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ABSTRACT
The inherent feature of Bayesian empirical analysis is the dependence of posterior inference on prior
parameters, which researchers typically specify. However, quantifying the magnitude of this dependence
remains difficult. This article extends Infinitesimal Perturbation Analysis, widely used in classical simulation,
to compute asymptotically unbiased and consistent sensitivities of posterior statistics with respect to prior
parameters from Markov chain Monte Carlo inference via Gibbs sampling. The method demonstrates the
possibility of efficiently computing the complete set of prior sensitivities for a wide range of posterior
statistics, alongside the estimation algorithm using Automatic Differentiation. The method’s application is
exemplified in Bayesian Vector Autoregression analysis of fiscal policy in U.S. macroeconomic time series
data. The analysis assesses the sensitivities of posterior estimates, including the Impulse response functions
and Forecast error variance decompositions, to prior parameters under common Minnesota shrinkage
priors. The findings illuminate the significant and intricate influence of prior specification on the posterior
distribution. This effect is particularly notable in crucial posterior statistics, such as the substantial absolute
eigenvalue of the companion matrix, ultimately shaping the structural analysis.
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1. Introduction

Empirical analysis through Bayesian inference relies on pos-
terior distributions that combine information from the data
using the model likelihood and prior information on model
parameters. The latter is characterized by prior distributions
that depend on a set of hyperparameters (prior parameters).
As prior parametric families are usually determined based on
computational considerations, researchers are mainly required
to specify the prior parameters.

In practice, researchers adopt various strategies to set these
prior parameters, depending on available data, modeling con-
text, identification issues, or existing prior information. These
strategies encompass the use of perceived uninformative default
priors and more informative priors established through different
methods of prior parameter elicitation (Giannone, Lenza, and
Primiceri 2015; Baumeister and Hamilton 2019; Jarociński and
Marcet 2019; Jacobi et al. 2021). One domain that experiences
an active debate regarding prior parameter specification is the
Bayesian vector autoregressive (BVAR) analysis with shrinkage
priors for macroeconomic forecasting and structural analysis
(Amir-Ahmadi, Matthes, and Wang 2018; Huber and Feld-
kircher 2019; Baumeister, Korobilis, and Lee 2020).

In formal terms, the dependence of prior parameters locally
can be captured by observing changes in posterior inference
resulting from modifications in any of the prior parameters, as
formalized by the sensitivity of a statistic (Berger, Insua, and
Ruggeri 2000; Gustafson 2000). However, calculating the exact
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derivative of a posterior statistic with respect to even a single
hyperparameter is typically analytically intractable, given that
posterior distributions manifest as high-dimensional integrals
requiring numerical solutions. Efficient Markov chain Monte
Carlo (MCMC) simulation methods, especially Gibbs sampling,
offer popular tools for constructing transition kernels to sim-
ulate posterior distributions and estimate posterior statistics
across various modeling contexts.1 Constrained by the compu-
tational burden, empirical studies often resort to a less formal
sensitivity analysis by re-executing the Gibbs algorithm under
alternative prior assumptions (Del Negro and Schorfheide 2008;
Jarociński and Marcet 2019; Jacobi et al. 2021).

In this article, we present an approach for sensitivity analy-
sis of MCMC inference. This approach is based on extending
the Infinitesimal Perturbation Analysis of the simulation path,
traditionally employed in independent samples, to dependent
MCMC samples. In particular, we introduce IPA analysis for
MCMC inference in Gibbs sampling and leverage its depen-
dence on smooth transition kernels. Notably, Gibbs sampling
is widely favored in empirical research due to its advantageous
computational properties (Greenberg 2012), and its broad appli-
cability.2 When combined with suitable conjugate priors, data

1Throughout this article, the term “posterior statistic” (or “posterior out-
put”) pertains to the posterior mean associated with a certain function of
parameters.

2This includes numerous implementations in various software packages,
such as R-packages like Bayesm by Peter Rossi for Marketing and Microe-
conometrics, MCMCpack, and the BUGS packages.
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augmentation techniques, and smoothing methods (Albert and
Chib 1993; Frühwirth-Schnatter 1994), Gibbs-based inference
can be extended to complex model settings, encompassing state-
space models (Durbin and Koopman 2002), treatment effects
models (Jacobi, Wagner, and Frühwirth-Schnatter 2016), mul-
tivariate demand analysis (Briggs et al. 2017), and time series
models like Bayesian Vector Autoregressions (BVARs) (Koop
and Korobilis 2010; Camacho, Gadea, and Gómez-Loscos 2020).

To establish the theoretical properties of our proposed IPA
derivative estimator, we break down the Gibbs algorithm into
three distinct categories of mappings: (a) the computation of
hyperparameters for the transition kernel, (b) the generation of
random variables using the transition kernel, and (c) the con-
version of parameter samples into posterior statistics, encom-
passing measures like the mean, covariance, and more intricate
outcomes like forecasts and impulse response functions. We
establish the IPA derivative by employing a chain-rule argument
and expand the theoretical IPA results from the classical simu-
lation context to MCMC under a set of regularity conditions. In
particular, we prove that the resulting estimator exhibits desir-
able asymptotic properties of unbiasedness and consistency.
For precise implementation, we employ tools from Automatic
Differentiation (AD) (as discussed in (Griewank and Walther
2008)) to facilitate derivative computation in parallel with the
original MCMC estimation algorithm.

The Likelihood Ratio (LR) method is frequently employed as
an unbiased alternative for IPA derivative estimation in classical
simulation. It involves shifting the parameters of interest into the
likelihood function to compute derivative outcomes. Within the
MCMC framework, Pérez, Martin, and Rufo (2006) introduced
an LR approach for inference within the exponential parametric
family that relies on the analytical partial derivative of the score
function. Thus, the application of the LR approach to assess sen-
sitivities from posterior to prior has far been confined to com-
puting posterior mean sensitivities concerning prior coefficient
means (Müller 2012). Another alternative to the infinitesimal
perturbation in the IPA approach is finite perturbation via the
finite-difference (FD) method. While widely applicable, the FD
method lacks the unbiasedness property of IPA and LR, and its
effectiveness depends on the chosen bump size. In principle, a
smaller bump size should lead to a reduced bias under a set of
regularity conditions, but this is often unattainable in practice
due to numerical instability when dealing with extremely small
numbers in computer operations (Glasserman 2013).

We demonstrate the unbiasedness and precision inherent
in the IPA-based derivative computation through simulation
experiments conducted in a standard small Bayesian Vector
Autoregression (BVAR) setup. Our benchmarking study con-
centrates on assessing the sensitivities of the posterior means
and variances of the regression coefficients. To maintain con-
sistency with the simulation literature, we incorporate the LR
method whenever feasible as an alternative for unbiased deriva-
tive estimation. For the remaining comparisons, we rely on FD
estimates. Our simulation results align with our theoretical con-
clusions and substantiate classical simulation literature findings
(Glasserman 2013). They reveal that IPA estimates are not only
unbiased when compared to LR estimates but also boast higher
precision. Furthermore, in contrast to the biased yet general
FD approach, IPA sensitivity estimates exhibit computational

efficiency and stability. In contrast, the FD estimates show con-
siderable dependence on the chosen bump size. Within the
same BVAR framework, we also expand the application of IPA
sensitivities to encompass the Impulse response function (IRF),
Forecast error variance decomposition (FEVD), and the eigen-
values of the companion matrix for model stability assessment.
Through this extension, we showcase the notable influence that
shrinkage priors exert on these posterior statistics when juxta-
posed with weakly informative priors.

In our application, we consider a standard fiscal policy
Bayesian Vector Autoregression (BVAR) model encompassing
government spending, GDP, and tax revenue. This framework
follows the spirit of Ramey (2019) and employs a widely adopted
Minnesota-style shrinkage prior, rooted in the popular Litter-
mann prior (Doan, Litterman, and Sims 1984; Litterman 1986).
Our findings suggest that the sensitivities of posterior inference
primarily revolve around the prior means and variances pertain-
ing to the GDP equation. This is evident from the sensitivities of
prior parameters observed in posterior parameter estimates, and
these sensitivities subsequently carry through to influence the
IRFs and FEVDs. Focusing on the government spending shock
of the log GDP, we find that the impact of prior mean is less than
that of the prior variance specifications on the IRF across the
complete forecast horizon. Results obtained by rerunning the
MCMC (at a higher computational cost) confirm the results of
the first-order approximation of the IRFs constructed by our IPA
derivatives. Overall, the application showcases that our method
provides an additional tool for practitioners using the BVAR
approach.

The remainder of the article is organized as follows. Sec-
tion 2 introduces our proposed framework for IPA derivative
analysis of MCMC output and provides its asymptotic con-
vergence properties for Gibbs-based MCMC. In Section 3, we
discuss implementation aspects and present a simulation study
to compare the proposed IPA-derivatives via AD against two
alternatives derivative estimation methods. Section 4 illustrates
IPA-derivative analysis in the context of a fiscal policy VAR.
Section 5 concludes.

2. IPA based Sensitivity Analysis for Gibbs Inference

Bayesian Inference through Gibbs samplers stands as a funda-
mental tool in statistical and econometric inference. Over time,
Gibbs simulation algorithms have retained their popularity as a
preferred method for Bayesian statistical analysis due to their
favorable computational attributes and wide-ranging applica-
bility. In this section, we present a novel approach designed
to tackle the methodological and computational hurdles inher-
ent in evaluating the robustness of posterior statistics. Our
approach focuses on quantifying sensitivities with respect to the
prior hyperparameters, as introduced in the realm of Bayesian
robustness literature by Berger, Insua, and Ruggeri (2000) and
Gustafson (2000). Rather than relying on methods like rerun-
ning the MCMC estimation (numerical finite differencing) or
relying on analytical expressions (symbolic differentiation, like-
lihood ratio method) to evaluate the sensitivities of prior param-
eters, we leverage the concept of IPA. This approach involves
monitoring the undisturbed trajectory of the MCMC simulation
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as it evolves, allowing us to predict the effects of small changes in
input parameters (as they tend toward zero) on both parameter
draws and associated statistics.

2.1. Setting

Consider the setting where some data y is generated via a data
generating process that depends on a vector of parameters θ ∈
� ⊂ Rdim(θ). Bayesian inference about the model parameters θ

is based on the posterior distribution π(θ |η0, y) that combines
the model likelihood f (y|θ) given the model parameters and
their prior distribution π(θ |η0) where the latter depends on a
set of hyperparameters η0 ∈ S

η ⊂ Rdim(η). In practice, MCMC
analysis provides an efficient and popular tool to simulate the
posterior distribution, which is typically a high dimensional
integral and not analytically tractable.

MCMC-based posterior inference relies on the construction
of a MCMC chain of parameter draws, {θ g}, with a Markov
transition kernel π(·|θ g−1, η0, y) at each iteration g such that

θ g |θ g−1 ∼ π(·|θ g−1, η0, y) for g = 1, 2. . . (1)

given chain starting values θ0, θ g |θ0 → π(θ |η0, y) converges
to the posterior distribution of interest. Bayesian inference aims
to obtain estimates of a set of posterior statistics of interest, S ∈
S

s ⊂ Rdim(S)

α(η0, y) = Eπ [S(θ)|η0, y] (2)

that include estimates of first and second order moments, as well
as interval estimates which will also depend on the prior param-
eter specified for the inference. Our approach encompasses more
complex posterior statistics, including IRF estimates as illus-
trated in the real data analysis.

2.2. Prior Parameter Dependence via Local Sensitivities of
Posterior Statistics

We focus on prior parameter dependence of inference as defined
and used in the literature (Berger, Insua, and Ruggeri 2000;
Giordano, Broderick, and Jordan 2017) in terms of the local
derivatives (sensitivities) of a posterior statistic with respect to
prior parameters

∂Eπ [S(θ)|Y , η0]
∂η0

. (3)

Note that both η0 and Eπ [S(θ)|Y , η0] are high dimensional vec-
tors, which in turns implies that the resulting expression for (3)
is a high-dimensional matrix of dimension dim(S)×dim(η). For
example, the sensitivity of all the posterior means with respect
to all the prior mean parameters for the regression coefficients
in a linear model with Gaussian errors.

While conceptually appealing, the sensitivities are usually
unavailable in the closed-form given most models’ complex
stochastic dependence structure. Computational assessment
faces additional problems due to the dimensionality of the prob-
lem in terms of outputs (set of posterior statistics) and inputs
(set of prior parameters) in combination with the computational
intensity of the original MCMC estimation. This poses chal-
lenges for existing methods such as finite differencing, symbolic

differentiation, and likelihood ratio methods to evaluate a broad
set of prior parameters and a wide range of posterior output
statistics.3 As a result, a common practice has been a less formal
finite-difference approach based on rerunning the model under
a small set of different prior input specifications (Chib and
Ergashev 2009; Roos et al. 2015).

On the other hand, the proposed IPA approach uses the
concept of perturbation analysis, that is, monitoring the path
of the simulation as it evolves to estimate impacts of input
parameter changes. From an algorithmic point of view relevant
for such a perturbation analysis, an MCMC algorithm is simply
a function or mapping that takes in a model of θ , a vector of
hyper-parameters η0, and a starting vector θ0 to obtain esti-
mates of a range of statistics, based on the simulated posterior
distribution from an MCMC algorithm. We show in Section 2.3
that by applying IPA we can express the local derivative (3)
in terms of derivatives of the simulation draws as shown in
Section 2.3.

The approach requires computing derivatives of simulated
output. By definition, simulation is a way of evaluating integra-
tion. Derivate estimation via simulation inevitably requires an
interchange of the order of differentiation and integration. In
the context of IPA, we show in Section 2.4 that it is possible
to obtain unbiased and consistent estimates of (3) via the IPA
based sensitivity analysis as ∂Eπ [S(θ)|Y ,η0]

∂η0
= Eπ [ ∂S(θ)

∂η0
|Y , η0],

that is, it is valid to interchange the order of differentiation and
integration in this context.

2.3. IPA Derivatives in Dependent Sampling

IPA constitutes one form of perturbation analysis that examines
the behavior of a simulation path as the size of perturbations
applied to input parameters approaches zero. This method has
already found broad applications in classical simulation studies
(Giles and Glasserman 2006; Glasserman and Liu 2010). Here,
we extend the scope of IPA to encompass dependent sampling
using Gibbs sampling algorithms. In this context, the transition
kernel (1) is established on the basis of analytically known
conditional posterior distributions of model parameters. We
initiate by defining the central IPA output of interest using the
Jacobian matrix denoted as Jθ g (η0). This matrix encapsulates
the complete set of derivatives of the gth parameter draw θ g

concerning the hyperparameters η0. It’s important to note that,
parametrically, the collection of data also constitutes an input
of the algorithm. However, for the sake of simplicity, we omit
the consideration of the impact of data in the current analysis.
Further exploration of data impact is left for future research,
hence, we drop Y in the notations.

MCMC algorithms present intricate simulation paths. Nev-
ertheless, they can be broken down into a series of mappings.
These mappings are designed to manage the transition kernel
π(·|θ g−1, η0) for generating θ g samples, and a third mapping for
computing the posterior statistics of interest:

3An exception are sensitivities of the posterior mean with respect to prior
mean parameters as computed in Pérez, Martin, and Rufo (2006) and Müller
(2012).
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1. A type one mapping updates the state parameter s of the
transition kernel, that is f 1 : S

η × � → S
s such that

sg = f 1(η0, θ g−1), with S
s ⊂ Rdim(s).

2. A type two mapping draws the model parameters with the
updated state parameters via f 2 : S

s × (0, 1)dim(ω) → �

such that θ g = f 2(sg , ωg) given the state parameters s and
a sequence of independent U(0, 1).4

For example, suppose the transition kernel is multivariate Gaus-
sian. At each iteration, the mean and covariance are matrix-
valued functions (updated via f 1) of the draw from the last iter-
ation and prior hyperparameters. Then a draw from this partic-
ular multivariate Gaussian is obtained given the updated mean
and covariance using f 2. This structure is easily generalizable to
a multiple block setting. In a standard multivariate linear regres-
sion model with Normal errors and Normal priors on regression
coefficients and Inverse Wishart prior for the covariance matrix
of the errors, we would have a multivariate Gaussian update
of the regression coefficients and an Inverse Wishart update of
the covariance matrix. Again, type one mappings update the
parameters in the two components of the transition kernel and
type two mappings are used to generate each set of parameter
draws, iteratively.

Considering a Gibbs algorithm expressed in terms of the
two mappings, we can apply the chain rule to differentiate the
Gibbs chain that generates the model parameter draws to obtain
the expression for the main IPA output defined in terms of the
Jacobian, Jθ g (η0), we have

Jθ g (η0) = Jf 2(sg)Jf 1(η0) + Jf 2(sg)Jf 1(θ g−1)Jθ g−1(η0). (4)

Hence, the IPA analysis implies that the Jacobian matrix of
sensitivities of the parameter draws with respect to the prior
parameters can be expressed in terms of the Jacobian of the sec-
ond mapping with respect to the state parameters and Jacobians
of the first mapping with respect to the state parameters, prior
parameters, and previous draws. Note that the expression (4)
contains a path-wise and a chain-rule components. The path-
wise component arises from the direct influence of the hyper-
parameters on the transition kernel, that is, the random number
generation algorithm is a function of the hyper-parameters. In
addition, they also affect the (g − 1)th draw, which determines
the state parameters of the transition kernel at the current
iteration g.

Finally, in order to compute posterior statistics, a type three
mapping in Gibbs inference involves the computation of samples
statistics S(θ g) given the draws θ g . Bayesian inference typically
involves the analysis of the posterior distribution, with particular
attention given to the posterior mean. In this case, identity
mapping is the third type of mapping in the algorithm. Hence,
the sensitivity of posterior statistics w.r.t. the complete set of
prior inputs can be computed by passing the derivative operator
through S given the already available Jθ g , and averaging over the
sample.

We can now introduce the following measure of the local
input sensitivity the posterior statistics considered in the litera-
ture based on IPA analysis (IPA derivatives), where sensitivities

4In practice, we do not have to work in this microscopic fashion, as long as we
can find a representation of the sample path that its probability the measure
does not depend on the prior hyperparameters.

of posterior statistics of the model parameters with respect to the
prior hyperparameters are given by

JŜ(θ)
(η0) = ∂Eπ̂ [S(θ)|y, η0]

∂η0
= 1

G

G+B∑
g=B+1

JS(θ
g)Jθ g (η0) (5)

where Eπ̂ reflects that the expectation of S is obtained from the
empirical distribution formed with posterior draws, and G is the
total number of iterations after the burn-in period B.

2.4. Convergence and Asymptotics

In the previous section, we have introduced the idea of IPA
to Bayesian MCMC-Gibbs simulation settings given the input
parameters η0 and θ0. We are interested in the derivatives of
some posterior statistics α(η0, θ0) written as expectations over
some real-valued objective functions. When a sample is drawn
independently, as in the classical simulation setting, convergence
properties of IPA derivatives in the form of equation (5) are
implied by the basic Law of Large Numbers. In this section, we
extend convergence properties to dependent sampling via Gibbs
MCMC settings, where the key focus is to estimate the derivative
of α as defined in (2) with the expectation taken over the true
posterior distribution. Note that the assumptions we make in
the following section are regarding the Markov transition kernel,
that it naturally flows on to the impact of θ0.

2.4.1. Asymptotic Unbiasedness
Sampling from the joint posterior distribution using MCMC
techniques starts after discarding the first B draws from the
algorithm. That is because generally we assume that from B + 1
onwards, we are sampling from the exact posterior distribution.
In fact for an ergodic Markov chain, as B → ∞, we reach
the stationary distribution, and θB+1 becomes unbiased, that is,
limB→∞ E[θB+1] = E[θ |Y]. Hence, it is critical for analysis to
collect sensitivity estimates that is unbiased from B+1 onwards.
The basic idea behind the Gibbs sampler, is that a posterior
statistics α can be viewed as α(η0) = ∫

�
S(θ)dπη0(θ) which

is the expectation of an integrand S of the sample path, θ ,
with respect to a posterior probability measure πη0 over some
measurable space (�,F).5 In general, one cannot differentiate
the integrand in Gibbs settings, as πη0 depends on η0. Note that
to simplify notation we are suppressing the conditioning on the
data.

The choice of sample space � and its corresponding sample
path is crucial in IPA (L’Ecuyer 1990). In fact, for all simulation
settings, all random variables are generated from ω ∼ U(0, 1)

variates. Let (�̃, F̃ , π̃) denote a probability space in which the
random element is a sequence of independent U(0, 1) variates.
Because Gibbs samples are drawn dependently via a transition
kernel, π(·|·, η0), that is θ g+1 is drawn from π(·|θ g , η0), we shall
use (�g ,F g ,Pg

η0) to denote the conditional probability triplet.

Assumption 1. For (�g ,F g ,Pg
η0), assume that

(i) the measurable space (�g ,F g) = (�,F)

5Note here we dropped y in the input vector, as it is not the main focus of this
article.
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(ii) for every measurable set A of (�,F), the transformation
φη0,θ = f 2 ◦ f 1 is such that

P
g
η0(A) = π̃(φ−1

η0,θ (A)).

To apply IPA, the standard regularity conditions are needed
for the algorithm. Since the algorithm is constructed via a
stochastic representation of the transition kernel in Gibbs, we
have the following conditions similar to those in the classical
simulation setting.

Assumption 2. The following statements are considered under
(�g ,F g ,Pg

η0).

(i) S
η is compact.

(ii) For all η0 ∈ S
η and θ ∈ �, the transformation φη0,θ is

differentiable in both η0 and θ with probability one. For all
η0, η∗

0 ∈ S
η and θ , θ∗ ∈ �, there exist random variables C1

and C2 such
∣∣∣
∣∣∣φη0,θ (ω) − φη∗

0 ,θ (ω)

∣∣∣
∣∣∣ ≤ C1

∣∣∣
∣∣∣η0 − η∗

0

∣∣∣
∣∣∣

∣∣∣
∣∣∣φη0,θ (ω) − φη0,θ∗(ω)

∣∣∣
∣∣∣ ≤ C2

∣∣∣
∣∣∣θ − θ ∗

∣∣∣
∣∣∣

with E[C1] < ∞, E[C2] < 1.6
(iii) Let Ds ⊆ � denote the compact set at which S is differen-

tiable, Pr(S(θ) ∈ Ds) = 1 and S is Lipschitz for all θ ∈ �.

Compactness is a standard assumption here for sensitivity
analysis and estimation. Assumptions (ii) and (iii) are concerned
with the smoothness of the algorithm and its capacity to allow
the passing through of derivative operators. Assumption (ii) is
also related to convergence and the boundedness of the deriva-
tive as B → ∞ and ensures that ∂θB

∂θ j = ∏B−1
i=j

∂θ i+1

∂θ i pre-

multiplied with ∂θ j+1

∂θ j , is essentially a product of matrix valued
random variables (see Raghunathan (1979) for a theoretical
discussion). Note this is not a very strong condition since under
a geometric convergent chain these partial derivative ought to
converge to zero as B → ∞ at a geometric rate almost surely.

Theorem 1 (Asymptotic Unbiased IPA Derivatives). Under
Assumptions (1) and (2), and for all η ∈ S

η,
∣∣∣
∣∣∣πB(·|θ0, η0) −

π(·|η0)
∣∣∣
∣∣∣ → 0 we have unbiasedness for the limit of equation

(5) as B → ∞ of ∂
∂η0

α(η0), that is, E[limB→∞ JG,B(η0)] =
∂

∂η0
α(η0).

See the proof in Appendix A.

2.4.2. Asymptotic Properties as G → ∞ and B → ∞
We have shown the estimator to be unbiased as B → ∞. In
this section, we discuss its property as G → ∞. In the classical
simulation setting, the consistency and asymptotic normality are
straightforward to show for the IPA derivatives, given its unbi-
asedness and diminishing finite variance. In the Gibbs context,
however, dependent samples are drawn, and their derivatives

6Here, we consider the euclidean norm for the vectors.

are calculated along the Markov chain. Hence, the variance of
the sample mean also includes covariance terms. Therefore,
our proof of the following limiting theorem relies on the con-
struction of Mixingale type stochastic processes. Their limiting
behavior is discussed in detail in the time series literature (see
De Jong 1995).

Theorem 2 (Consistency for the IPA Derivatives). Under assump-
tion (1) and (2), we have JG,B(η0)

P→ ∂
∂η0

α(η0) for all η0 ∈ S
η

as G → ∞ and B → ∞.

The proof is provided in Appendix A.
The established asymptotic properties of IPA-based deriva-

tives hold true across algorithms applied to diverse models.
We will showcase the effectiveness of this method by using it
within linear regression frameworks, both in real-world applica-
tions and simulation studies. Furthermore, this method can be
extended to a broad array of state space models, encompassing
models like the time-varying coefficient Vector Autoregression
(VAR) (Primiceri 2005) and dynamic factor models (Diebold
and Li 2006), each with varying prior specifications. Notably, the
standard algorithm for these model types, typically founded on
the Kalman Filter (Carter and Kohn 1994), adheres to the nec-
essary regularity conditions, thereby making the IPA approach
applicable.

An inherent limitation of the IPA approach lies in its require-
ment for algorithm smoothness. Algorithms of the rejection
type, including the widely used Metropolis-Hastings (MH) algo-
rithm, generate nonsmooth simulation paths. This conflicts
with the Lipschitz assumptions established in our theoretical
framework. Nevertheless, in situations involving low dimen-
sions and assuming the density itself is continuously differen-
tiable, we can resort to numerical integration techniques to
derive distributional derivatives. In Appendix D, we present
an illustration of a possible expansion of the standard IPA
setup to MCMC settings where the full conditional distribution
remains unknown for a specific model parameter. We have also
implemented an IPA based approach within Metropolis-within-
Gibbs and Slice-within-Gibbs algorithms and demonstrated the
performance in a simulation study (see Appendix B). Note
that algorithms such as unadjusted Hamiltonian Monte Carlo
(Bou-Rabee, Eberle, and Zimmer 2020) and Langevin sampling
(Durmus and Moulines 2017) fulfill the required smoothness
assumption.

2.5. Implementation

To address the reliance of IPA on the exact evaluation of complex
derivative operations on the simulation algorithm, the automatic
differentiation (AD) approach was introduced in classical simu-
lation community by Griewank and Walther (2008), now a stan-
dard computational tool for computing derivatives of smooth
functions (Homescu 2011).7 While AD has been included as
part of common statistical libraries, such as PYMANOPT for
optimization of manifolds implemented in Python (Townsend,

7Since the derivative estimate computed using AD is identical to the ordinary
pathwise estimates, its potential advantage is, therefore, computational
rather than statistical.
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Koep, and Weichwald 2016) and Stan for approximate inference
(Giordano, Broderick, and Jordan 2017), these are not designed
to handle some of the specific computational challenges of Gibbs
sampling. Since it fails to exploit substantial gains in compu-
tational efficiency from matrix operations, a naive application
of such standard element by element AD implementations for a
IPA-based senstivity analysis in Gibbs settings can be computa-
tionally prohibitively expensive. Our implementation, therefore,
exploits a Vector-based AD approach discussed in Kwok, Zhu,
and Jacobi (2022) to facilitate the efficient computation of the
complete set of prior parameter sensitivities of the MCMC draws
alongside the Gibbs sampling iterations. We refer interested
readers to the R package (Kwok, Zhu, and Jacobi 2020) for
an implementation of Vectorized AD in a general multivariate
regression context. The code is also available as part of the
supplementary materials.

3. Simulation Study

We illustrate the performance and use of the introduced IPA
approach for prior parameter sensitivities of posterior statis-
tics from Gibbs inference in a multivariate regression frame-
work. Our experimental design is based on a standard BVAR
model and explores prior parameter sensitivities in the con-
text the common use of shrinkage priors to address over-
parameterization arising from the moderate size of many
macroeconomic datasets (Karlsson 2013). Within this setting
we first benchmark IPA derivative estimates against two alter-
native computational methods to demonstrate the unbiasedness
and high precision of IPA estimates implemented. This part
of the simulation focuses on sensitivities of posterior mean
and variance statistics to aid benchmarking given limitations of
existing methods. In the second part of the simulation study we
exploit the flexibility and efficiency of the proposed IPA tool
by contrasting patterns of prior parameter dependence under
shrinkage with more uninformative prior parameter settings,
and by expanding the set of considered sensitivities to assess
sensitivity patterns of key features in VAR-based policy analysis,
such as impulse responses to policy shocks.

3.1. Experiment Design

Consider the VAR(q) model, which can be expressed as

yt = b0 +
q∑

l=1
yt−lBl + εt = Xtβ + εt ; ε ∼ N(0, �), (6)

where t = 1, 2, · · · , T, Xt = In ⊗ (1, y′
t−1, . . . , y′

t−q) and
β = vec([b, B1, . . . , Bq]′). The row-stacked vector of intercepts
and VAR (lag) coefficients is denoted as β ∈ R

kβ , where kβ =
n(nq + 1). The latter part of VAR (lag) coefficients captures the
dynamic interdependence among the time series. We revisit the
BVAR setting in the empirical analysis. For the simulation study,
we consider two data generating processes:

• DGP1: Independent normal VAR(2) with b0 = 1n, Bl =
1

l+1 In and � = 0.01In;
• DGP2: General normal VAR(2) with b0 = 0.01 × 1n, Bl

and �. The diagonal elements of the first VAR coefficient

B1 are iid uniform U(0, 0.5) and the off-diagonal elements
are U(−0.2, 0.2). All elements of the higher VAR coefficient
matrix Bl are iid N (0, 0.052/l2), where l is the lag length.
The error covariance matrix � is generated from the Inverse-
Wishart distribution IW(n + 10, 0.07In + 0.031n1′

n).

Under both data designs the number of endogenous variables n
is set at 3 and the time length T is set at 600. For the simulation
study 100 samples are generated under each DGP with the initial
value of y0 set as the stationary mean of the corresponding
process.

For each dataset simulated from the true DGP, we will fit
a VAR(p) model, with the possible options for the lag order p
of fitted model being 1, 2, or 4. We proceed under standard
independent (conditional conjugate) prior assumptions with a
Normal prior on β , N(β0, B0), and an Inverse Wishart prior on
�, IW(ν0, S0), with the exact implementation given in Appendix
B.8 Within this framework, we set the prior mean β0 to be zeros
and proceed under different prior parameter specifications for
the prior variances of the lag coefficients (B0), encompassing
both uninformative and shrinkage settings. For the uninforma-
tive prior, we set B0 = 100Ik′

β
(k′

β = n(np + 1)), a standard
choice in many practical applications. Our main prior specifi-
cation is a Minnesota-type shrinkage prior that shrinks higher
lag-coefficients to zero (Koop and Korobilis 2010; Karlsson
2013), thus, favoring more parsimonious models and avoiding
overfitting the data (Morley and Wong 2017). In particular, we
set B0 as a diagonal matrix with different formulations for lag
and intercept coefficient variances such that B0,ii = κ0/l2 if i
corresponds to the own lth lag, κ1s2

i /
(

l2s2
j

)
if i corresponds to

lth lag coefficients of j variable in the ith equation and κ2s2
i if it

is and intercept. We set S0 = κ3In, with κ0 = 0.12, κ1 = 0.12,
κ2 = 100, and κ3 = 1.

3.2. Benchmarking IPA Derivatives

Following the classical simulation literature, we compare the
IPA derivative estimates against the two popular alternative
numerical derivative estimation methods, the likelihood ratio
(LR) and the numerical finite-difference (FD) methods (Glasser-
man 2013). Like IPA, the LR method is unbiased, but relies on
analytically evaluating and computing derivatives with respect
to the loglikelihood.9 Within the MCMC context its implemen-
tations so far are restricted to the derivative of the posterior
mean with respect to the prior mean within the exponential
family of distributions (Pérez, Martin, and Rufo 2006; Müller
2012). Appendix B provides more details on the LR and FD
implementations.

All presented benchmarking results refer to VAR inference
under the Minnesota shrinkage prior for data simulated under

8Compared to the more restrictive natural conjugate joint Normal-Wishart
prior formulations, favored in large Bayesian VAR analysis to circumvent
computational challenges of Gibbs inference in such settings, it allows for
asymmetry in the prior and posterior (Carriero, Clark, and Marcellino 2019).

9We acknowledge the fact that there is a recent generalization of the LR
method within the classical simulation context (Peng et al. 2018) which has
not been applied in the MCMC setting.
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Figure 1. Comparing estimates of posterior mean derivatives (top panel) and their corresponding precision in terms of estimator standard deviations (bottom panel)
obtained through the IPA on the x-axis and the LR on the y-axis. The findings are derived from 100 samples originating from DGP 2, using VAR(p) (p = 1, 2, 4) fitting under
Minnesota shrinkage priors.

DGP 2. We begin with the comparison of the derivative esti-
mates for ∂

∂β0
E[β|y, η0] via the IPA and LR methods. Figure 1

compares the posterior mean derivatives estimates under AD
and LR in the top panels (a)–(c) and precision of the corre-
sponding precisions of the derivative estimates in terms of their
standard deviations in the bottom panel (d)–(e). First, both
IPA and LR produce unbiased derivative estimates, with the
points reflecting the derivative estimates under both methods
closely tracing the 45-degree line. Second, the bottom set of
graphs shows that the IPA estimates are estimated more pre-
cisely for VARs with more than one lag with most points well
above the 45-degree line reflecting a higher standard deviation
of the LR estimates. This pattern is in accordance with the
large evidence from the classical simulation literature that shows
that the LR method generally produces derivative estimates
with larger standard deviations than that of the IPA estimator
(Cui et al. 2020).

Next, we turn to the derivatives of the posterior variances
∂

∂diag(B0)
var

(
β|y, η0

)
that can be benchmarked against the more

general FD methods. Estimates of the fully numerical FD
approach are biased and depend on the chosen bump size in the
implementation. Hence, FD provides an approximation subject
to the widely documented variance-bias tradeoff, also evident in
our simulation results where we benchmark the IPA estimates
with estimates obtained under the FD implementation under
various bump sizes. Note, that since FD assesses derivatives

with respect to one prior input parameter at a time, it requires
many reruns of MCMC under some chosen bump size with the
fixed random number generators. While different bump sizes
could be chosen for different dimensions, the complexity of the
problem makes such choices difficult in practice (Glasserman
2013). Figure 2 compares IPA deriviates with FD derivatives
under three bump sizes (1e-1, 1e-5, and 1e-17). The variation
in the patterns across the columns reflects the dependence of
the FD performance, in terms of both point estimates (graphs
(a)–(c)) and their precisions (graphs (d)–(e)), on the chosen
bump size and the inherent variance-bias tradeoff. If the bump
size is too small, then the FD point estimates of the sensitivities
are reasonable (c), although with considerably more variation
around the 45-degree line than LR estimates, and suffering from
a low precision (f) due to the large variance and floating point
error. On the other hand, if the bump size is larger, we observe
a substantial bias in the FD estimates (2a) combined with a
very high precision (2d). There is always a variance/bias tradeoff
in the application of FD with smaller bump values leading to
smaller bias but large variances, and vice versa for larger bump
values. In practice, the appropriate choice is hence difficult to
determine. In our particular setting, a moderate bump size of
(1e-5) appears close to the optimal choice as it results in FD very
close to AD. Note that we can only conclude this in hindsight
after comparison with the unbiased IPA estimates and after some
fine-tuning by trying many bump sizes.
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Figure 2. Comparing estimates of posterior variance derivatives and their corresponding precision from IPA and FD under various bump sizes (1e-1, 1e-5, and 1e-17).
Results are from fitting of a VAR(2) model under Minnesota shrinkage priors, using 100 samples drawn from DGP2.

Overall, the benchmark results demonstrate that the pro-
posed IPA approach yields estimates consistent with unbiased
LR estimates with stabler results, in line with findings from
a classical simulation context (Glasserman 2013). In terms of
computational time, IPA takes less than a second for one MCMC
parameter inference and gradient computation, while FD takes
roughly nine seconds on average. This computational gain is
achieved in our context using AD’s advances, which execute all
the derivative computations alongside the parameter inference
from one MCMC chain. Due to the relatively simple structure
of the posterior mean with respect to the prior mean, derivative
estimation under the LR method only requires the prior and
posterior covariance matrices and takes less than half a sec-
ond. In more complicated settings, particularly those involving
intractable likelihoods, the LR approach requires much more
effort as it relies on taking derivatives of the density function
and generally does not lead to a simple analytical expression as
in the presented example.

3.3. Sensitivity Analysis with IPA Derivates

We now turn to exploiting the generality and computational
efficiency of the proposed IPA approach to present patterns in
prior parameter dependence for an expanded set of posterior
measures, beyond lag coefficients, that relate directly to relevant
features in a VAR-based policy analysis. However, we still begin
by presenting the estimates for the IPA sensitivities of the regres-
sion coefficients also presented in the benchmarking exercise.

Figure 3 depicts heatmaps illustrating the sensitivities of
posterior means and variances of the VAR coefficient matrix
β within the context of inference using VAR(2) and VAR(4)
models. These models incorporate the Minnesota prior and are
applied to datasets sourced from DGP1 and DGP2.For clar-
ity of exposition, we only present the sensitivities of posterior
means and variances of VAR coefficients in the first equation
with respect to the corresponding prior means and variances.
Please refer to Appendix E for the heatmap in its entirety. Upon
examining both rows of Figure 3, it becomes evident that com-
mon sensitivity patterns emerge across the VAR(2) and VAR(4).
The results clearly indicate that as the model increases in size,
that is, the number of VAR coefficients changes from 21 to 39
as transitioning from VAR(2) to VAR(4), the influence of the
prior parameters becomes more pronounced while preserving
a similar pattern.

Figure 4 showcases the corresponding sensitivities when
conducting inference under an uninformative prior (For more
details, please refer to Appendix E). Notably, these sensitivities
are markedly reduced compared to the outcomes of the previous
analysis, thereby confirming the substantial impact of prior
shrinkage on posterior statistics.

Next, we present IPA derivative estimates for IRFs and
FEVDs. To compute the IRF and FEVD, we focus on the
Cholesky decomposition of the structural VAR. This allows us
to demonstrate that IPA serves as a tool for examining the
influence of prior parameters on policy inference through IRF
derived from orthogonal shocks, as implied by the Cholesky
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Figure 3. IPA estimates of posterior mean and variance derivatives under Minnesota shrinkage priors for data simulated under DGP1 and DGP2. Presented estimates are
for a VAR(2) or VAR(4) model for the sensitivities of posterior means and variances of VAR coefficients in the first equation with respect to the corresponding prior means
and variances.

Figure 4. IPA estimates of posterior mean and variance derivatives under the Uninformative prior for data simulated under DGP1 and DGP2. Presented estimates are
sensitivities of posterior means and variances of VAR coefficients in the first equation with respect to the corresponding prior means and variances for inference under a
VAR(2) model.

decomposition. Note that the algorithm for computing the
Cholasky decomposition is inherently smooth, that is, satisfying
the regularity conditions of our theoretical results.

Let IRFi,j,t(β , �) denote the algorithm for calculating the
IRF of the ith variable concerning the shock to the jth vari-
able at time t, where {β , �} ∼ π(·|data, η0). We introduce

the prior sensitivities in terms of the mean IPA deriva-
tives with respect to the relevant set of prior parameters η0,
that is, ∂

∂η0
Eπ

[
IRFi,j,t(β , �)

]
, obtained by averaging samples

1
S
∑S+B

g=B+1
∂

∂η0
IRFi,j,t(β

g , �g). We derive the sensitivities of
FEVD in a similar manner. The interchange of the integration
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Figure 5. IPA estimates of posterior forecast error variance decomposition FEVD2,1,t (t = 0, 1, . . . , 16) with respect to both prior means and prior variances of VAR coefficients
in the first equation under Minnesota shrinkage prior for data simulated from DGP1 and DGP2.

(expectation) and the derivative computation arises as a conse-
quence of the smoothness in the Gibbs transition kernel and the
computation of IRFs/FEVDs.

For ease of understanding, Figure 5 displays sensitivity esti-
mates of FEVD2,1,t for t = 0, 1, . . . , 16 along the y-axis with
respect to priors of VAR parameters in the first equation, repre-
senting the FEVD of the second variable under the influence of
the first shock. We further present an entire heatmap illustrating
sensitivity estimates of FEVD2,1,t for t = 0, 1, . . . , 24 with
respect to prior means and variances of all VAR coefficients β in
Appendix E. As the FEVD is independent of the intrinsic magni-
tudes of the DGPs, direct comparisons between DGP 1 and DGP
2 results are feasible. In the context of DGP 2, when compared to
DGP 1, FEVD2,1,t demonstrates heightened sensitivities across
a wider array of prior parameters. This is likely attributed to the
interdependencies among variables inherent to DGP 2.

Figure 6 showcases sensitivity estimates for the IRF under the
same conditions as presented in Figure 5 (For full details, please
refer to Appendix E). The lower panels (e)–(h) present “relative”
IPA estimates, wherein each sensitivity estimate is scaled by
a factor corresponding to the value of IRF2,1,t itself.10 These
relative IPA estimates illustrate that while the IPA derivatives
themselves may appear relatively small, they hold significant
importance when considered in relation to the magnitudes of
the original posterior statistics.

10More generally, a relative IPA derivative is defined as the ratio of the sensi-
tivity and the corresponding IRF, that is,

∂

∂η0
Eπ

[
IRFi,j,t(β , �)

]
/Eπ

[
IRFi,j,t(β , �)

]
.

4. Application

In this section, we employ the IPA-based derivative approach to
investigate the sensitivity of the estimated IRFs to prior parame-
ter choices in the context of an orthogonal government spending
shock. We focus on a fiscal policy Bayesian VAR (BVAR) model
applied to U.S. data, a methodology akin to the frameworks
used in Jarociński and Marcet (2019) and Ramey (2019). While
VARs and their associated IRFs have a longstanding history in
macroeconomic policy analysis (Blanchard and Perotti 2002),
they have garnered renewed attention among researchers due
to the heightened employment of fiscal stimulus in response to
the Covid pandemic. Bayesian VAR analysis remains a favored
approach for policy evaluation and forecasting, offering a variety
of prior specification options within the literature. However, the
incorporation of new data points from the Covid era introduces
sparks renewed robustness concerns both to modeling and prior
choices (Hauzenberger et al. 2021).

Establishing the suitability of prior assumptions on the
autoregressive parameters in a specific application remains a
challenge with existing tools (Amir-Ahmadi, Matthes, and Wang
2018) and restricts the assessment of impacts of such prior
parameter choices on IRF inference. Recent work by Jarociński
and Marcet (2019) compares IRF estimates by repeated estima-
tion under alternative sets of priors and finds that magnitude
and dynamics of output responses from an orthogonal spending
shock can vary considerably under different prior assumptions
on the mean coefficients. The IPA-based derivative analysis
introduces the option of a comprehensive and precise local sen-
sitivity analysis, by identifying both key prior parameters driving
prior sensitivity and the overall local sensitivity. Our analysis
focuses on the impacts of prior mean and variance parameter
changes to implied GDP responses from an orthogonal fiscal
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Figure 6. IPA and “Relative” IPA estimates of posterior IRF2,1,t (t = 0, 1, . . . , 16) with respect to prior means and prior variances of VAR coefficients in the first equation
under Minnesota shrinkage prior for data simulated from DGP1 and DGP2.

policy shock that are estimated from a BVAR under a common
Minnesota shrinkage prior.

4.1. Policy BVAR with Minnesota Prior

We consider a basic fiscal policy VAR for Government spending,
GDP and Federal tax revenue based on a subset of the data
used by Ramey (2019). The variables are defined in terms of
the nominal government purchases, the natural logarithm of real
GDP over the total population and tax revenues for the period
from 1939 to 2015.11 The analysis is based on a 3-variable 4-lag
Bayesian VAR as specified in (6). A similar model has also been
considered in Jarociński and Marcet (2019).

We proceed under an independent Normal-Wishart prior
set-up also considered in the simulation exercise. For the Nor-
mal prior on the regression coefficients β we specify a common
Minnesota shrinkage prior (Koop and Korobilis 2010; Karlsson
2013) to avoid overfitting the data by setting prior means at
zero. The prior covariance matrix B0 is set as a diagonal matrix
with a specific structure to shrink coefficients related to higher
lag orders stronger to zero. In particular, we consider B0,ii =
κ3

s2
i

l2s2
j

for the lth lag coefficient of variable j in the ith equation,

B0,ii = κ1
1
l2 for the own lag variables, κ2 if it is the intercept,

and S0 = κ0In. We set κ0 = 1, κ1 = 0.22, κ2 = 100,
and κ3 = 0.12.

11These include real GDP (GDPC1), nominal government purchases, implicit
price deflator (GDPDEF) and nominal Federal current receipts, NIPA accrual
basis(FGRECPT).

4.2. Sensitivity Results

Inference on the VAR model parameters is based on the output
of 10,000 iterations (after the 1,000 burn-in iterations) of a
2-step Gibbs algorithm provided in Appendix B with posterior
estimates of the model parameters provided in Appendix C.
The IPA-based sensitivity analysis is again implemented via the
vector-based AD approach also used in the simulation study
(Kwok, Zhu, and Jacobi 2020). It investigates sensitivities of the
estimated model parameters and GDP responses to government
spending shocks in terms of FEVDs and IRFs with respect to
the key prior parameters in the Minnesota context, the prior
locations (β0) and variances (B0) for the intercept and lag coef-
ficients. In addition, we provide sensitivities for the companion
matrix as a measure of the stability of a VAR system. In the final
section we show how the introduced IPA estimates can be used
to assess the impacts of prior parameter changes in IRFs across
the complete forecast horizon.

4.2.1. Model Parameters and Model Stability
To begin with, we provide results on sensitivities of the posterior
mean model parameter estimates across the three equations.
Figure 7 presents heat maps of the mean derivatives for the
model coefficients β for each equation (Government spend-
ing, GDP and Federal tax) with respect to prior means (top
panel) and prior variances (bottom panel) of VAR parame-
ters within the GDP equation. In the heatmap, each row cor-
responds to the derivatives of the posterior coefficient mean
concerning all 13 prior mean/variance parameters in the GDP
equation. For a more comprehensive illustration, please refer
to Appendix E. Common across all panels, we see pronounced
sensitivity patterns with respect to some prior settings for
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Figure 7. Mean derivatives of model coefficients from all three equations with respect to the prior means ∂β̂
∂β0

(top panels) and prior variances ∂β̂
∂diag(B0)

(bottom panels)
of prior parameters in the GDP equation.

Figure 8. Heatmaps of derivative estimates (in absolute values) of largest eigenvalue λ1 with respect to the prior mean and variance parameters. The three rows are
derivatives of λ1 with respects to prior parameters associated with the Government spending, GDP, and Tax equations, respectively.

parameters in the GDP equation where the heatmaps con-
tain the darkest red (largest positive) or blue (most negative)
values.

Moving forward, we next examine the sensitivities related
to the largest absolute eigenvalue of the companion matrix,
denoted as λ1. The companion matrix holds a pivotal role
in ascertaining the stability characteristics of the VAR system
under consideration. The stability of a VAR model is contingent
upon all eigenvalues exhibiting an absolute value that is less
than 1. This property ensures that the system’s behavior remains
non-explosive and permits the derivation of a unique, stationary
representation. Furthermore, λ1, governs the speed at which
the impacts of exogenous shocks within the system attenuate
over time. Our exploration into the sensitivity of λ1 concerning
prior specifications yields valuable insights into the influence

of these priors on the long-term stability of the system. This
becomes especially pertinent when λ1 converges toward a value
of 1. In the aforementioned analysis, it has been observed that
the model parameters are most sensitive to the prior means and
variances related to the GDP equation. This pattern is further
illustrated in Figure 8, where the absolute values of the IPA
estimates of the largest eigenvalue of the companion matrix, λ1,
are displayed. It is noteworthy that the absolute values of the
posterior means for λ1 are slightly below 1, indicating proxim-
ity to this threshold value. Given the existing prior parameter
configurations, the estimated VAR model aligns closely with a
unit root process. However, should the prior variances for the
lag coefficients associated with Federal Tax in the GDP equation
experience an increase, it is likely that λ1 would surpass the
value of 1.
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Figure 9. Heatmaps of derivative estimates of the IRF and FEVD of log GDP at 20 quarters after the spending shock with respect to the prior mean parameters and variance
parameters. The three rows are derivatives with respects to prior parameters associated with the Government spending, GDP and Tax equations, respectively.

4.2.2. FEVD and IRF of GDP to Spending Shock
In the of the section, we focus on GDP responses from an
orthogonal spending shock as implied by the Cholasky decom-
position. Figure 9 presents the sensitivity estimates concern-
ing the 20-quarter ahead IRFs and FEVD of the log GDP
in response to a government spending shock, denoted as
IRFGDP,Gov

20 and FEVDGDP,Gov
20 , respectively. Each heatmap in

these graphs encompasses 39 derivative values relative to the
prior mean or variance parameters. We note that the majority of
sensitivities are strongly linked to the prior means and variances
in the GDP equation, which is the consistent with the results
presented in the previous section. Moreover, it’s worth noting
that the intercept term in the GDP equation holds significant
importance for the FEVDGDP,Gov

20 .

4.2.3. Prior Parameter Dependence across the IRF Forecast
Horizon

Consider a forecast horizon of T2 = 24. We use the notation
ˆIRFGDP,Gov

t (η0) to represent the estimated IRFs for logarithmic
GDP under a government spending shock for time periods t =
1, . . ., T2, given a vector of hyperparameters η0. Correspond-
ingly, � ˆIRFGDP,Gov

t (η0) denotes the corresponding estimate of
derivatives for η0 = (β0, diag(B0)). It is important to recognize
that it is feasible to calculate derivatives of

ˆIRFi,j
t (η0)∀i ∈ [1, . . .n], j ∈ [1, . . ., n], t ∈ [1, . . ., T2]

simultaneously, that is, obtain the matrix � ˆIRF(η0) of dimen-
sions n2T2 × dim(η0).

By making small perturbations to the prior parameters and
observing the resulting changes in the IRFs, analysts can acquire
valuable insights into the robustness of their chosen prior spec-
ifications. In this section, our objective is to showcase the use
of IPA derivatives in efficiently conducting such analyzes. This
obviates the need for repetitive runs of MCMC inference at
various perturbed values of the prior hyperparameters. To do
so, we consider a first-order Taylor approximation at each point
in time

ˆIRFGDP,Gov
t (η0 + δ) ≈ ˆIRFGDP,Gov

t (η0) + � ˆIRFGDP,Gov
t (η0)

′δ
(7)

for a basic perturbation analysis on the (sub)set of prior
parameters, with the perturbation direction δ. While a sin-
gle run of MCMC provides estimations for ˆIRFGDP,Gov

t (η0)

Figure 10. IPA-based GDP response changes ( ˆIRF
GDP,Gov

(η0 + δ) under various
perturbations (δ = 1e − 03, δ = 3e − 03) of prior parameter settings (prior mean
and variance parameters, prior mean parameters, prior variance parameters) under
RW prior.

and +� ˆIRFGDP,Gov
t (η0), we can extend this to derive various

ˆIRFGDP,Gov
t (η0 +δ) estimates by evaluating the outlined approx-

imation at different values of δ.
In order to assess the overall prior sensitivity of the IRFs

of log GDP with respect to a government spending shock, we
consider a very small change in η0 on mean estimates of the IRF.
Figure 10 presents the IRF under the initial specification of the
prior location and variance parameters, alongside the implied
IRF for 24 periods following the shock when either the prior
means, prior variances or both are changed by 1e − 3 (and
also 3e − 3 for the latter). Two key patterns emerge. First, the
highest sensitivities are observed in the responses further out
in the time horizon, particularly between 15 and 20 quarters
after the spending shock. Second, responses are more sensitive to
the changes in the prior variance parameters, which is expected
given their shrinkage effect and their lower magnitudes.

The accuracy of such first-order approximations is influ-
enced by the curvature of the function being approximated.
The curvature provides insights into how the function’s rate
of change varies across different directions. The curvature is
captured by the Hessian matrix, which contains second-order
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Figure 11. Approximated change of GDP response to spending shock, ˆIRF
GDP,Gov

, under relative changes in prior mean and variances based on AD derivatives/first order
Taylor series expansion compared to 68% IRF interval under initial prior setting.

Figure 12. Approximated change of GDP response to spending shock, ˆIRF
GDP,Gov

, under relative changes in prior mean and variances based on AD derivatives/first order
Taylor series expansion compared to 68% IRF interval under initial prior setting. For changes in the intercept prior both mean and variances are changed.

partial derivatives of the function with respect to its variables.
However, computing the Hessian matrix can be computation-
ally demanding and time-consuming, particularly for complex
functions or high-dimensional problems.

Here, we present the outcomes of our first-order approxi-
mated Impulse Response Function (IRF) through IPA deriva-
tives in comparison to the IRF obtained by conducting a further
run of the Gibbs sampler using perturbed prior hyperparame-
ters. The graphs illustrated in Figure 11 demonstrate that across
all considered modifications, the IRF estimates derived from the
derivative-based approach are either nearly indistinguishable or
extremely close to the IRF acquired through re-estimation with
the adjusted prior values. These approximations consistently
fall well within the 68% credibility intervals. As anticipated,
the approximation exhibits the highest accuracy for changes
in means due to the linear nature of IRF with respect to the
means. Conversely, the presence of non-linearity within the vari-
ance parameters leads to a slightly larger approximation error.
This highlights that the influence of second-order terms cannot
be disregarded, particularly when dealing with non-linearities
stemming from variance parameters.

Finally, within Figure 12, we further analyse how the prior
specification of intercepts influences IRFs. It is important to
note that while the intercept itself does not have a direct impact
on IRF calculations, its prior effects are inherently embedded

within IRFs through its posterior interdependence with other
model parameters. The panels (a) and (b) of the figure examine
scenarios involving increases and decreases in prior mean or
variance by their posterior estimates, respectively. The con-
cluding panel of the figure delves into adjustments made to
both the prior mean and variance parameters associated with
the intercept terms. This comprehensive exploration enables us
to understand how modifications to the prior assumptions for
intercepts reverberate through the IRF estimations, considering
the intricate interplay between these parameters and other com-
ponents of the model. The results suggest that IRF estimates
are quite robust to changes in the prior parameters at least in
this particular context. That is, with different changes, the IRF
estimates are still well within the IRF interval estimated under
the original settings.

5. Discussion

The dependence of posterior inference on a (often large) set
of prior parameters, typically specified by the researcher, is an
inherent feature of Bayesian empirical analysis. Local sensitivity
analysis can provide important insights into the patterns of prior
parameter dependence for key posterior statistics. However, the
computation of such prior parameter sensitivities is compli-
cated by statistical and computational challenges and available
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methods are limited in scope and computational feasibility. This
article introduces a new approach based on Infinitesimal Pertur-
bation Analysis to expand the scope of sensitivity analysis.

With IPA widely used in classical simulation, we show that it
can be extended to compute asymptotically unbiased and consis-
tent prior parameter sensitivities of posterior statistics obtained
from Markov chain Monte Carlo inference via Gibbs sampling
under set of regularity conditions. By decomposing the Gibbs
sampler into a sequence of mappings, we are able to compute
the derivatives estimate alongside the MCMC algorithm via
the automatic differentiation, that avoid repeated rerunning the
MCMC. The new method also provides a more general approach
to unbiased derivative estimation than the LR method that is
applicable to a wider range of statistics computed from the
model parameters, and does not suffer from the computational
and statistical drawbacks of the FD methods. However, it is
important to acknowledge that the IPA approach has a potential
limitation due to the required smoothness in the underlying
algorithm. Some widely-used sampling methods beyond Gibbs,
such as unadjusted Hamiltonian Monte Carlo and Langevin
sampling, adhere to these smoothness prerequisites. Accept-
reject type algorithms such as Metropolis Hastings fail this con-
dition and an extension of IPA estimates requires further work.
We illustrate how IPA might applied in this type of setting in
the context of Metropolis-within-Gibbs and Slice-within-Gibbs
algorithms. A more comprehensive examination of sensitivity
analysis for MCMC outputs under Metropolis-Hasting type
algorithms is a matter for subsequent research.

We illustrate the performance and relevance of the pro-
posed approach in the context of Bayesian VAR analysis where
we assess the dependence of VAR inference to prior loca-
tion and variance specifications under a common Minnesota-
type prior. The simulation study confirms the unbiasedness
and precision in the benchmarking against the LR and FD
methods. It also introduces IPA-based derivatives for poste-
rior statistics beyond posterior parameter estimates, to include
the Impulse Response Functions and Forecast Error Variance
Decompositions of orthogonal exogenous shocks. Our appli-
cation in terms of a fiscal policy-VAR for U.S. data (Govern-
ment Spending, GDP, Tax) provides the first formal local sen-
sitivity analysis of IRFs and finds the highest sensitivities with
respect to prior location and variance parameters related to
the GDP equation, a finding that consistent across all posterior
measures.

Supplementary Materials

This supplementary material comprises comprehensive proofs of the theo-
retical results, accompanied by supplementary simulation data and empiri-
cal findings.
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