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Abstract

Background: The extent to which known and unknown factors explain how much people of

the same age differ in disease risk is fundamental to epidemiology. Risk factors can be corre-

lated in relatives, so familial aspects of risk (genetic and non-genetic) must be considered.

Development: We present a unifying model (VALID) for variance in risk, with risk defined

as log(incidence) or logit(cumulative incidence). Consider a normally distributed risk

score with incidence increasing exponentially as the risk increases. VALID’s building

block is variance in risk, D2, where D ¼ log(OPERA) is the difference in mean between

cases and controls and OPERA is the odds ratio per standard deviation. A risk score

correlated r between a pair of relatives generates a familial odds ratio of exp(rD2).

Familial risk ratios, therefore, can be converted into variance components of risk,

extending Fisher’s classic decomposition of familial variation to binary traits. Under

VALID, there is a natural upper limit to variance in risk caused by genetic factors,

determined by the familial odds ratio for genetically identical twin pairs, but not to

variation caused by non-genetic factors.
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Application: For female breast cancer, VALID quantified how much variance in risk is

explained—at different ages—by known and unknown major genes and polygenes, non-

genomic risk factors correlated in relatives, and known individual-specific factors.

Conclusion: VALID has shown that, while substantial genetic risk factors have been

discovered, much is unknown about genetic and familial aspects of breast cancer risk

especially for young women, and little is known about individual-specific variance in risk.

Key words: Breast cancer, familial cause, familial odds ratio, familial risk ratio, genetic cause, genomic cause, ma-

jor gene, non-familial cause, polygenic risk score, variance components

Background

A fundamental issue for epidemiology is the extent to

which known and unknown factors explain how much

people of the same age differ from one another in their dis-

ease risk. Given that risk factors can be correlated in rela-

tives, familial risk factors—both (germline) genetic and

non-genetic (e.g. shared environment)—must be

considered.

This paper introduces a unifying model called Variance

of Age-specific Log Incidence Decomposition (VALID),

with risk defined as the age-specific log(incidence) or logi-

t(cumulative incidence). Variance in risk as a quantitative

trait is the building block. VALID considers familial and

non-familial, genetic and non-genetic, measured and

unmeasured variance in risk. It therefore brings together

individual-specific and familial risks, including lifestyle,

polygenes, major genes and shared environment, known

and unknown.

VALID is in part based on Fisher’s seminal 1918 paper1

that introduced the concept of unmeasured genetic and

non-genetic causes of variation in measured quantitative

outcomes (traits); see Historical context in the

Supplementary Material (available as Supplementary data

at IJE online). Fisher warned that the concept of ‘heritabil-

ity’ could be misleading,2 as we found when studying large

immigrant and non-immigrant sibships.3 Here we essen-

tially extend Fisher’s model to disease risk, and thereby to

binary traits in general. Whereas Fisher converted familial

correlations into variances in measured quantitative traits,

VALID converts familial odds ratios into variances in risk.

Modelling genetic and non-genetic familial
and non-familial causes of variation

For a trait with total variance r2 and an additive genetic

component with variance A, the trait correlation is rMZ ¼
A/r2 for monozygotic (MZ) twin pairs, rDZ ¼ 1=2A/r2 for

dizygotic (DZ) twin pairs and other first-degree relatives,
1=4A/r2 for second-degree relatives, and so on.1 This model

was extended to include environmental (i.e. non-genetic)

causes shared by (or common to) relatives, whose variance

has historically been denoted by C. The classic twin model

assumes C is the same for MZ and DZ pairs, so A¼ 2(rMZ

� rDZ)r2 and C ¼ (2rDZ � rMZ)r2 provided 2rDZ > rMZ

(Falconer’s formula).4 Under a flexible parametrization fit-

ted using, for example, the multivariate normal model,5,6

Key Messages

• Risk can be defined as age-specific log(incidence) or cumulative risk.

• The key metric for defining the risk discrimination of a risk factor is D ¼ the log of the change in odds ratio per

standard deviation of a possibly adjusted and transformed risk score with unit variance.

• D ¼ the difference between cases and controls in mean risk score.

• D2 ¼ the variance in risk attributed to this risk score.

• We show how variation in risk can be partitioned into measured and unmeasured genetic and non-genetic

components.

• Variation in genetic risk is finite and its upper limit can be determined from the disease association (specifically the

familial odds ratio which approximates the familial risk ratio for most diseases) within genetically identical

(monozygotic: MZ) twin pairs.

• Genetic factors will not be important for risk prediction if the MZ twin pair odds ratio is weak, irrespective of disease

frequency.

• Variation in non-genetic risk is unlimited.
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the model can be extended to families, the genetic compo-

nent can be modelled as a function of measured factors ei-

ther as fixed or as random effects,7 and the shared

environmental variance component, C, can take into ac-

count factors such as the extent to which pairs of relatives

cohabit, have cohabited or have lived apart; see Modelling

of the familial causes of variance in risk below.

Development

Risk score versus risk factor

We represent a risk factor (which might be a composite of

risk factors such as genetic markers) as a risk score that has

a standard normal distribution, that disease incidence

increases exponentially as the risk score increases (see

Figure 1a), for which log(incidence) increases linearly as

the risk score increases (see Figure 1b), at least when inci-

dence is small (see below).

These characteristics have been observed for the com-

bined associations of common genetic variants on risk of

breast cancer based on additivity on the log risk scale both

within and between markers to create an ‘additive’

polygenic risk score.8 This model is also inherent to case-

control and cohort study analyses using logistic and Cox

regression, respectively; see ‘Why log(incidence)?’ in the

Conclusion.

We are studying variation in relative risk, not absolute

risk per se, so the risk score must be adjusted for age and

possibly other covariates, as should be standard practice in

epidemiology. This approach underlies the odds ratio per

adjusted standard deviation (OPERA) concept as a popula-

tion measure of risk discrimination.9 For concreteness, we

take risk to mean the log(incidence), although the VALID

concept also applies to log(odds ratio) ¼ logit(odds) and

therefore to cumulative risk (e.g. lifetime risk or risk to a

given age) or any binary trait in general. Our main interest

is in diseases, not common traits.

VALID essentially follows models by us and others,10–15

except that here we assume the risk score has been standard-

ized to have unit variance. This is important when interpret-

ing the term ‘risk score’. Pharoah and colleagues12 and

Clayton13 refer to the polygenic risk score, R, as having a

log-normal distribution such that log(R) ¼ Y is distributed

as N(m, r2). VALID considers Z ¼ (Y�m)/r, which has a

standard normal N(0,1) distribution. The difference be-

tween cases and controls in mean Y is r2;12 so the difference

between cases and controls in mean Z is r.

Parameterization

Figure 2 shows the key parameters involved in the VALID

model. The strength of a risk score, in terms of its ability to

differentiate cases from appropriate controls on a popula-

tion basis, is assessed by log(OPERA), where OPERA is

the odds ratio per adjusted standard deviation. The ad-

justed standard deviation is the standard deviation of the

residuals after the risk factor has been adjusted for age and

potentially other measures.9,16,17 Given that what is esti-

mated for an adjusted risk factor is the change in risk per

unit change of the risk factor, while conceptually holding

constant all those measures taken into account by sampling

and analysis, it is not appropriate to use the odds ratio per

‘unadjusted’ standard deviation.

Consider a risk score that is normally distributed for

both cases and controls, and with the same variance in

these two groups which, without loss of generality, we

take to be 1. Let D ¼ the difference between cases and con-

trols in mean risk score. Then:

D ¼ log ðOPERAÞ: (1)

(see Relationship between OPERA and D in the

Supplementary Material, and in the Supplementary
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Figure 1 Incidence as an exponential function (a) and log(incidence) as

a linear function (b) of the risk score under the VALID model for a risk

score with a standard normal distribution, superimposed on the risk

score’s density function (dotted line)
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Material (available as Supplementary data at IJE online) in

Schmidt DF and colleagues18).

Figure 1b shows the linear relationship between

log(incidence) and the standardied risk score where

log(incidence) has a normal distribution with mean m and

variance D2.

There is a simple relationship between D ¼ log(OPERA)

and the area under the receiver operating characteristic

curve (AUC) given by:

AUC ¼ UðD=
ffiffiffi

2
p
Þ; (2)

where U is the cumulative distribution function of the stan-

dard normal distribution (see Relationship between AUC

and D ¼ log(OPERA) in Supplementary Material18).

Therefore D ¼ log(OPERA) is linearly related to probit

transformed AUC irrespective of the disease prevalence. It

is the difference between cases and controls in the mean of

the standardized risk score and is also referred to in differ-

ent ways in different disciplines, such as Cohen’s D.19

Figure 3 shows the distribution of log(incidence) for cases

and controls in the situation where D ¼ 1.2 and

AUC¼ 0.8.

The variance of the log(incidence) is:

r2 ¼ D2 ¼ ½log ðOPERAÞ�2 (3)

and is the square of the difference in means between cases

and controls on the standardized risk score scale, the dif-

ference in mean log(incidence) between cases and controls,

and the square of the logarithm of the odds ratio per stan-

dard deviation of the risk score; see Figure 2.12

Familial risk caused by familial aspects of a risk

factor: unifying equation

For a given pair of relatives, rel ¼ twin pairs, siblings, etc,

let the familial odds ratio be the odds of disease for the rel-

ative of an affected person divided by the odds of disease

for the same type of relative of an unaffected person. A

risk factor with a correlation in risk score between relatives

of rrel, and a risk gradient of D ¼ log(OPERA), generates a

corresponding:

familial odds ratio ¼ expðrrelD
2Þ: (4)

Risk factor Factor associated with risk of disease for persons of the same age

Risk score Risk factor normalised, adjusted for age and standardised (variance = 1)

OPERA Odds ra�o per standard devia�on of adjusted and normalised risk factor  

� = log(OPERA) Difference in mean risk score between cases and controls

�2 = �2 Variance in age-specific log incidence; 

 difference in mean log(incidence) between cases and controls

FRR ~ exp(r�2) Familial risk ra�o generated by a risk score correlated r in rela�ves

AUC Area under the receiver opera�ng characteris�c score; 

 linearly related to � = � in the range 0 to 1.2 and less so therea�er;

 linearly related to � = � a�er being probit transformed

Tetrachoric correla�on Linearly related to �2 = �2 in the range 0 to 1.4, and less so therea�er;

 linearly related to log(FRR) a�er Fisher Z transformed; 

 differs by disease frequency

Figure 2 Definitions, descriptions, and relationships between major concepts underlying the VALID model
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Given we are interested in diseases (see above), the fa-

milial odds ratio is approximately equal to the familial risk

ratio (FRRrel) ¼ the risk of disease for the unaffected rela-

tive of an affected person divided by the risk for the same

type of unaffected relative of an unaffected person. In this

setting:

FRRrel � expðrrelD
2Þ: (5)

Once the relationship between D and the interquantile

risk ratio is understood (see Relationship between IQRR

and D in Supplementary Material,18) it can be seen that

Equation (5) was in effect derived by Aalen10 under the as-

sumption of a multiplicative risk and a ‘rare’ disease. For a

polygenic model, Equation (4) was derived by Pharoah and

colleagues12 and Clayton proved it was a good approxima-

tion for both the multiplicative and logistic risk models.13

Equation (4) had previously been shown to apply to spe-

cific instances by Hopper and Carlin.11

We refer to Equation (4) as the Unifying Equation. It is

fundamental to genetic epidemiology and plays a critical

role in VALID because it allows the familial aspects of any

risk factor to be interpreted in terms of its contribution to

the disease association for all pairs of relatives. For dis-

eases, Equation (5) implies that:

D ¼ ½log ðFRRrelÞ=rrel�0:5 (6)

and from (2) and (5),

AUC ¼ Uf½log ðFRRrelÞ=2rrelÞ�0:5g: (7)

If the only cause of familial risk is genetic factors such

that, for first degree-relatives, rrel ¼ 0.5, then:

AUC ¼ Uf½log ðFRRrelÞ�0:5g: (8)

Under this assumption, if the FRR for first degree rela-

tives is 2, then the maximum AUC that can be achieved by

knowing all additive genetic factors is 0.80, corresponding

to D ¼ 1.2 and r2 ¼ 1.4; see Figure 3.

Table 1 shows the different risk discrimination parame-

ters for a selection of values across their ranges sufficient

to allow for reasonably accurate interpolation.

Modelling the familial causes of variance in risk

For the point of illustration, consider the classic twin

model which makes the ‘equal environments assumption’

that the non-genetic effects shared by twins are the same

for both MZ and DZ pairs. This assumption maximizes

the proportion of familial variance attributed to genetic

factors.

Suppose that the variance in risk can be decomposed

into an additive genetic component (A) and a shared envi-

ronment component (C) as described in Background. The

risk score represents germline genetic factors for which rrel

can be modelled in terms of the kinship coefficients follow-

ing Fisher,1 and the effects of non-genetic factors shared by

twins can be modelled in various ways; see below.

For monozygotic (MZ) twin pairs, rrel ¼ 1. For dizy-

gotic (DZ) twin and sibling pairs:

rrel ¼ ð0:5Aþ CÞ=ðAþ CÞ: (9)

This model can be extended to other relatives.3

The shared environmental variance component, C, can

be modelled perhaps more informatively by taking into

Table 1 Comparative tabulation of different parameters of

risk discrimination

AUCa OPERAb Dc D2d FRRMZ
e IQRRf UQRRg

0.50 1 0 0 1 1 1

0.55 1.2 0.18 0.03 1.04 1.6 1.2

0.60 1.4 0.36 0.13 1.14 2.5 1.5

0.65 1.7 0.54 0.30 1.34 4.0 1.8

0.70 2.1 0.74 0.55 1.74 6.7 2.1

0.75 2.6 0.95 0.91 2.50 12 2.4

0.80 3.3 1.19 1.42 4.12 22 2.8

0.85 4.3 1.47 2.15 8.58 49 3.1

0.90 6.1 1.81 3.28 26.8 135 3.5

0.95 10 2.33 5.41 224 706 3.8

aArea under the receiver operating characteristic curve (AUC).
bOdds ratio per standard deviation of the adjusted risk factor (OPERA).
cDifference in mean between cases and controls (D ¼ log(OPERA)).
dVariance in log(incidence) (D2).
eFamilial risk ratio if r¼1.0 (FRRMZ ¼ exp(D2)).
fInterquartile risk ratio (IQRR).
gUpper-quartile risk ratio to the population average (UQRR).

0 2-2 1-1

AUC = 0.8
Δ=1.2

Controls Cases

De
ns

ity

Risk score (R)

Figure 3 Density of the risk score distribution under the VALID model

for cases and controls when D¼ 1.2 and the area under the receiver op-

erating characteristic curve (AUC) ¼ 0.8
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account the extent to which pairs of relatives cohabit, have

cohabited or have lived apart.6 Non-genetic effects shared by

parents and offspring,20–24 spouse associations3,23,24 and

variations that take into account the birth order can be mod-

elled.25,26 Despite evidence that shared environment has dif-

ferent roles for different types of relatives, even for those of

the same degree of genetic relationship,3,21,22 this more nu-

anced modelling has not been popular among genetic

researchers. Recently, we analysed epigenetic data for twins

and family from across the lifespan and found evidence for

non-genetic factors that would otherwise have been attrib-

uted to genes.23,24 Given familial aggregation is highly age-

dependent, at least for breast cancer,27,28 it is also important

to consider age and cohabitation aspects of both A and C.

Combining risk factors

For two factors whose risk associations are virtually inde-

pendent, in that their individual risk gradients Di (i¼ 1,2)

are essentially the same whether they are fitted alone or to-

gether, let D12 be their combined risk gradient when they

are fitted together. Then:

D12 � ðD1
2 þ D2

2Þ0:5: (10)

An exact and more general formula for D12 is given in

the Supplementary Material where its validity is shown for

a special case.

Heuristic justification for the approximate formula

comes from interpretation of D as the difference between

cases and controls in mean risk score. If two (uncorrelated)

risk scores are combined, the distance in means in two-

dimensional space is the hypotenuse of a right-angled tri-

angle whose sides are the differences in means for each of

the risk scores. This argument can be extended to n> 2 in-

dependent risk factors in which case:

D1...n � ðD1
2 þ � � � þ Dn

2Þ0:5: (11)

If the two risk scores are not acting independently (i.e.

their associations are correlated) their combined

associations would be attenuated, as would the third side

of a less than right-angled triangle; see Supplementary

Material. Therefore, the risk variance for a combination of

independent risk scores, D1. . .n
2, is approximately the sum

of the variances of the independent components, Di
2. This

variance will be attenuated if the risk scores capture some

risk factor information in common, which can also be

overcome by using the OPERA concept.

Application

As in Hopper and Carlin11 we study female breast cancer,

but model variance in age-specific log(incidence).

Unmeasured familial factors

First, we consider unmeasured familial factors by analysing

twin associations estimated by the Nordic Twin Study,28

which takes into account temporal and censored aspects

lacking in an earlier publication.29

Column two of Table 2 shows that the FRR for MZ

pairs decreases from 5.91 before age 50 years to 2.50 by

age 80 years. Column four shows that, given rrel ¼ 1 for

MZ pairs and Equation (5), the maximum variance

decreases from log(5.91) ¼ 1.78 to log(2.50) ¼ 0.92.

Under the classic twin model and using Equation (8),

column six shows that the additive genetic variance (A)

decreases with age from 1.04 to 0.66, and column seven

shows that the shared environment variance (C) decreases

from 0.74 to 0.26. Therefore, on average about two-thirds

of the declining familial variance is attributed to genetic

factors irrespective of age.

Measured familial factors

Genomic risk factors

Segregation analyses of multigenerational family data have

also found that the total familial variance decreases with

age. A substantial proportion of variance at young ages is

explained by the major breast cancer susceptibility genes

Table 2 Familial relative risk (FRR), twin pair covariance in log(incidence), additive genetic (A) and shared environmental (C)

components of variance in log(incidence), and maximum area under the receiver operating characteristics curve from knowing

all genetic causes (AUCmax) based on data from the Nordic Twin Study of Breast Cancer28

Age (years) FRR MZ FRR DZ Covariance MZ Covariance DZ A C AUCmax

<50 5.91 3.51 1.78 1.26 1.04 0.74 0.83

50–59 4.93 2.77 1.60 1.02 1.15 0.44 0.81

60–69 2.98 2.24 1.09 0.81 0.57 0.52 0.77

70–79 2.5 1.8 0.92 0.59 0.66 0.26 0.75

MZ, monozygotic twin pairs; DZ, dizygotic twin pairs.
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BRCA1 and BRCA2, and a small proportion by other ma-

jor genes including ATM, PALB2 and Tp53.30 These major

genes explain little variance for post-menopausal women;

see Figure 4.

The OPERA for the current best breast cancer polygenic

risk score (PRS) is log(1.65) ¼ 0.50 so the variance

explained is (0.50)2 ¼ 0.25.8 This association is similar

across all ages, although perhaps weaker before age

40 years. For women under the age of 50 years, a PRS

based on 77 single nuclleotide polymorhisms (SNPS) did

not explain any familial risk of breast cancer diagnosed be-

fore age 50 years.31 Therefore, much remains to be learned

about the polygenic risk for breast cancers diagnosed at a

young age; see Figure 4.

Non-genomic risk factors

Many non-genomic risk factors have been identified from

questionnaire data. These include reproductive factors

such as number and timing of live births and ages at men-

arche and menopause, as well as anthropometric factors

height, and for post-menopausal women weight, which

have historically been combined as body mass index. The

risk gradients are modest, with OPERAs in the range of

1.005 to 1.2.9

Questionnaires attempt to reveal aetiologically relevant

processes which, if measured more precisely, would have

greater risk gradients. Almost all these non-genomic risk

factors are correlated in relatives, usually only weakly.

Therefore, they generate familial as well as mostly non-

familial components of variance, and the Unifying

Equation (4) describes how these are apportioned.

Familial aspects of non-genomic risk factors

As an example, multiple mammogram risk scores (MRSs)

based on different aspects of a mammogram are being

found to be associated with breast cancer risk. These in-

clude conventional mammographic density, mammo-

graphic density measured at high brightness pixel

thresholds,16,32–38 and textural features and other agnostic

measures learned by machine learning.18,39,40

The correlation in the MRSs based on mammographic

density is about 0.6 for MZ pairs and 0.3 for DZ and sister

pairs.41,42 The risk gradient for an MRS based on conven-

tional mammographic density has an OPERA of about 1.5,

so the variance is about 0.16, of which 0.10 would be fa-

milial and 0.06 non-familial. The risk gradient is greater

for the new MRS, and when combined could be as high as

2.1,37 in which case the variance would be 0.55. If the MZ

twin pair correlations of these new MRS are similar to

those for conventional density,42 they could explain as

much if not more familial variance than the current PRS.

Non-genomic non-familial risk factors

Most variation in questionnaire-based risk factors is

individual-specific and makes minimal contribution to fa-

milial variance; see Figure 4. Greater specificity of
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Figure 4 Decomposition of variance in log(incidence) of breast cancer by age according to familial effects, including rare high-risk variants in major
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exposures will increase the variance due to known non-

familial factors, as is being found with the new MRS being

discovered by applying artificial intelligence to digital

mammography.34 Application to epigenetics might reveal

new and mostly individual-specific risk factors.23,24,43

Combinations of risk factors: independence and

interactions

In general, the risk associations for known risk factors (i.e.

relative risks for women of the same age) do not change

greatly when fitted together; in epidemiological parlance,

these associations are said to be ‘independent’ because they

are additive on a particular scale. But this can be mislead-

ing. Given epidemiological analyses use the log or logit

scales, a ‘lack of interaction’ on those scales means the

associations of risk factors tend to multiply on one another

on the absolute risk scale, on which there must be ‘interac-

tions’ because the greater a woman is on one risk factor,

the greater is her absolute risk gradient on another risk

factor.44,45

Combining polygenic risk scores with risk scores

based on family history

Polygenic risk scores are familial, so their (relative) risk

associations will not necessarily be independent of family

history associations. We constructed a continuous familial

risk score (FRS)46 from multigenerational family history

data using, for example, the BOADICEA pedigree-based

model.47 We estimated risk associations with and without

fitting an established PRS and found that, for breast cancer

diagnosed before age 50 years, the FRS and PRS were not

correlated and their risk associations were independent.

That is, the PRS discovered using mostly samples of post-

menopausal women explains at most a small proportion of

why breast cancer diagnosed at a young age runs in fami-

lies. Figure 4 shows that the major genes and other factors

dwarf the contribution of the PRS to familial risk variance

in this younger age range.30

Combining mammographic risk scores with

polygenic risk scores

We originally predicted that �10% of the familial variance

of breast cancer is explained by familial aspects of mam-

mographic density (adjusted for age and body mass in-

dex).48 This was corroborated by estimating the change in

family history associations after adjusting for this MRS.49

About the same proportion of SNPs associated with breast

cancer have been found to be nominally associated with

this MRS,50 but the current best PRS SNPs is at best only

weakly correlated with this familial MRS.51,52

Conclusion

For any risk factor, once appropriately converted into a

multiplicative risk score, its ability to differentiate cases

from controls is dictated by the risk gradient, log(OPERA),

the square of which is the variance in risk. The familial

aspects of variance can be estimated from the familial odds

ratio using the Unifying Equation. The familial risk vari-

ance can be decomposed into genetic and non-genetic com-

ponents by returning to Fisher’s seminal 1918 paper that

converted familial correlations into variance components;

see Supplementary Material or a discussion of the histori-

cal context. VALID converts familial risk ratios into vari-

ance components of risk for familial and non-familial

factors, genetic and non-genetic aspects of familial risk, ge-

nomic and non-genomic aspects of genetic risk, and famil-

ial and non-familial aspects of non-genomic risk; see

Figure 4.

VALID is underpinned by the OPERA concept9 and the

key metric is D ¼ log(OPERA), a natural risk gradient for

a risk score. D can be interpreted as the difference between

cases and controls in their mean risk score and is the stan-

dard deviation of log(incidence).

VALID extends the concept of ‘polygenic’ variance in

risk12,13 to all other causes and can be applied to major

genes by estimating the proportion of polygenic variance

explained after fitting the effects of rare high-risk muta-

tions.30 VALID allows the familial variance to be due to

more than genetic factors alone, for example using

Equation (9).

Table 1 allows comparisons of the risk-discriminatory

strengths of risk factors, measured and unmeasured. Note

we are considering variation in risk for persons of the same

age. Therefore, it is inappropriate to compare, for exam-

ple, AUCs derived from cohorts estimating absolute risk

for diseases whose incidence is age-dependent—particu-

larly when this age-dependence is not necessarily univer-

sal—with AUCs derived from case-control studies.

Figure 5 shows the receiver operating characteristic curve

according to the FRR.

Why log(incidence)?

Log(incidence) is a natural risk scale in epidemiology, and

typically is highly dependent on age. The linearity or other-

wise of its relationship to log(age) has been used to make

biologically relevant inference about underlying stages in

disease progression with application to common cancers53
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and about the role of cumulative exposure to ovarian hor-

mones in breast cancer risk.54

A major focus of epidemiology is on the causes of differ-

ences in log(incidence) between groups of the same age and

the estimation of the risk gradients such as relative risk,

odds ratio and hazard ratio by applying logistic regression

to case-control studies or Cox proportional hazards regres-

sion to cohort studies. Variation in log(incidence) is the

basis of complex segregation analyses of pedigree data in

search of evidence for, and about, major genes.47 Genome-

wide association studies are applying case-control analyses

to create additive polygenic risk scores on this scale.8

Generality

We allow the risk score to be measured or unmeasured.

Whereas our multiplicative model might not accurately

represent reality for every risk factor, as a model for study-

ing combined risk factors by, for example, familial versus

non-familial or genetic versus non-genetic, we illustrated

how it might be a useful approximation to reality based on

empirical evidence, at least for breast cancer. The model

also applies to combinations of risk scores.

Comparison with liability model and heritability

Application of the deterministic liability model to the

Nordic Twin Study28 suggested that the influence of ge-

netic factors on variation in risk, as measured by the tet-

rachoric correlation and heritability, is relatively stable

with age. This is contrary to our findings from applying

VALID. We think the discrepancy is explained because the

AUC under the liability model is dependent on the disease

prevalence as well as the tetrachoric correlation,55 whereas

under the VALID model it depends solely on the FRR.

Figure 6a shows that the relationship between the tet-

rachoric correlation and log(OPERA) is almost linear for

log(OPERA) <1, but not thereafter, and depends highly on

the disease prevalence. Figure 6b shows that on a natural
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model labelled according to the familial risk ratio (FRR), where
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scale for correlations, the Z-transformed tetrachoric correlation

is almost linear with log(OPERA) across unbounded scales,

though the slope still depends highly on disease prevalence.

There are two important consequences. First, for diseases

with a<2-fold increased risk from having an affected first-

degree relative, decomposition of familial risk will be similar

whether the liability or VALID models are used. Second, the

liability model predicts that the role of genes is greater for

more common diseases with the same FRR, and for older

persons even if the FRR is independent of age, contrary to

the prediction of the VALID model and empirical evidence.

Summary

In conclusion, we propose thinking about how risk factors

explain variation in risk in terms of variance in the loga-

rithm of age-specific incidence. Genetic and non-genetic fac-

tors combine to explain greater amounts (not proportions)

of variation in risk. VALID describes the finite genetic archi-

tecture and unlimited environmental landscape of disease

risk using a single metric, enabling causes of risk variation

(not causes per se) to be compared and combined.

The maximum variation in risk due to genetic factors is

determined by studying MZ twin pairs. Genetic factors

will not be important for population risk stratification if

the MZ twin pair odds ratio is weak, irrespective of disease

frequency. The familial odds ratio is directly related to the

absolute familial variance by the Unifying Equation. This

harks back to Fisher’s 1918 paper1 where he showed that

the major issue for evolution was the magnitude of the ge-

netic variance, not a percentage or proportion of the total

variance which he described as a ‘hotch-potch’ of a denom-

inator.2 For risk, the denominator is in effect unlimited.

Our application of VALID to female breast cancer

revealed that, whereas substantial components of variation

in familial risk have been discovered, there remains much

to be learned about the familial causes of breast cancer

particularly for young women, and little is known about

individual-specific variance in risk.

Ethics approval

This study does not need ethical approval as it uses only data from

published analyses.

Data availability

Not applicable.

Supplementary data

Supplementary data are available at IJE online.

Author contributions

J.L.H. initiated the VALID and OPERA concepts and how they

could be used to decompose familial, genetic and non-genetic vari-

ance. J.G.D. proved the relationship between OPERA and the AUC

and wrote the Combining Risk Scores section of the Supplementary

Material. T.L.N. helped develop the OPERA concept and demon-

strated its use for mammographic density research. S.L. demon-

strated how the VALID concept applied to major genes and breast

cancer. G.S.D. and R.J.M. applied the OPERA concept to familial

risk scores and polygenic risk scores. E.M. and D.F.S. applied the

OPERA concept to mammogram risk scores. M.B. applied the de-

composition of familial risk ratios underlying VALID to childhood

asthma and hay fever. J.S. (Australia) introduced the mammo-

graphic density research technology to Australia. J.S. (Korea) helped

develop the VALID and OPERA concepts through application to

Korean mammographic density research studies with T.L.N. super-

vised by M.A.J., who also applied familial odds ratio decomposition

to asthma. G.G.G. helped create the Australian mammographic den-

sity research studies. M.C.S. led genomic work fundamental to the

application of VALID to breast cancer. J.D.M. developed earlier

versions of this analytical approach with J.L.H. in the 1980s.

Funding

J.L.H. was supported by an NHMRC Fellowship (GMT1137349)

and is currently a Dame Kate Campbell Professorial Fellow at the

University of Melbourne. T.L.N. is supported by Cancer Council

Victoria (AF7305). S.L. is a Victorian Cancer Agency Early Career

Research Fellow (ECRF19020). J.S. (Australia) is supported by a

National Breast Cancer Foundation Early Career Fellowship (ECF-

17–010). J.S. (Korea) is supported by a National Research

Foundation of Korea grant funded by the Korean government

(MSIT) (No. 2020R1A2C2101041). M.A.J. is supported by a

National Health and Medical Research Council Investigator grant

(APP1195099). M.C.S. is supported by a National Health and

Medical Research Council Fellowship (GNT1155163).

Acknowledgements
We would like to acknowledge the work of Odd Aalen, David

Clayton, Robert Elston and Ronald Fisher, which laid the founda-

tions for the VALID concept.

Conflict of interest

G.S.D. is employed by Genetic Technologies Limited. The other

authors declare no conflict of interest.

References

1. Fisher RA. The correlation between relatives on the supposition

of Mendelian inheritance. Trans R Soc Edinb 1919;52:399–433.

2. Fisher RA. Limits to intensive production in animals. Br Agric

Bull 1951;4:217–18.

3. Harrap SB, Stebbing M, Hopper JL et al. Familial patterns of co-

variation for cardiovascular risk factors in adults: The Victorian

Family Heart Study. Am J Epidemiol 2000;152:704–15.

4. Falconer DS. Introduction to Quantitative Genetics. Edinburgh/

London: Oliver & Boyd, 1960.

1566 International Journal of Epidemiology, 2023, Vol. 52, No. 5

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/52/5/1557/7205482 by guest on 29 January 2024

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad086#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad086#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad086#supplementary-data


5. Lange K, Westlake J, Spence MA. Extensions to pedigree analy-

sis. III. Variance components by the scoring method. Ann Hum

Genet 1976;39:485–91.

6. Hopper JL, Mathews JD. Extensions to multivariate normal

models for pedigree analysis. Ann Hum Genet 1982;46:373–83.

7. Hopper JL, Tait BD, Propert DN, Mathews JD. Genetic analysis

of systolic blood pressure in Melbourne families. Clin Exp

Pharmacol Physiol 1982;9:247–52.

8. Mavaddat N, Michailidou K, Dennis J et al. Polygenic risk scores

for prediction of breast cancer and breast cancer subtypes. Am J

Hum Genet 2019;104:21–34.

9. Hopper JL. Odds per adjusted standard deviation: comparing

strengths of associations for risk factors measured on different

scales and across diseases and populations. Am J Epidemiol

2015;182:863–67.

10. Aalen OO. Modelling the influence of risk factors on familial ag-

gregation of disease. Biometrics 1991;47:933–45.

11. Hopper JL, Carlin JB. Familial aggregation of a disease conse-

quent upon correlation between relatives in a risk factor mea-

sured on a continuous scale. Am J Epidemiol 1992;136:

1138–47.

12. Pharoah P, Antoniou A, Bobrow M et al. Polygenic susceptibility

to breast cancer and implications for prevention. Nat Genet

2002;31:33–36.

13. Clayton DG. Prediction and interaction in complex disease ge-

netics: experience in type 1 diabetes. PLoS Genet 2009;5:

e1000540.

14. Wentzensen N, Wacholder S. From differences in means between

cases and controls to risk stratification: a business plan for bio-

marker development. Cancer Discovery 2013;3:148–57.

15. Win AK, Dowty JG, Cleary SP et al. Risk of colorectal cancer for

carriers of mutations in MUTYH, with and without a family his-

tory of cancer. Gastroenterol 2014;146:1208–11.

16. Nguyen TL, Aung YK, Evans CF et al. Mammographic density

defined by higher than conventional brightness threshold better

predicts breast cancer risk for full-field digital mammograms.

Breast Cancer Res 2015;17:142.

17. Hopper JL, Nguyen TL, Li S. Blood DNA methylation score pre-

dicts breast cancer risk: applying OPERA in molecular, environ-

mental, genetic and analytic epidemiology. Mol Oncol 2021;16:

8–10.

18. Schmidt DF, Makalic E, Goudey B et al. Cirrus: An automated

mammography-based measure of breast cancer risk based on

textural features. JNCI Cancer Spectr 2018;2:pky057.

19. Salgado JF. Transforming the area under the normal curve

(AUC) into Cohen’s d, Pearson’s rpb, odds-ratio, and natural log

odds ratio: two conversion tables. European J Psychol Applied

to Legal Context 2018;10:35–47.

20. Hopper JL, Mathews JD. Extensions to multivariate normal

models for pedigree analysis. II. Modeling the effect of shared en-

vironment in the analysis of variation in blood lead levels. Am J

Epidemiol 1983;117:344–55.

21. Clifford CA, Hopper JL, Fulker DW, Murray RM. A genetic and

environmental analysis of a twin family study of alcohol use,

anxiety, and depression. Genet Epidemiol 1984;1:63–79.

22. Hopper JL, Culross PR. Covariation between family members as

a function of cohabitation history. Behav Genet 1983;13:

459–71.
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