives) or WTRC (during automated drives) and
POS. Thereafter, each drive was completed.



Sustainability 2022, 14, 4602 7 of 20

3. Results

This section presents statistical models developed for the investigation of hypotheses
outlined in the Introduction section.

3.1. Willingness to Engage Automated Control and Willingness to Resume Manual Control

The effects of experimental conditions on WTE/WTRC were analysed using the
generalised estimating equation (GEE) method. The unstructured working correlated
matrix was selected. For modelling the dependent variable, the ordinal logit model and
cumulative logit link function were selected. The independent variables were speed
(50 km/h and 90 km/h), and situation complexity (low and high). As the questions
were different across manual and automated drives, two full factorial models, one for
WTE and one for WTRC, were specified to allow examination of all possible main and
interaction effects. All non-significant effects were removed from the model one at a time
until only those effects that were significant at p ≤ 0.05 remained. For each model, a table
containing the parameter estimates (B coefficients) for the significant main effect of the
level of complexity is provided. Also provided are the standard error of B, the confidence
intervals (CI) of the Wald chi-square, the Wald chi-square value, whether the parameter
attained significance, the exponential value of B (that is, the relative odds ratio), and the
95% confidence intervals for the relative odds ratio.

3.1.1. WTE Model

The final GEE model for WTE, observed during manual drives, was made up only of
a significant main effect of the level of complexity (χ2(4) = 34.50, p < 0.001). There was no
statistically significant effect of speed on WTE. The parameter estimates (B coefficients) for
the significant main effect of level of complexity are provided in Table 3.

Table 3. WTE model parameter estimates.

Parameter
Hypothesis Test

Exp(B)
95% Wald CI for Exp(B)

Wald χ2 df Sig. Lower Upper

Event
VF 9.507 1 0.002 0.439 0.260 0.741
RF 18.495 1 0.000 0.246 0.130 0.467
OC 27.390 1 0.000 0.147 0.072 0.301
GW 10.224 1 0.001 0.285 0.132 0.615
Free . . . 1 . .

These tests compared WTE ratings at the low-complexity event (Free) with WTE
ratings at high-complexity events and WTE ratings at two different speeds. The results
confirmed that WTE at the low-complexity event was statistically significantly different
from POS at high-complexity events. The examination of Table 3 revealed that WTE for
each high-complexity event was significantly reduced when compared with the Free event.
Therefore, participants were significantly less willing to engage in automated driving
during high-complexity events. The comparison of mean WTE scores is illustrated in
Figure 6. To enable calculation of means, each WTRC category was assigned a value as
follows: 1 for very unwilling, 2 for unwilling, 3 for willing and 4 for very willing.



Sustainability 2022, 14, 4602 8 of 20Sustainability 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 
Figure 6. Mean WTE scores (* p < 0.05). 

3.1.2. WTRC Model 
The final GEE model for WTRC, observed during automated driving, was made up 

of a significant main effect of the level of complexity (χ2(4) = 58.36, p < 0.001) and a signif-
icant main effect of speed (χ2(1) = 5.16, p = 0.023). The WTRC model parameter estimates 
(B coefficients) for the significant main effects are provided in Table 4. 

Table 4. WTRC model parameter estimates for event (SC) and speed. 

Parameter 
Hypothesis Test Exp(B) 95% Wald CI for Exp(B)  

Wald χ2 Df Sig. Lower Upper 
Event       

VF 14.162 1 0.000 2.090 1.424 3.067 
RF 34.271 1 0.000 6.227 3.376 11.486 
OC 43.271 1 0.000 9.357 4.806 18.216 
GW 32.164 1 0.000 5.106 2.907 8.970 
Free    1   

Speed       
90 km/h 5.162 1 0.023 1.376 1.045 1.811 
50 km/h    1   

An examination of Table 4 reveals that WTRC for each high-complexity event was 
significantly increased when compared with the Free event. Parameter estimates con-
firmed that WTRC at the low-complexity event was statistically significantly different 
from WTRC at every high-complexity event and significantly different between the two 
driving speed categories. In summary, participants were significantly more willing to re-
sume manual control of the vehicle during high-complexity events and at a higher speed. 
The comparison of mean WTRC scores is illustrated in Figure 7. 

3.16

2.35

1.99
2.29

2.56

Free GW OC RF VF

Event

Mean WTE

Very unwilling

Very willing

Willing

Unwilling
*

*
*

-

*

Figure 6. Mean WTE scores (* p < 0.05).

3.1.2. WTRC Model

The final GEE model for WTRC, observed during automated driving, was made up of
a significant main effect of the level of complexity (χ2(4) = 58.36, p < 0.001) and a significant
main effect of speed (χ2(1) = 5.16, p = 0.023). The WTRC model parameter estimates
(B coefficients) for the significant main effects are provided in Table 4.

Table 4. WTRC model parameter estimates for event (SC) and speed.

Parameter
Hypothesis Test

Exp(B)
95% Wald CI for Exp(B)

Wald χ2 Df Sig. Lower Upper

Event
VF 14.162 1 0.000 2.090 1.424 3.067
RF 34.271 1 0.000 6.227 3.376 11.486
OC 43.271 1 0.000 9.357 4.806 18.216
GW 32.164 1 0.000 5.106 2.907 8.970
Free 1

Speed
90 km/h 5.162 1 0.023 1.376 1.045 1.811
50 km/h 1

An examination of Table 4 reveals that WTRC for each high-complexity event was
significantly increased when compared with the Free event. Parameter estimates confirmed
that WTRC at the low-complexity event was statistically significantly different from WTRC
at every high-complexity event and significantly different between the two driving speed
categories. In summary, participants were significantly more willing to resume manual
control of the vehicle during high-complexity events and at a higher speed. The comparison
of mean WTRC scores is illustrated in Figure 7.
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3.2. Perception of Safety

The effects of experimental conditions on POS were analysed using the GEE model.
The unstructured working correlated matrix was selected. For modelling the dependent
variable, the linear model and identity link function was selected. The independent vari-
ables were speed (50 km/h and 90 km/h), driving mode (manual and automated) and
situation complexity (low-complexity and high-complexity events). A full factorial model
was specified to allow examination of all possible main and interaction effects, and non-
significant effects were removed from the model one at a time until only those effects that
were significant at p ≤ 0.05 remained in the model. The final GEE model was made up of
four significant effects: the main effect of situation complexity (χ2(4) = 175.07, p < 0.001),
whereby POS for the low-complexity event was statistically significantly higher than POS
for the high-complexity events; the main effect of driving mode (χ2(1) = 5.15, p = 0.023); and
two significant interaction effects. The first interaction was between speed and situation
complexity (χ2(5) = 14.07, p = 0.015) and the second interaction was between driving mode
and situation complexity (χ2(4) = 12.37, p < 0.015).

The parameter estimates (B coefficients) for the significant main effect of levels of
complexity and two statistically significant interactions are provided in Table 5. For each
parameter, also provided are the B coefficient, the standard error of B, the 95% confi-
dence intervals for the coefficients, the Wald chi-square value and whether the parameter
attained significance.

Table 5. POS model parameter estimates.

Parameter B SE
95% Wald CI Hypothesis Test

Lower Upper Wald χ2 df Sig.

Event
VF −13.846 2.420 −18.590 −9.102 32.722 1 0.000
RF −40.279 2.999 −46.158 −34.399 180.277 1 0.000
OC −32.255 3.287 −38.699 −25.811 96.242 1 0.000
GW −19.922 3.179 −26.155 −13.690 39.249 1 0.000
Free 0 . . . . . .

Driving mode
Automated 2.885 1.247 0.440 5.331 5.347 1 0.021

Manual 0 . . . . . .
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Table 5. Cont.

Parameter B SE
95% Wald CI Hypothesis Test

Lower Upper Wald χ2 df Sig.

Speed*Event
90 km/h*VF 2.089 2.460 −2.733 6.911 0.721 1 0.396
50 km/h*VF 0 . . . . . .
90 km/h*RF −3.464 2.273 −7.920 0.992 2.322 1 0.128
50 km/h*RF 0 . . . . . .
90 km/h*OC −4.059 2.110 −8.195 0.076 3.701 1 0.054
50 km/h*OC 0 . . . . . .
90 km/h*GW 1.784 2.359 −2.841 6.410 0.572 1 0.450
50 km/h*GW 0 . . . . . .
90 km/h*Free −5.487 2.728 −10.835 −0.139 4.043 1 0.044
50 km/h*Free 0 . . . . . .

Driving
mode*Event

Automated*VF 10.749 3.453 3.981 17.517 9.689 1 0.002
Manual*VF 0 . . . . . .

Automated*RF 1.727 3.163 −4.474 7.927 0.298 1 0.585
Manual*RF 0 . . . . . .

Automated*OC 2.359 3.087 −3.692 8.409 0.584 1 0.445
Manual*OC 0 . . . . . .

Automated*GW 6.187 3.292 −0.266 12.641 3.532 1 0.060
Manual*GW 0 . . . . . .

Automated*Free 0 . . . . . .
Manual*Free 0 . . . . . .

3.2.1. The Main Effect of SC on POS

Results revealed that there was a statistically significant difference in POS ratings
between the low-complexity event and each of the high-complexity events. Estimated
marginal means of POS for each event, sorted in descending order, are illustrated in Figure 8.
The POS score for the Free event was the highest, whereas the POS score for the RF event
was the lowest. The model predicted a difference of 40 rating points between the POS score
at the Free event and the POS score at the RF event.
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3.2.2. The Main Effect of Driving Mode on the Perception of Safety

The test compared POS in manual drives with POS in automated drives. The model
suggested that predicted POS during automated driving was higher by 2.885 rating points
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compared to POS during manual driving. Although statistically significant, the difference
between observed POS was not large.

3.2.3. Interaction Effect of Speed and Situation Complexity

Examination of parameter estimates (B coefficients) for the significant interaction effect
of event*speed revealed that the statistically significant interaction of speed and SC was
observed only for the Free event, and a marginally significant interaction was observed for
the OC event. Estimated marginal means of POS for each event are illustrated in Figure 9.
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3.2.4. Interaction Effect of Driving Mode and Situation Complexity

Examination of parameter estimates for this interaction of driving mode and SC
revealed a significant effect of driving mode on POS for the VF event and a marginally
significant effect of driving mode for the GW event. Estimated marginal means of POS
for each event are illustrated in Figure 10. For both the VF event and the GW event, the
estimated POS was higher in automated driving mode.
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3.3. Preference of Vehicle Control Mode

The preferred vehicle control mode is a variable derived from WTE and WTRC ratings.
It allowed two separate datasets to be combined and, therefore, investigation of the effect
of driving mode across both driving conditions. The new dependent variable (preference)
was calculated according to the rules presented in Table 6. The logic behind these rules was
that, if the driver in a current driving mode was very unwilling to change the driving mode,
then a strong preference for the current driving mode was assigned to the new variable;
conversely, if the driver was very willing to change the driving mode, a strong preference
for the alternate driving mode was assigned to the new variable.

Table 6. Rules for calculating the preference of vehicle control mode.

Level of WTE/WTRC Driving Mode Preference of Vehicle Control Mode

Very unwilling (WTRC) Automated 2 (Strong automated)
Unwilling (WTRC) Automated 1 (Automated)

Willing (WTRC) Automated −1 (Manual)
Very willing (WTRC) Automated −2 (Strong manual)
Very unwilling (WTE) Manual −2 (Strong manual)

Unwilling (WTE) Manual −1 (Manual)
Willing (WTE) Manual 1 (Automated)

Very willing (WTE) Manual 2 (Strong automated)

The overview of proportions of driving mode preferences for all categories and events
is illustrated in Figure 11. Each preference level is colour-coded, and counts are presented
as percentages of the total number of selections for each category.
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The effects of experimental conditions on the preference of vehicle control mode
were analysed using the GEE model. The unstructured working correlated matrix was
selected. For modelling the dependent variable, the ordinal logit model and cumulative
logit link function were selected. The independent variables were driving mode (manual
and automated), speed (50 km/h and 90 km/h), and SC (low and high). A full factorial
model was specified to allow examination of all possible main and interaction effects,
and non-significant effects were removed from the model until only significant effects
(p ≤ 0.05) remained. The final GEE model for preference of the driving mode was made
of a significant main effect for the level of complexity (χ2(4) = 128.46, p < 0.001), speed
(χ2(1) = 6.47, p = 0.011), and the interaction effect between driving mode and level of
complexity (χ2(5) = 81.10, p < 0.001).

The parameter estimates (B coefficients) for both significant main effects and the
interaction effect are provided in Table 7. For each parameter, also provided are the
standard error of B, the Wald chi-square value, whether the parameter attained significance,
the exponential value of B (that is, the relative odds ratio), and the 95% confidence intervals
for the relative odds ratio.

Table 7. Parameter estimates for the preference of the driving mode.

Parameter
Hypothesis Test

Exp(B)
95% Wald CI for Exp(B)

Wald χ2 df Sig. Lower Upper

Speed
90 km/h 6.473 1 0.011 0.820 0.703 0.955
50 km/h . . . 1 . .

Event
VF 10.184 1 0.001 0.507 0.334 0.770
RF 35.187 1 0.000 0.247 0.155 0.392
OC 109.046 1 0.000 0.125 0.084 0.184
GW 35.248 1 0.000 0.245 0.154 0.390
Free . . . 1 . .

Event*Mode
VF*Auto 0.085 1 0.770 1.067 0.690 1.649
VF*Man . . . 1 . .
RF*Auto 31.207 1 0.000 0.530 0.424 0.662
RF*Man . . . 1 . .
OC*Auto 22.615 1 0.000 2.213 1.595 3.069
OC*Man . . . 1 . .
GW*Auto 0.545 1 0.460 1.129 0.818 1.558
GW*Man . . . 1 . .
Free*Auto 2.139 1 0.144 0.764 0.533 1.096
Free*Man . . . 1 . .

Driving speed had a small effect on the preferred driving mode, with the odds favour-
ing manual driving mode at a higher speed. The odds of the preference of automated
driving mode increased significantly with a higher level of SC. Parameter estimates for in-
teraction between events and driving mode (event × driving mode) explained the absence
of the main effect of driving mode on the preference. Only two interactions of driving
mode with event were statistically significant, one with the RF event and the second with
the OC event.

Comparison of beta coefficients revealed a crossover interaction which resulted in
no overall effect of driving mode on preference. Encountering the RF event in automated
driving mode significantly increased the odds of preference for manual control mode, when
compared with experiencing the RF event during manual driving. Encountering the OC
event in the automated driving mode had the opposite effect. When compared with manual
driving, the odds of preference for automated control mode were significantly reduced. In
summary, these results confirm the significant effect of complexity, speed and interaction
effects of driving mode with two events (RF and OC) on POS.
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3.4. Association of POS and WTE/WTRC

The correlation between POS and WTE/WTRC was tested with two GEE models, one
for the dataset originating from automated drives and the second dataset from manual
drives. In these models, POS outcomes were tested by willingness categories being used as
predictors. For each model, the exchangeable working correlated matrix was selected. For
modelling the dependent variable (POS), the linear model and identity link function were
selected. The independent variables were WTE or WTRC. A main-effect-only model was
specified for each dataset.

3.4.1. Effect of WTE on POS during Manual Driving

There was a significant main effect of WTE (χ2(3) = 171.30, p < 0.001) on POS (percep-
tion of safety). The model parameter estimates are summarised in Table 8, and indicate
significant differences in estimated POS for each level of WTE. Beta coefficients indicate
that an increase in the level of WTE is associated with increased POS.

Table 8. Parameter estimates of WTE for POS (manual driving).

Parameter B Std. Error
95% Wald CI Hypothesis Test

Lower Upper Wald χ2 df Sig.

WTE
Very willing 40.655 3.6361 33.529 47.782 125.015 1 0.000

Willing 37.656 3.2938 31.201 44.112 130.701 1 0.000
Unwilling 19.774 3.2534 13.398 26.151 36.943 1 0.000

Very unwilling 0 . . . . . .

3.4.2. Effect of WTRC on POS during Automated Driving

There was a significant main effect of WTRC (χ2(3) = 166.21, p < 0.001) on POS. The
parameter estimates are summarised in Table 9, and indicate significant differences in
estimated POS for each level of WTRC. Beta coefficients indicate that an increase in the
level of WTRC is associated with a reduction in POS.

Table 9. Parameter estimates of WTRC for POS (automated driving).

Parameter B Std. Error
95% Wald CI Hypothesis Test

Lower Upper Wald χ2 df Sig.

WTRC
Very willing −42.971 3.7217 −50.265 −35.677 133.314 1 0.000

Willing −19.647 3.5343 −26.574 −12.720 30.901 1 0.000
Unwilling −8.300 3.3700 −14.905 −1.695 6.066 1 0.014

Very unwilling 0 . . . . . .

In summary, these results confirmed a strong association between WTE/WTRC and
POS. An increase in the level of WTE was associated with increased POS, whereas an
increase in the level of WTRC was associated with a reduction in POS. Combined plots of
estimated marginal means of POS for levels of WTE and WTRC are presented in Figure 12.
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Figure 12. Summary of estimated marginal means of POS for levels of willingness.

4. Discussion

This study examined the key factors that influence drivers’ willingness to engage
in Level 3 automated vehicles under everyday driving situations. All study hypotheses
were supported by the results. The level of SC had a significant effect on both WTE and
WTRC. The general effect of an increase in SC on WTE was negative, meaning that drivers
were less willing to engage in automated driving in more complex situations, whereas the
effect on WTRC was the opposite. Although no other studies that investigated WTE or
WTRC in Level 3 automated vehicles were identified, support for these findings can be
found in an increased willingness to use Adaptive Cruise Control (ACC) in less complex
driving conditions [36].

A significant effect of speed was observed only during automated drives. During
automated driving, higher speed (90 km/h) increased the odds of WTRC. This result can
be explained by the comparison of driving task workloads during automated driving and
manual driving. As discussed previously, the driving simulator was not validated for
speed. Deficiencies in the perception of absolute speed and, to a lesser extent, relative
speed, may have minimised the effect of the speed difference. It was concluded that, since
drivers were relieved of operational vehicle controlling tasks during automated drives,
they had more internal resources available [37] and were able to perceive and process the
difference between the high speed and the low speed.

A strong effect of SC on POS was observed, with high SC resulting in lower POS. This
finding was indirectly supported by the suggestion that feelings of risk can behave as a sur-
rogate for driving task difficulty [38]. Since measurement of safety is often opposite to the
measurement of risk [39], it can be concluded that POS decreases with an increase in driving
task difficulty. All four high-complexity events recorded significantly lower ratings of POS
in comparison with the low-complexity event (Free). A possible correlation/association
between SC and POS for individual events was suggested.

The POS during automated driving was higher than that observed during manual
driving. The effect was statistically significant although not large. During manual drives,
participants had to control a relatively unfamiliar vehicle while compensating for limi-
tations in the simulation visuals. In comparison, during automated drives participants
were relieved of these tasks. It may be assumed that automated driving presented lower
driving task demands compared to manual driving. Results showed that, for automation-
inexperienced drivers, the perceived driving workload was similar for both driving modes.
As the majority of participants in the study were automation-inexperienced, it was no sur-
prise that the difference in POS was relatively small. However, the effect was statistically
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significant, suggesting that the automation was successfully presented as confident, assured,
and steady driving in terms of longitudinal and lateral control, resulting in slightly higher
POS. A similar observation was made based on a study of effects of ACC, which reported
that more homogenous speeds achieved by ACC contributed to better traffic safety [40].

The significant effect of SC on the preference of driving mode was not surprising
since the dependent variable was derived from WTE and WTRC, which were both strongly
affected by the level of SC. Overall, participants preferred manual vehicle control mode
when facing a more complex situation. Interestingly, the preference for manual control was
the highest for events that can be classified as less predictable and not completely under
the driver’s control (OC and RF). Unlike VF and GW events, where the driver perceives
enough information about the situation to react, OC and VF events deliver incomplete
information sets, forcing the driver to take some risks. This suggests that certainty may
play an important role in the preference of vehicle control mode. For example, visibility is
reduced in the RF event, denying driver information of what is beyond the visible range.
In the OC event, the driver is denied certainty about the overtaking car’s intentions.

Moreover, there was a statistically significant increase in the preference for manual
driving mode for the high-speed condition. The main effect of the driving mode was not
significant; however, several interesting observations were made after examining parameter
estimates for the interaction between driving mode and SC for each event. Two of the events,
the RF event and the OC event, revealed statistically significant interactions with driving
mode. In the case of the RF event, the drivers’ preference for manual vehicle control was
more likely to be lower when experiencing this event during automated driving compared
to experiencing it during manual driving. It was concluded that the majority of participants
accepted that the automated system was capable of handling on-road conditions. During
the RF event, the automated system maintained the same speed under the assumption that
functional AV would be equipped with a range of sensors capable of “seeing and feeling”
the road better than human drivers. For example, thermal imaging has the potential to
penetrate fog further than visible light cameras [41], in addition to other sensors (e.g., road
friction sensor) and technologies (e.g., near-field communication) that might be employed
in future automated vehicles. This example emphasised the importance of training and
exposure to the use of automated driving.

An even stronger effect of driving mode was observed for the interaction with the OC
event. When the OC event was experienced during automated drives, the preference for
manual vehicle control was likely to be significantly higher compared to such preference
observed during manual driving. This suggests that participants disagreed with how the
automated system reacted to this situation. A feasible explanation may be that, when
experiencing an increase in driving task demands, drivers would attempt to compensate
by reducing speed [42], whereas when the OC event was encountered during automated
driving the speed was not reduced.

A very strong association of POS and WTE/WTRC was confirmed. Therefore, it
was concluded that POS can be used as a predictor of a driver’s WTE/WTRC. Although
no comparable studies that measured POS in AVs were found, some similarities can be
identified with the results of surveys on AVs. Assuming that the measurement of safety
is opposite to the measurement of risk [39], the association of POS and WTE/WTRC was
indirectly supported by finding that risk perception had a significant impact on the interest
in using an automated vehicle [43].

Several practical implications for the acceptability of the AVs were identified. Findings
such as the effects of the driving mode in the rain and fog conditions emphasised the
importance of education and training before using AVs. Drivers need to know what AVs
can and cannot do, and to be trained to accept AV behaviour. Driving in more complex
situations could benefit the most from automation since the processing and reaction times
of an automated system are much quicker than human reactions and advanced sensor
technologies can gather more information than a human driver. Moreover, this information
(what the system sees and plans to do) needs to be conveyed to the human driver in real-
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time. This would provide a more complete information set, compensating for uncertainty
and generating trust and confidence in automation. This will be a task for human–machine
interface (HMI) designers. The driver’s comfort will have an important role in the ac-
ceptance of AVs. It is quite possible that some, most likely older, drivers would not be
able to adapt to certain aspects of high-level automation driving; for example, platooning
with extremely short time headways. As POS had a strong association with WTE/WTRC,
the automation system needs to prevent or moderate all driving situations that may lead
towards subjectively high POS to facilitate acceptance of automated vehicles.

This study investigated aspects of driver behaviour in Level 3 automated vehicles
in non-critical situations. For many years the main research focus here was on critical
situations such as the transition of control due to automation failure. However, non-critical
driving represents a vast majority of driving experience and deals with a very broad range
of human factor issues. A strong negative effect of situation complexity on WTE and
a strong association between POS and WTE mean that if drivers of Level 3 automated
vehicles perceive that a driving situation is complex, they would be less willing to use
vehicle automation since they feel safer when manually controlling the vehicle. If drivers’
perceived level of complexity is reduced, they are likely to be more willing to engage in
automated driving. Since better-trained drivers are more capable of dealing with more
complex situations [44], driver training is one way to reduce perceived situation complexity
by developing automatic information processing [45], resulting in driving situations being
seen as more transparent and predictable. Therefore, improving drivers’ cognitive and
perceptual skills will help increase engagement with vehicle automation.

As perceived situation complexity was found to have such a strong effect on WTE
and choice of vehicle control mode, manipulation of this perception may be utilised to
influence the choice of how and when vehicle automation is used by drivers. Simplification
of complex driving situations or a reduction in perceived complexity may increase WTE,
and, therefore, facilitate exposure to automated driving. This can be applied to roads,
traffic regulation systems, other infrastructure and AV HMI. For example, HMI design is
able to influence driver behaviour [46]. There are already some guidelines for reducing
the complexity of the automated system [47]. Advanced technologies such as augmented
reality can be utilised [48]. Visibility in fog may be enhanced by superimposing a 3D
model of a driving scene created from outputs of sensors that are not affected by these
conditions [49], using a head-up display (HUD). Similar and much more complex systems
are already implemented in later generations of jet fighters, such as the F-35 [50]; therefore,
it is a matter of time before they become used in civilian applications.

Conversely, the presentation of increased complexity is highly likely to have the
opposite effect. One practical application of an increase in perceived complexity may be its
application in providing a subtle mechanism to keep the driver “in the loop”. Hence, active
manipulation of perceived SC has the potential to influence the choice of vehicle control
mode and achieve optimal safety benefits.

The effects of speed on patterns of the selection of AV control mode would be more
effectively explored in a higher-fidelity simulator that has been validated for absolute
speed perception. The effects of automated driving style on a driver’s willingness to use
automated driving mode need to be further explored due to issues of driver comfort and
motion sickness. Although an ordinal scale for WTE/WTRC was selected, a linear scale
(similar to the one for POS) for recording WTE/WTRC scores would allow a more precise
statistical analysis of several hypotheses on WTE/WTRC.

Several limitations were identified in the course of the study and data analysis; how-
ever, despite these limitations, it was concluded that none of the main findings was sig-
nificantly affected. The simulator was not validated for the absolute perception of speed.
Regardless, speed was included as one of the independent variables of the study design in
the hope that relative speed differences would be easily perceived.

These results were obtained after only a single session in the driving simulator. Most
of the participants experienced Level 3 automated driving for the first time during this
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session. In addition, only a few participants experienced some forms of driving with new
technologies such as ACC and Lane-Keeping Assist (LKA). Therefore, it is not surprising
that, when facing the novelty of automated driving, they preferred the familiarity of
being in control of the vehicle; for example, a bias towards manual control during initial
interactions with the system [51]. The findings of this study can therefore be applied to
issues that users will face when Level 3 automated vehicles are initially deployed.

5. Conclusions

This research assumed that, in the foreseeable future, all new vehicles will have
Level 3 automation capability, Therefore, all drivers of new vehicles may be able to freely
choose to engage and disengage vehicle automation as desired. Before this research,
no peer-reviewed publications had explicitly investigated drivers’ willingness to engage
automation, a new behavioural phenomenon that became meaningful in Level 3 AVs.
Moreover, only a small number of unrelated papers touched on non-critical driving in the
context of vehicle automation.

In the experiment presented in this paper, WTE was found to be a reliable predictor
of the choice of the vehicle control mode in Level 3 AVs. The study results demonstrated
that, when facing more complex everyday driving situations, drivers indicate a preference
to control the vehicle manually, rather than engage the vehicle’s automation. Similarly,
when the driving situation was perceived as less safe, for example entering an unsignalised
intersection with other vehicles being involved, participants preferred to control the vehicle
themselves, rather than delegate the driving task to automation. This means that drivers of
Level 3 AV fundamentally trusted themselves more than the automated system in complex
or less safe driving situations, and revealed a strong association between WTE/WTRC
and POS. This indicates that a range of education and awareness measures will need to
be implemented to improve drivers’ knowledge of the capabilities of vehicle automation,
particularly its ability to cope with complex driving environments. Further research in this
area is also recommended, such as replicating the current findings using simulation or on-
road studies with objective driving performance measures, and expanding the demographic
characteristics of the sample, particularly to include more female drivers. Research currently
being undertaken by the authors is examining the actual choice of the vehicle control mode
using objective measures in a driving simulator; a further research extension would then be
a naturalistic study on a test track or a public highway to further explore the actual vehicle
control mode choice.

This research was conducted at a pivotal stage in automotive history as the number
of vehicles equipped with Advanced Driver Assistance Systems is growing and such
systems are becoming more capable of replacing the human driver. Once the floodgates
to conditional automated driving are open, drivers of Level 3 automated vehicles will
have a choice of vehicle control mode. The initial success and long-term sustainability
of vehicle automation will depend largely on whether this technology meets the needs
and expectations of users. This research shows that indirect manipulation of WTE can be
utilised to improve user acceptance and uptake of vehicle automation.
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