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ABSTRACT

Machine Learning (ML) is used in critical highly regulated and

high-stakes �elds such as �nance, medicine, and transportation.

The correctness of these ML applications is important for human

safety and economic bene�t. Progress has been made on improving

ML testing and monitoring of ML. However, these approaches do

not provide i) pre/post conditions to handle uncertainty, ii) de�ning

corrective actions based on probabilistic outcomes, or iii) continual

veri�cation during system operation. In this paper, we propose

MLGuard, a new approach to specify contracts for ML applications.

Our approach consists of a) an ML contract speci�cation de�ning

pre/post conditions, invariants, and altering behaviours, b) gen-

erated validation models to determine the probability of contract

violation, and c) an ML wrapper generator to enforce the contract

and respond to violations. Our work is intended to provide the

overarching framework required for building ML applications and

monitoring their safety.

CCS CONCEPTS

• Software and its engineering→ Software creation and man-

agement; • Computing methodologies→ Machine learning.
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1 INTRODUCTION

Robustness in business software where the domain is well under-

stood is achieved through software testing, and adherence to best

practices and processes. However, for Machine Learning (ML) sys-

tems this is insu�cient. ML systems are dependent on data input

streams that are non-stationary. As a result, ML is behaviour is

underspeci�ed [5] in the presence of subtle changes in the data

(i.e. data shift [15]). Data schema validation alone is insu�cient as

detecting violations of these conditions, e.g., out of distribution data

[10], can only be done probabilistically. We hypothesise that robust-

ness can be incrementally realised in the context of ML through an

interface speci�cation (contract) that a) operates on point-estimates

and distributions, b) encapsulates modelling assumptions, and c)

models uncertainty as a �rst class citizen.

To achieve robustness for ML, research has focused on test-

ing against noisy or malicious input data [1, 6, 12, 22]. However,

the world is non-stationary and assumptions made o�ine are not

guaranteed to hold during system operation. In addition, runtime

validation is required to handle ML speci�c failure modes (i.e. mis-

calibration [8] and performance degradation under data shift [15])

independent to how the model responds to adversarial examples.

Our research provides the constructs and plumbing for software

engineers to leverage existing algorithms that detect these failure

modes (due to the di�culty of detecting these failure modes, algo-

rithms in turn may require additional ML models to perform the

validation).

Studies have managed to produce data validation tools for ML

systems that continuously monitor data that are fed into the system.

Data Linter [11] acts as simpli�ed and general validation tool that

can be used to automatically inspect data and detect miscoding lints,

outliers and scaling issues [11]. Data validation tools developed

in-house like Deequ [17, 18] and Google’s TFX allow user-speci�ed

constraints [2, 18]. Most of the validation tools available use con-

straints and conditions that are: deterministic in nature, provide

partial support for ML failure modes, and typically act as a warning

system for data with anomalous or invalid characteristics. In addi-

tion, data validation tools presented are insu�cient in producing

a reliable and robust ML system, since the “correctness” of data is

variable depending on the context and scenario of the ML system.

Best practice recommends setting up alerting and monitoring

infrastructure [2, 3, 18] and ML speci�c architectural tactics [4].

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1: Our approach consisting of 1) an ML contract speci�cation, 2) an ML contract model trainer to generate validation

ML models that determine the probability of contract violations, and 3) a generated wrapper to defend models from contract

violations and trigger contract violation handling logic if violations occur.

However, how to specify the conditions to monitor and the actions

to take when a condition fails is left to the developer. ML toolsuites

for validation (e.g., Tensor�ow Data Validation) provide a set of

validators and abstractions for their speci�cation. However, these

tools only o�er partial support for ML failure modes and automa-

tion. Speci�cally, Tensor�ow supports data schema and constraint

suggestions, but leave more sophisticated validation checks such

as out of distribution detection to the developer to implement and

con�gure.

Inspired by concepts from design by contract [13], we propose

a new approach, MLGuard, for specifying and validating ML con-

tracts. Our approach takes an ML Contract Speci�cation and gen-

erates an ML wrapper with both the code and trained ML models for

validating ML contracts. We propose an ML contract speci�cation

language with i) ML speci�c concepts (e.g., ‘uncertain’) and ii) ac-

tions to take when the ML contract fails (e.g., log warning, throw

exception, propagate uncertainty). To the best of our knowledge,

this is the �rst proposed approach for specifying and validating

probabilistic contracts for ML. Although no formal guarantees can

be made of the absolute safety of the ML system, our approach

provides a structured semi-automated way to help developers work

towards improving the safety of the ML applications they develop

by automatically detecting and responding to contract violations.

MLGuard is designed to provide the sca�olding for specifying and

validating contracts that, optionally, include additional validation

algorithms i.e. a data drift detector.

2 MOTIVATION

To motivate our work, consider the case of software for auto-

mated epileptic seizure detection—classifying a segment of elec-

troencephalogram (EEG) data as seizure or non-seizure. While a

large number of papers have developed ML models for this task

[20], these models come with (often undocumented) conditions

that must be satis�ed for the output produced by the model to be

reliable. This poses a safety concern as over-interpretation of EEG

data (false positives) might lead to incorrect diagnosis and treat-

ment, and this causes numerous medication side-e�ects, driving

restrictions, increased chance of mental illness and discrimination

of job opportunities while under-diagnosis (false negatives) causes

delayed treatment which might increase the risk of mortality and

other physical injuries.

We elaborate on these challenges below, and propose a vision

in section 3 to address them, thereby improving the safety of ML

models when deployed in real-world applications.

No machine-checkable ML speci�cation language. Well-

designed software components document inputs, outputs, types,

pre/post conditions to be satis�ed, and exceptions that may be

raised. However, ML models lack a full machine-checkable speci-

�cation. For example, even though an ML model accepts a vector

with the same type and dimensions as the EEG data, this does not

necessarily mean that the model is a suitable choice. To determine

if the model is compatible with the application, one also needs to

consider whether the statistical characteristics of the training data

and modelling assumptions match those of the application domain.

To assist in assessing the suitability of an ML model, proposals

have been made for standardised documentation templates (i.e.

data sheets [7] and model cards [14]). However, documentation

templates require users of the ML model to manually read and

interpret the ML model documentation (if any) without providing

any machine-veri�able rules for safe use.

No mechanism to express uncertainty in validation rules.

Di�erent electrode placements, sampling frequencies, and �ltering

are possible. If these do not match those of the data the ML model

was trained on, the ML model will still produce a result, but it

cannot be trusted. The patient demographics may also a�ect the

accuracy of the model. For example, it should not be assumed that

a model trained on EEG from adults will work as well on EEG from

children.

To ensure that the EEG data is compatible with the data on which

the model was trained, one can make use of an out of distribution

detectionmodel to determine whether the assumptions of themodel

have been violated, i.e. the serving data in production should be

distributed similarly to the data the model was trained on. However,

this violation can only be detected probabilistically rather than with

absolute certainty.

11
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The conditions for these contracts operate in high-dimensional

latent spaces. For ML, the input and learned latent spaces are where

pre/post conditions are required to verify system behaviour. Cur-

rently we lack the mathematical constructs for guaranteeing be-

haviour across a high-dimensional latent space.

It is unclear how the application should respond to prob-

abilistic violations. Unlike traditional software, ML behaviour

is dependent on training data—demonstrating correctness o�ine

is no guarantee of the system’s operating behaviour online. Thus

violations of contracts need to be detected and responded to during

operation rather than at design time. Best practice recommends

setting up existing alerting and monitoring infrastructure [3]. How-

ever, what is not speci�ed is 1) how to con�gure alarms and alerts,

and 2) how the system should respond.

3 A VISION FOR ML CONTRACTS

We propose MLGuard for automatically validating whether incom-

ing data conforms to an ML contract and handling violations. ML-

Guard is a practical approach for dealing with the limitations out-

lined in the Motivation. An overview of our proposed approach is

presented in Fig. 1, and more detailed descriptions of each MLGuard

component are provided below.

3.1 ML Contract Meta-model and Speci�cation

The ML Contract Meta-model provides the abstractions needed to

specifyML contracts, serving as the basis for amachine-checkable

ML speci�cation language. For example, in addition to validating

the data schema, one can specify that the model requires input data

to be distributed similarly to the training data. The meta-model also

provides the abstractions to de�ne strategies for detecting prob-

abilistic violations and for responding to probabilistic violations

(the components to support this are elaborated on in the following

sections).

We borrow the concept of declarative de�nition of constraints

developed by Deequ [17, 18], and extend these ideas to allow for

probabilistic conditions and specify actions to take. This approach

will enable speci�cations be made regarding i) probabilistic condi-

tions on inputs, ii) what methods will be used to detect probabilistic

violations, and iii) approaches for dealing with probabilistic out-

comes. For example, what should happen when conditions are

violated with a con�dence of 55% produced by a ML system. Soft-

ware engineers write an ML Contract Speci�cation tailored to their

application needs that instantiates concepts in the meta-model. A

sample contract is provided in Listing 1 using a YAML based syntax,

but in future we will explore use of domain speci�c languages and

�uent APIs.

3.2 ML Contract Model Trainer

Validating compliance with the ML Contract Speci�cation requires

Validation ML Models to detect probabilistic violations of contracts.

The type of Validation ML Model to use may be speci�ed as part of

the ML Contract Speci�cation, along with con�gurable thresholds

at which to trigger contract violation handling logic, which together

form a mechanism to express uncertainty in validation rules.

For example, to validate that an instance of the input data is from

the same distribution as the data the ML model was trained on,

1 Con t r a c t :
2 Model :
3 Name : s e i z u r e _ d e t e c t i o n _m l _mode l
4 Loca t i on : / p r e t r a i n e d / s e i zu r e_mode l . onnx
5 Documentat ion : / doc / s e i z u r e _mode l _ c a r d . html
6 Data :
7 − i npu t_ s t eam
8 − ou tpu t_ s t r e am
9 − / d a t a / e e g _ t r a i n
10 P r e c o n d i t i o n s :
11 D i s t r i b u t i o n _Ma t c h e s :
12 Datase tA : inpu t_ s t eam
13 Datase tB : / da t a / e e g _ t r a i n
14 Va l i d a t i on_mode l :
15 Type : o u t _ o f _ d i s t r i b u t i o n _ d e t e c t o r
16 Method : l i k e l i h o o d _ r a t i o s _ f o r _ o o d
17 T r i g g e r _ c o n d i t i o n s :
18 Con f i d en c e _ t h r e s ho l d : 0 . 9 5
19 A c t i o n _ i f _ v i o l a t e d : log_warn ing
20 Schema_Matches :
21 Da t a s e t : i npu t_ s t eam
22 Schema : / schema / eeg −10−20− system −256 hz
23 A c t i o n _ i f _ v i o l a t e d : e x c ep t i on
24 P o s t c o n d i t i o n s :
25 P r o b a b i l i t i e s _ s um_ t o _ on e :
26 Da t a s e t : ou tpu t_ s t r e am
27 A c t i o n _ i f _ v i o l a t e d : e x c ep t i on

Listing 1: Sample ML Contract Speci�cation for seizure detec-

tion ML model. The ML contract allows specifying precondi-

tions making use of probabilistic concepts (e.g., distributions

match), methods for detecting probabilistic violations (e.g.,

out of distribution detection), and how to respond to proba-

bilistic violations (e.g., whether to log a warning or raise an

exception).

one may make use of an out of distribution detector. In the case

of the Likelihood Ratios for Out-of-Distribution Detection method

[16], this requires training deep-generative models to determine

the probability that the data is out of distribution and correct for

background statistics.

The role of the ML Contract Model Trainer is to automatically

train the Validation ML Models (not to be confused with the ML

Model that they are guarding) according to the con�guration pro-

vided in the ML Contract Speci�cation. To support software engi-

neers uncertain about which type of ML Validation Model to use

and how to con�gure it, we intend to explore approaches based on

AutoML [9] to automatically select and train appropriate Validation

ML Models to enforce the constraints in the ML Contract Speci-

�cation when the Validation ML Model to use is left unspeci�ed.

Our approach will also allow for threshold conditions at which to

trigger a violation to be automatically learned from data and re�ned

based on user feedback in the case the the software engineer is

uncertain about which threshold value to specify.

3.3 ML Contract Wrapper

A standard approach to addressing the issue of robustness is to in-

troduce a wrapper [19] to guard against invalid behaviour. The ML

Contract Code Generator selects and instantiates Contract Code

Templates with information in the ML Contract Speci�cation. The

generated wrapper code includes the i) trained ML model, ii) Vali-

dation ML Models for use in pre/post conditions, and iii) code for

checking pre/post conditions (using the Validation ML Models) to

12
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guard the trained model and trigger contract violation handling

logic to respond to probabilistic violations. The wrapper can

be con�gured (via the ML Contract Speci�cation) to respond to

contract violations in a manner appropriate to the application and

nature of violation. For example, should an exception be thrown,

error messages logged, or uncertainty be propagated through the

system?

4 RESEARCH QUESTIONS

The work proposed and discussed in the previous sections led us

to pose the following research questions. Our plan to answering

them is further discussed in section 5.

• RQ1What are the abstractions required for specifying ML

contracts?

• RQ2 What software architecture is required to enable the

generation of a wrapper for enforcing ML contracts?

• RQ3 How e�ective is an ML contract in practice?

5 FUTURE PLANS

Our research will progress in three phases. Phase 1 will focus on

extracting concepts for the ML contract meta-model from the liter-

ature and de�ning the ML contract speci�cation language. Phase 2

will involve experimental evaluation of the the ML Contract. Fi-

nally, Phase 3 will investigate the e�ectiveness of MLGuard in an

industry context.

Phase 1: ML Contract meta-model and speci�cation language: To

answer research question RQ1: What are the abstractions required

for specifying ML contracts? we will expand an existing speci�ca-

tion language. We plan to follow an iterative approach inspired by

Grounded theory [21] to mine concepts from the literature (both

academic and grey literature). The goal of this phase is to identify

the concepts for specifying ML Contracts and de�ning a validation

plan. The expected outcome from this phase will be 1) the ML Con-

tract meta-model, 2) an ML Contract speci�cation language, and 3)

a set of ML speci�c conditions for validation.

Phase 2: Experimental evaluation of ML Contracts: The next phase

of research will involve developing a prototype of our solution

to answer RQ2: What software architecture is required to enable

the generation of a wrapper for enforcing ML contracts? Concepts

borrowed from Model Driven Engineering (MDE) will be applied to

design the generators (code and trained models). Our experiment

will evaluate ML Contracts against other automated and manual

approaches to specifying validation logic for ML. The expected

outcomes from this phase will be 1) a prototype tool MLGuard,

2) code templates for ML Contract wrappers, 3) con�gurations

for training Validation ML models, and 4) a set of ML Wrappers

generated for existing models.

Phase 3: Industry case study: To address RQ3: How e�ective is

an ML contract in practice? the �nal phase of the study will eval-

uate how our approach can be integrated into existing software

engineering work�ows. We plan to run a series of industry case

studies where practitioners evaluate MLGuard on ML projects. The

focus of the case studies will be to identify i) user-acceptance of

the approach, ii) barriers to adoption, and iii) ongoing maintenance

implications.
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