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The hype over artificial intelligence (AI) has spawned claims that clinicians (particularly ra-
diologists) will become redundant. It is still moot as to whether AI will replace radiologists in
day-to-day clinical practice, but more AI applications are expected to be incorporated into the
workflows in the foreseeable future. These applications could produce significant ethical and
legal issues in healthcare if they cause abrupt disruptions to its contextual integrity and
relational dynamics. Sustaining trust and trustworthiness is a key goal of governance, which is
necessary to promote collaboration among all stakeholders and to ensure the responsible
development and implementation of AI in radiology and other areas of clinical work. In this
paper, the nature of AI governance in biomedicine is discussed along with its limitations. It is
argued that radiologists must assume a more active role in propelling medicine into the digital
age. In this respect, professional responsibilities include inquiring into the clinical and social
value of AI, alleviating deficiencies in technical knowledge in order to facilitate ethical eval-
uation, supporting the recognition, and removal of biases, engaging the “black box” obstacle,
and brokering a new social contract on informational use and security. In essence, a much
closer integration of ethics, laws, and good practices is needed to ensure that AI governance
achieves its normative goals.

� 2019 The Royal College of Radiologists. Published by Elsevier Ltd. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In April 2018, the US Food and Drug Administration
(FDA) granted approval for IDx-DR (DEN180001) to be
marketed as the first artificial intelligence (AI)-based diag-
nostic system that does not require clinician interpretation
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to detect greater than a mild level of diabetic retinopathy in
adults diagnosed with diabetes.1 In essence, this ‘Software
as a Medical Device’ (SaMD) applies an AI algorithm to
analyse images of the eye taken with a retinal camera that
are uploaded to a cloud server.2 A screening decision is
made by the device as to whether the individual concerned
has “more than mild diabetic retinopathy” and, if so, is
referred to an eye care professional for medical attention.
Where the screening result is negative, the individual will
be rescreened in 12 months. Importantly, IDx-DR is to be
applied specifically for detecting diabetic retinopathy, and
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in individuals who do not present with higher risks or
medical complications.

IDx-DR is capable of machine learning (ML), which is a
subset of AI and refers to a set of methods that has the
ability to detect patterns in data automatically in order to
predict data trends or for decision-making under uncertain
conditions.3 Deep learning (DL) is in turn a subtype of ML
(and a subfield of representation learning) that is capable of
delivering a higher level of performance, and does not
require a human to identify and compute the discrimina-
tory features for it. From the 1980s onwards, DL software
has been applied in computer-aided detection systems, and
in more recent years, in computer-aided diagnosis (CAD)
systems.4 The field of radiomics (a process that extracts
large number of quantitative features frommedical images)
is broadly concerned with the latter, where DL has enabled
the use of CAD systems in computer-learned tumour sig-
natures. It has the potential to detect abnormalities, make
differential diagnoses, and generate preliminary radiology
reports in the future, but only a few methods are able to
manage the wide range of radiological presentations of
subtle disease states.4 Beyond image analysis, AI-based
non-image analytical tools may profoundly impact radi-
ology in their potential to improve radiology departmental
workflow through precision scheduling, identifying pa-
tients who are likely to miss appointments, and producing
individually customised examination protocols.5

The hype over AI has spawned claims that clinicians like
radiologists will become redundant. It is still moot as to
whether AI will replace radiologists in day-to-day clinical
practice but more AI applications are expected to be incor-
porated into the workflows of picture archiving and
communication systems (PACS) in the foreseeable future.
Areas that can be automated with AI have been identified
as6,7: (a) automated image segmentation, lesion detection,
measurement, labelling and comparison with historical
images; (b) generating radiology reports, particularly with
the application of natural language processing and natural
language generation; (c) semantic error detection in reports;
(d) data mining in research; and (e) improved business in-
telligence systems that allow real-time dash-boarding and
alert systems, workflow analysis and improvement, out-
comes measures and performance assessment. Policy and
professional interventions may become necessary to
manage job displacement as repetitive, low discretion, and
mundane tasks become automated; to create new jobs and
roles within healthcare (such as medical data scientists);
and to reduce friction from the transition.

It is consequently likely that AI applications will produce
significant ethical and legal issues in healthcare, especially
if they cause abrupt disruptions to its contextual integrity
and relational dynamics. Healthcare is currently delivered
by licensed professionals at accredited facilities or licensed
premises, and designed to flow from a professional through
approved channels to care recipients. The professional here
is also the repository of knowledge, which underscores the
notion of a fiduciary relationship where a clinician is
required to act in the best interests of her or his patient.8 AI
applications are part of a rapidly growing number of new
technologies that directly or indirectly enable lay people to
access a rich pool of knowledge, interact with other in-
dividuals with expertise and/or experiential knowledge and
may eventually be able to derive accurate diagnoses and
develop effective healthcare regimens independently of a
clinician. AI applications could also disrupt current health-
care practices. In many health systems, clinical medicine
increasingly reflects a shift-based model, where fewer cli-
nicians follow diseases from their presentation through
their ultimate outcome.9 AI applications may assume a
greater role in integrating healthcare, evenwhile a clinician
remains at the centre in attribution of ethical and legal re-
sponsibilities, in payment arrangements, and in organisa-
tional setup. In addition, AI may curtail a patient’s exercise
of her or his right to privacy and confidentiality as ML
analysis will require the patient’s personal information to
be recorded.9

Disruptions need not necessarily be negative, provided
that the goals of medicine are sustained. In this paper, we
focus on one goal in particular: service of the sick or
otherwise acting for the good of patients. It follows that our
use of the term “clinician” is intended to refer broadly to a
moral community of professions (especially nurses and
doctors) that is socially established and trained to serve
patients.10 In this regard, we are concerned about the
impact of AI applications on trust on the part of patients, as
well as trustworthiness on the part of clinicians and health
systems. Sustaining trust and trustworthiness in healthcare
is not simply a professional concern.11 It is recognised in
ethics and in law to be in the public interest, and conse-
quently, it is also a key goal of healthcare governance. In the
section that follows, we consider the nature of governance
in AI-based biomedicine and the limits to achieving its
normative goals. We then consider how concerted profes-
sional responses are needed, particularly on the part of the
radiology community.
General trend in governance

As the discussion in this section seeks to illustrate, the
nature of governance of biomedicine is increasingly risk-
based, context-specific, case-sensitive, decentralised,
collaborative and, in terms of its epistemic (knowledge)
constituents, pluralistic. As we considered above, IDx-DR
was reviewed under the FDA’s De Novo premarket review
pathway and was granted Breakthrough Device designa-
tion,12 as the SaMD is novel and of low to moderate risk.
Importantly, the FDA provided intensive interaction and
guidance to the company on efficient device development in
order to expedite evidence generation and its review of the
device that provides for more effective treatment or diag-
nosis of a life-threatening or irreversibly debilitating disease
or condition, with no approved or cleared alternatives.

A risk-based approach is adopted by the FDA, and its
application to a total product life-cycle process is embodied
in ISO 14971, as well as its accompanying guidance docu-
ment, ISO TR 24971 (an ISO Technical Report).12,13 These
documents outline a risk management process for medical
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device manufacturers to identify hazards (defined as po-
tential sources of harm), estimate and evaluate risks, and to
respond effectively through developing, implementing, and
monitoring risk control measures. Broadly speaking, risk
analysis performed within this framework entails the sys-
tematic use of available information to identify hazards and
to estimate the risk that arises from the scope and intended
use of the device. Risk estimates are computed based on the
probability of occurrence of harm and the severity of that
harm. These estimates are then evaluated, such as through
the use of a risk evaluation matrix, which distinguishes
acceptable levels of risks from unacceptable ones. Risk
controls (through product design or labelling) are devel-
oped and implemented to reduce unacceptable risks. The
effectiveness of each risk control measure must be evalu-
ated to ensure that residual risks are within acceptable
levels. Otherwise, additional risk control measures will
need to be introduced. Additionally, a similar analysis must
be conducted to evaluate the entire device (that is, analysis
that is not linked to particular hazard) in order to determine
if the overall residual risk meets that acceptability criteria of
the manufacturer or developer. A risk management report
documents the entire process, and is updated with post-
development risk-relevant events such as product feed-
back and non-conformance. This standard was last
reviewed and confirmed in 2010, but is currently being
reviewed.14

Similar to the approach in the US, the European regula-
tory regime15e17 adopts a risk-based approach to regulate
medical devices, which are defined as any instrument or
tool (including software) intended by the manufacturer to
be used for humans for purposes that include diagnosis,
prevention, monitoring, treatment, or alleviation of dis-
ease.18 The responsibility of risk assessment is placed on
device manufacturers or on an independent certification
body appointed by authorities of EU member states. Recent
changes to the regulatory framework will mostly come into
effect from 2020 onwards,19,20 and they will widen the
range of products that will be regulated, extend liability to
defective products, strengthen requirements for clinical
data and traceability of the devices, introduce more
rigorous monitoring of certification bodies and improve
transparency by requiring more product information to be
placed in the public domain.21 Such a governance approach
reflects what Matthew Scherer22 terms an ex ante (as
opposed to an ex post) regulation. It is pre-emptive of
foreseeable risks and has a more open and participatory
character. Although this approach has been effective in
paving a way forward to market approval for IDx-DR, the
study that supports the approval23 was conducted under
highly controlled conditions where a relatively small group
of carefully selected patients was recruited to test a diag-
nostic system under narrow usage criteria. It is questionable
whether the AI feature itself was tested, as the auto-didactic
aspect of the algorithmwas locked prior to the clinical trial,
which greatly reduced the range of possible outputs.24 At
this stage, IDx-DR is not capable of evaluating the most
severe forms of diabetic retinopathy that require urgent
ophthalmic intervention. Moving forward, unsupervised
ML devices will test the limits of this governance approach.
The challenges to risk assessment, management, and miti-
gation will be amplified as AI-based devices change rapidly,
with the assumption of less tangible form (discreetness),
embodiment of more diverse components (discreteness),
greater dispersion across geographical and jurisdictional
spaces (diffuseness) and opacity.22

Governance is likely to become increasingly complex,
less certain, and more challenging to describe. In the info-
sphere, Floridi25 depicts governance (along with regulation
and ethics) as one of the three normative cornerstones.
Digital governance is the practice of establishing and
implementing policies, procedures, and standards for the
proper development, use, and management of the info-
sphere. It overlaps with (but is not identical to) digital
regulation, which relates to a system of laws elaborated and
enforced through social and governmental institutions to
regulate behaviour in the infosphere. The General Data
Protection Regulation (GDPR) that came into force last year
in Europe is an example of digital regulation.26,27 Gover-
nance and regulation may be shaped by digital ethics,
which is concerned with moral problems relating to data
and information, algorithms, and corresponding practices
and infrastructures. One may perhaps query if ethics and
regulation are as discrete as Floridi conceptualises them,
but for the purposes of this paper, ethics and regulation are
regarded as constitutive of, and indistinguishable from,
governance.28

Governance, in the form of bioethics, has been central to
the advancement of biomedicine, as empirical studies have
shown.29e31 Where “big data” and AI-based biomedicine is
concerned, sound and effective governance remains crucial
to all endeavours that are directed at understanding and
responding to the many challenges that are posed and
anticipated. This is evident in the policy documents that
have been produced at the highest level of government on
what good governance could and perhaps should look like.
In the US, the Executive Office of the President32,33

considered how good governance of AI could advance na-
tional priorities, broadly enumerated as increased economic
prosperity, improved educational opportunity, social secu-
rity, and quality of life, and enhanced national security.
Public good, fairness, and safety have been identified as key
guiding principles. The US National Science and Technology
Council34 provided a more nuanced roadmap on how some
of these priorities may be realised through investments in
research and development. In the UK, a report of the House
of Commons’ Science and Technology Committee on AI35 is
similar to the US policy documents on AI in its call for a
“light touch” approach to governance for sustaining tech-
nological development to advance national economic in-
terests. Of especial note is its call for the UK government to
provide leadership on the ethical, legal, and social impli-
cations (ELSI) of AI, even if it should trail behind other
countries such as the US, Germany, and Japan on the tech-
nical aspects. Across the English Channel, the European
Parliament’s Committee on Legal Affairs36 proposed for a
regulatory agency to be established in order to address
ethical and legal issues concerning AI-enhanced robots.
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Arguably, these are still early days in thinking about
desirable (let alone ideal) governance of AI-based biomed-
icine in terms of its normative and conceptual foundations,
mechanisms, and practices. Not surprisingly, our col-
leagues37 observe that the vision of the “good AI society”
remains obscure, even if we can generally agree that such a
society should be animated by respect for human dignity
and human rights, rule of law, democracy, transparency,
and accountability. Current “real world” arrangements
present difficult questions as to how we should think about
values like democracy, transparency, and accountability
when AI technology appears to be primarily driven by large
commercial interests. Many more colleagues have high-
lighted concerns over the unchecked use of AI systems in
finance, education, criminal justice, search engines and
social welfare that not only lacks normative justification,
but can give rise to serious detrimental effects.38 Related
concerns about fairness and equity, privacy and security,
and trust are well articulated in important ethical and sci-
entific forums,39e41 even as uncertain legal and social
conditions (over intellectual property protection for AI and
AI-derived work, for instance) greatly obfuscate normative
evaluation. Concerns over the disproportionate influence of
specific interests over AI governance cannot be understated,
especially if “light touch” approach is to carry the day.
Important questions proffered in the literature include:
Who sets the agenda for AI governance? What values and
cultural logic are instantiated? Who ultimately benefits
from it? In “big data” and AI-based biomedicine, clinicians
in general and radiologists in particular will have greater
ethical, legal, and social responsibilities in ensuring that AI-
related technologies are appropriately understood, devel-
oped, and applied.
Professional responsibilities

Public hype and professional anxiety over potential job
losses as a consequent of AI could be a red herring to the
need for more measured and consultative professional
leadership in the governance of this emergent technology.
Securing trust andmaximising value for patients and health
systems should remain central concerns of all clinicians,
with or without AI intervention, and also the goals of good
AI governance. Although AI tools are often presented as
socially desirable because they make healthcare more effi-
cient and affordable,42 their clinical and social value may
not always be well established through inquiry and
consensus. Many research and clinical applications in
radiology including molecular imaging, radiometric, radio-
genomics, and large population cancer screening will
involve data mining, which will be facilitated by ML ana-
lyses.7 In order to advance AI-based imaging research and
practice, supportive infrastructure and operational stan-
dards must be in place to integrate AI applications and
ensure that they are interoperable with existing clinical
radiology workflows, based on their role, type, and use
cases. These include establishment of national and inter-
national image sharing networks, acquisition protocols,
reference datasets of proven cases against which AI-based
software can be tested and compared, criteria for stand-
ardisation, validation and optimisation of imaging protocols
for use in AI applications, and a common lexicon for
describing and reporting these applications.43 Robust
methods need to be developed for quality control of shared
images and for ensuring the integrity of image data. Stan-
dards for curation of images will also need to be established.
It is unclear if any country has established a comprehensive
informatics system capable of supporting data transfer,
storage, quality control, and management across healthcare
and research institutions, but high variability in imaging
protocols among institutions is a key obstacle in many
health systems. In addition, medical images are highly
heterogeneous at both an individual and a population level.
These issues limit the dataset that can be composed for
training and validation purposes, and create a risk of
“overfitting” the data and loss of generalisability, even if
there are different techniques to identify and reduce over-
fitting.44,45 In the light of significant differences in disease
prevalence, imaging protocols with different imaging
characteristics, choice of reference standard and equipment
both within and across different countries, the scope of
application of an AI software will need to be critically
evaluated.5,6 Upscaling AI-based techniques will require a
much clearer understanding of the clinical need (or use
case) and the business case (if commercialised), product
regulation, verification, and monitoring.

Organisational changes, encompassing definition of
roles, technical considerations, and requirements for
implementation, are also needed. For instance, integration
of CAD with PACS will allow for clinical routine use of CAD
as an adjunct to radiologist interpretation of all modalities.
Additionally, integration with electronic health records and
radiology information systems will enable access to pa-
tients’ supporting information, history, test results, and
images. As Liew7 explains, the stakeholders needed to bring
about these changes include the Chief Information Officer
(CIO) and, if available, Chief Data Officer (CDO) of each
hospital, radiology leadership in committees and academic
bodies such as professional colleges and societies, as well as
individual radiologists. The CIO’s role is to ensure that AI-
based initiatives can be implemented safely and effec-
tively, maintain integrity, and (where appropriate) trans-
ferability of data in the electronic health data systems and
consistency with the hospital’s data policies. The CDO in
some organisations are seen to have a role that is supportive
of the CIO, and is responsible for ensuring data quality for
validation and training of ML systems and compliance with
governance requirements. Their work must not be viewed
narrowly only as purely institutional good practices, but as
professional concerns that should be supported by profes-
sional organisations. In the foreseeable future, clinicians
(and especially radiologists) will be critical gatekeepers and
intermediators to AI-based imaging devices and systems. As
AI in biomedicine is not self-enabling, professional stan-
dards relating to research and practice will become even
more important, even as product or device regulation gain
in complexity.
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Inquire into clinical and social value

A gulf is said to exist between an algorithm that works
well on a small dataset from a specific population and one
that can be reliably applied to a large population and across
different imagingmethods.24 It is still unclear when a proof-
of-concept research can be adopted and upscaled as a
marketed product. At least one study suggests that AI-based
CAD has not improved the diagnostic accuracy of
mammography and may even have resulted in missed
cancer diagnoses. Consequently, insurers could have paid
more for CAD with no established benefit to patients.46

Studies in the UK and the US on AI-based CAD for breast
cancer show a significant improvement in the cancer
detection rate in comparison to analysis by an individual
radiologist only, along with an acceptable increase in recall
rate and minimal impact on positive predictive value47,48;
however, when compared with an arrangement whereby a
second radiologist reviews the image in lieu of the AI-based
CAD, the evidence of benefit is more ambiguous. Even if the
CAD is more effective in picking up features that may be of
concern, it still remains up to the initial reader to determine
whether medical intervention is necessary. If the initial
reader did not pick up a suspected feature owing to bias,
then (s)he will probably still dismiss it when it is high-
lighted by the CAD. In contrast, if a second human reader
disagrees with the initial reader, then that second reader is
more likely to ensure appropriate medical follow-up.49e51

The economic value of AI-based CAD in imaging is simi-
larly unclear, as data on cost effectiveness is generally
limited. The use of such software for breast cancer screening
in the UKwas not found to be cost effective when compared
with double-reading unless recall rate could be significantly
reduced, for instance.52

Our intention here is not to pronounce on the clinical and
social value of AI-based CAD. Instead, we are of the view
that a more comprehensive dialogue that involves a broad
range of interested parties (including lay members of the
public) is urgently needed. Professional bodies have a spe-
cial role to play in initiating and moderating this dialogue,
in view of their domain expertise, social standing, and
public responsibilities. Most ML capability for image anal-
ysis in radiology is performed via supervised learning
which requires appropriately labelled training data.
Adequate labelling of key imaging findings is a tedious and
time-consuming process, and is further dependent on clear
demarcation of normal and abnormal features.5 Addition-
ally, the investments needed to develop AI-based software
are substantial. It is unclear how institutions can support AI
core laboratories while also allowing access to others.
Infrastructural improvements are needed within a health-
care facility, which could involve computational hardware
procurement and upgrades, and ensuring connectivity to
secure cloud platforms and data storage. It may also be
necessary to organise additional training for IT support staff
and staff in general, not only on the technical aspects but
also on the organisational ones, such as data protection and
cyber-security practices. Cost constraints may require the
prioritisation of some AI capabilities over others, and any
such determination should satisfy ethical and legal
requirements.53

Alleviate deficiencies in technical knowledge

A number of radiology associations and committees from
professional colleges and societies already recognise the
need to provide guidance and set clear standards for the
entire professional body and interested stakeholders. These
guidance and standards could relate to advancing and
implementing AI software in radiology, validating AI soft-
ware, and developing a general implementation roadmap
for the future. Conceivably, some of these tasks should be
undertaken by professional bodies collaboratively with
regulators and policymakers. Currently, the American Col-
lege of Radiology has provided some guidance in defining
use cases for common problems,54 while the Royal College
of Radiologists has issued a position statement on AI and
has established an AI Framework.55,56 A more comprehen-
sive set of recommendations has been published by the AI
Working Group of the Canadian Association of Radiologists
(CAR-WG), including those that relate to professional
governance.

The CAR-WG highlights the need for radiologists to be
familiar with different AI techniques, to understand the
challenges related to the preparation of training datasets for
supervised learning, and to be familiar with AI terminology
and hierarchy. The radiology community needs to be
educated on how to critically analyse the opportunities,
pitfalls, and challenges associated with the introduction of
new AI tools.5,9 For instance, false-positive rates continue to
be a pitfall for CAD software. Although false-positive rates
have been reduced over time through redesigning and
retraining, the tendency for such software to incorrectly
identify normal structures as abnormal remains one of the
key concerns. Substantial time and resources are needed to
determine if the highlighted concerns are true abnormal
lesions, often negatively impacting recall rates, quality of
healthcare service delivery and cost.51 Guidance should also
be developed on appropriate means of communicating
effectively with patients, along with supportive counselling,
where applicable.

Support recognition and removal of biases

Radiologists and clinicians using AI techniques must
appreciate the values that may either be built into the sys-
tem or introduced through the data used in ML algorithms.
AI devices and systems may be trained to support practices
that reflect some ethical goals but not others, and may even
be trained to circumvent legitimate ethical and legal re-
quirements. ML models can also incorporate implicit se-
lection biases from the demographics of the population
used for its training, which may not be representative of the
target population in which it will be applied.5 Algorithms
used in non-medical fields show how they mirror human
biases in decision making. Famously, racial discrimination
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was reflected by programs designed to aid judges in
sentencing because the risk of recidivism has been pre-
sented to be disproportionately higher for certain racial
groups.57 Within a healthcare setting, if clinicians always
withdraw care in patients with a brain injury, a ML system
may conclude that this action should always follow from
such a finding.9 Other ethical and legal contentions may
arise from differences between the intended use of the AI
device or system and the goals of the users. As the designer
and purchaser of a ML system are usually not those who
deliver bedside care, values and priorities that are
embedded and entailed may very well diverge signifi-
cantly.9 How should ethical dilemmas be dealt with if there
is no consensus among experts or interested stakeholders?
More guidance will eventually be needed on the normative
content and skills that should be part of clinical education
relating to biases in AI applications.

Engaging the “black box” obstacle

A well-known concern with AI-based CAD is that it is
unable to explain its decision. Due to its reliance on a very
large number of single associations, it is very difficult to
identify the technical and logical reasoning behind any
decisionmade byML software. It is also currently difficult, if
not impossible, to say if such a software is more likely or not
to detect a rare disease condition.4,6 In the event of a
misdiagnosis due to an error attributable to the CAD soft-
ware, there may be further complication as to whether the
manufacturer or the radiologist should be responsible.58 If
the legal standard of care is defined by professional practice
standards, a radiologist (or indeed any clinician) should be
wary of relying on a recommendation from the CAD soft-
ware that cannot be explained. Professional bodies will
need to engage with regulatory agencies on this and other
medico-legal issues, and develop common standards for
evaluating, validation, and testing AI tools.5

Brokering a new social contract on informational use and
security

The obligation to protect the confidentiality of health
information has long been recognised to serve the public
interest of encouraging free and open communication in a
trusting doctorepatient relationship. Today, the obligation
of confidentiality has been codified for both medical prac-
tice and research in regulation and in professional guide-
lines. Its operative rationale is the ethical imperative of
respect for the dignity of persons as autonomous agents.
Some countries have introduced legislation to address
concerns relating to particular informational risks. This has
been the approach in the US where there is no constitu-
tional right to informational privacy. Three US federal leg-
islations provide different forms of control over certain
kinds of health information: Privacy Act,59 Health Insurance
Portability and Accountability Act (HIPAA),60 and Genetic
Information Nondiscrimination Act (GINA).61 The Privacy
Act prevents unauthorised disclosure of personal informa-
tion held by the US federal government, and the persons to
whom the information relates (i.e., data subjects are
conferred with certain rights in relation to its accessing,
processing, andmaintenance). HIPAA protects potential and
current employees from discrimination by health insurers
and employers, but it has been criticised as a disclosure
regulation rather than a privacy rule, as it permits broad and
easy dissemination of patients’ medical information, with
no audit trails for most disclosures.62 GINA expands the
protection against certain discriminatory practices under
HIPAA, as updated and revised by the Health Information
Technology for Economic and Clinical Health Act,63 and it
provides a level of protection against genetic discrimination
by disallowing health insurers and employers to use certain
types of genetic information, but it does not address the use
of or access to genetic data, or otherwise provide compre-
hensive privacy protections. As for US state laws, there is
similarly no standard or comprehensive approach to the
protection of genetic information, with the level of protec-
tion varying widely from state to state.64 Where cyberse-
curity is concerned, HIPAA requires healthcare institutions
to protect their systems and the personal data that is under
their control; however, it does not specify what cyberse-
curity measures must be implemented. For medical devices,
the FDA (working collaboratively with the US Department
of Homeland Security) requires manufacturers and health-
care delivery organisations to report a limited number of
risks presented by their devices and to take steps in
ensuring that appropriate safeguards are in place. This may
be challenging for AI-based systems if unsupervised ML
capability is put into effect, although the FDA65 has
announced further regulatory developments and activities
that are expected to follow.

In Europe, the law on informational privacy is set out in
the GDPR, which replaces the 1995 Data Protection Direc-
tive.66 Having come into force in May 2018, the GDPR not
only extends the territorial scope of data protection for
patients, research participants, and data subjects in general,
but also widens the rights that are intended to secure the
autonomy, dignity, and privacy of these individuals. It gives
considerable emphasis to the requirement of explicit
informed consent for handling of health information, even
if exceptions (such as processing for research) are appli-
cable, and also confers on the data subjects several other
rights, such as a right to information about how the per-
sonal data are being processed, a right to rectification of the
data, and right to a judicial remedy for any breach of these
rights; however, the application of data protection law on
medical research (including those that relate to AI-based
applications) is not always clear and straightforward,
particularly if oversight bodies are outside of the EU. Where
cybersecurity is concerned, a new directive has been
implemented in May 2018, where EU member states are
required to prevent cyberattacks, mitigate any harms that
arise as a consequent, and maintain the provision of
essential services.

Health information that has been sufficiently anony-
mised will not fall within the purview of data protection
regimes. Where the development of AI-based software is
concerned, sensitive information may be derived illicitly
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from unknown sources and in respect of which there may
not be clear regulatory or legal requirements or over-
sight.21,67,68 Large datasets that are representative of the
scope and variety of patient types and disease conditions,
and available in machine-readable form, are needed to train
and test AI algorithms, along with complete and well-
structured metadata (including information on data sour-
ces). To exacerbate the challenge of data shortage, the
validation dataset should ideally not overlap with the
testing dataset in order to ensure that the algorithm de-
livers reliable and accurate output under a wide-range of
conditions that could realistically be encountered in a real-
world setting within which it is applied.69 Here again,
professional bodies are well-placed to broker a social con-
tract involving policymakers, interested (non-govern-
mental) stakeholders and the general public on the
appropriate forms of social control over personal informa-
tion, the extent that informational resourcesmay be applied
in the public interest, appropriate safeguards that should be
in place and benefit sharing.
Conclusion

AI-based CAD software could eventually help radiolo-
gists to better manage workload, enhance individual per-
formance and reduce human error. Although this software
device is currently limited to a single common disease, its
capability is expected to grow over time to identify multiple
challenging diagnoses.45 In the foreseeable future, other AI-
based devices and systems will also be assimilated into
clinical practice with a view to improve quality and effi-
ciency, similar to current applications on digital imaging
methods.70 These changes could shift the current practice of
placing patients within risk groups and move it towards
more individualised predictions; however, the radiology
community must first assume a more active role in pro-
pelling medicine into the digital age. This could certainly be
done by combining AI and radiologists into a form of hybrid
intelligence or a “radiologist-in-the-loop”.7 At a profes-
sional level, clinicians will need to work closely with the AI
research and development community, regulators and
policymakers to realise the vision of a dynamic, adaptive,
and active learning healthcare system.

More immediate concerns include encouraging the
development of representative training datasets, adoption
of a common interoperable software framework for
research and clinical purposes, and introduction of a
standardised approach for benchmarking and imple-
mentation of AI applications.5 As we have discussed, the
success of AI applications will depend on researchers
gaining access to large volume of quality health data. This
will certainly be the case for upscaling IDx-DR, and the road
ahead for similar software will be challenging. A higher
regulatory threshold under the FDA’s De Novo premarket
review pathway now applies, as a diabetic retinopathy AI
diagnostic device is already available in the market.
Fundamental to all of these initiatives is the need to develop
and sustain a governance approach that promotes
collaboration among all stakeholders to ensure the
responsible development and implementation of AI in
biomedicine. Such an approach will require a much closer
integration of ethics, laws, and good practices,71 and is
viable only if it engenders trust and is trustworthy.
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